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ABSTRACT 

The properties of two component interacting gas of bosons are studied by assuming two slightly 

different types of interactions between the atoms of the two gases. The system is described by two 

operators a and b, that are used to diagonalize the Hamiltonian of the system by the method of 

Bogoliubov or canonical transformation. The diagonalized Hamiltonian gives the quasi-particle energy 

spectrum of the system. From the quasi-particle energy spectrum, the role of interaction in each 

interacting system is studied. The interacting system, which is more likely to be physically acceptable, 

and can undergo phase transition, is pointed out. 

 

Keywords: Bogoliubov canonical Transformation, Quasi-particle spectrum, interacting system, two-

component gas 
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1.  INTRODUCTION 

 

The fundamentals of the quantum statistics of photons was developed by and Indian 

scientist, S.N. Bose, in 1924 [1]. German scientist A. Einstein in 1925 [2] used those ideas and 

predicted the so-called Bose-Einstein Condensation (BEC) in bosonic gases that are 
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characterised by integral spin. The most fundamental character of bosons is that any number of 

bosons can occupy an energy state [3]. The basic idea of BEC is that at some finite temperature, 

called the critical temperature, the lowest energy state of the assembly of bosons (also called 

the Zero-Momentum-State, ZMS) is macroscopically occupied. Thus if N is the total number 

of particles in the assembly, and N0 particles condense to the ZMS, then 𝑁0 ≃ 𝑁 but 𝑁0 < 𝑁    

but, and the quantity 0N

N
 , is called the condensate fraction. Depending on the type of 

interactions between the particles constituting the boson assembly, 0N  can be depleted, the 

density of particle number in ZMS can change, and the critical temperature of transition to ZMS 

changes for an interacting system when compared to the non-interacting system [4, 5].  

Occupation of ZMS and condensate fraction for disordered bosons have also been studied 

[6, 7] 

In the last two decades, coherently coupled two component Bose-Einstein-Condensates 

[8], and Anisotropic pair superfluidity of trapped two-component Bose gases in an optical 

lattice have been studied [9]. Taking a clue from these studies, we have studied the quasi- 

particle spectrum of an interacting system of two component mixture of Bose gases. Thus, we 

consider a gas of bosons which is composed of two different types of boson gases. The number 

of particles of each gas may be the same or they may slightly differ. This means that the particle 

density of the two species of bosons may be the same or may slightly differ. Let the two types 

of bosons be described by two separate operators a and b, where the operator a stands for one 

type of bosons and operator b stands for the second type of bosons. Assume now that the 

Hamiltonian H for an interacting system of two species of boson gas is given by, 

 

   H a a b b g a b b a                           (1) 

 

where the parameter   will determine the kinetic energy of the bosons, and g is a parameter 

that may be a measure of the interaction strength between the particles of the two species.  

The terms in Eq. (1) have the following meanings; 

(i) a a  refers to the existence of one type of bosons at some position 

(ii) b b refers to the existence of the second type of bosons at the same position as the (i) 

above 

(iii) a b  refers to the creation of one type of boson described by the operator a  and the 

destruction of the other type of boson described by the operator b . 

(iv) Similarly b a  refers to the creation of boson described by the operator b  and 

destruction of of the other type of boson described by the operator a . 

 

Another system, somewhat similar to the one described by Eq. (1), could have a different 

form for the Hamiltonian H, such that, 

 

   H a a b b g a b ba                (2) 

 

Comparing Eq. (1) and Eq. (2), one can see that the first term in each is the same, whereas 

the second term in one differs from the other. In Eq. (2), the second term exhibits formation of 

pairs of the two types of bosons constituting the system. This type of Hamiltonian appears in 
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problems such as quantum phase transitions, superfluidity and superconductivity. To obtain the 

quasi-particle energy spectrum of such a system, the Hamiltonian has to be diagonalized by 

using what is known as Bogoliubov canonical transformation. Since the Hamiltonians in Eq. 

(1) and Eq. (2) describe different types of interactions between the bosons of the two-

component system, the quasi-particle spectra of the two systems will also be different. This will 

point out as to how one system differs from the other, and which system is physically more 

acceptable. 

 

 

2.  THEORY 

 

To diagonalize the Hamiltonians given in Eq. (1) and Eq. (2), we have to define the new 

operators  and   that will define the Bogoliubov canonical transformation. The new 

operators  and   that will define the Bogoliubov canonical transformation will be linear 

combinations of a and b .  

For bosons, the Bogoliubov canonical transformation is written as, 

 

a u v          (3) 

 

b u v          (4) 

 

The quasi-particle energy spectrum for the Hamiltonians given in Eq. (1) and (2) can be 

obtained by diagonalizing the Hamiltonians by the Bogoliubov canonical transformation. The 

difference between the two energy spectra will lead to the understanding of the two energy 

spectra, and how the physical properties of the two systems will differ from each other. 

 

2. 1. Diagonalization of the Hamiltonian H in Eq. (1) 

First, consider the Hamiltonian given by Eq. (1), i.e.  

 

   H a a b b g a b b a         

 

Substituting for a , a ,b and b  from Eq.(3) and Eq. (4) in Eq. (1) gives, 

 
2 2

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H u uv uv v

g u uv uv v

            

           

       

       

          

        

     (5) 

 

In Eq. (5), the non-diagonal terms are of the type ( )  , ( )       , 

( )       , and hence to diagonalize the Hamiltonian, the proportionality factors of these 

terms must be put equal to zero. This leads to 0uv  and since 2 2 1u v  , this means 0v  and 

1u  . The rest of the Hamiltonian, that is, the diagonalized Hamiltonian can now be written as, 

say, 1DH , i.e, 
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2 2 2 2

1 ( ) ( ) ( ) ( )DH u v g u v                                 ..  (6) 

 

We have to further simplify Eq. (6) by using the values of u and v  that must be obtained 

to diagonalize the Hamiltonian. From the above, we see that 0v   and 1u  . Substituting these 

values of u and v  in Eq. (6) gives, 

 

1 ( ) ( )DH g                          (7) 

 

Comparing Eq. (1) and Eq.(7) we find that the form of the quasi-particle Hamiltonian is 

the same as the original Hamiltonian of Eq. (1). In Eq. (7), the new operators  and   replace 

the old operators a and b . This can be called as identity transformation of the old Hamiltonian 

into new Hamiltonian. Hence, the quasi-particle energy spectrum will be the same as the 

original energy spectrum. Thus, such a Hamiltonian cannot lead to any phase transitions. 

It can also be verified by using commutation laws for bosons for the two-boson 

components that the perturbation term  g a b b a   does not commute with the unperturbed 

term  a a b b   , and hence there will be no phase transition. 

We now diagonalize the Hamiltonian in Eq. (2). Substituting for a , a ,b and b  from 

Eq.(3) and Eq. (4) in Eq. (2) , we get, 

 
2 2( ) ( ) ( ) ( )

( )( ) ( )( )

H u uv uv v

g u v u v u v u v

            

       

       

   

          

      

 

2 2

2 2 2 2

( ) ( ) ( ) ( )

( ) 2 2 ( )

u uv uv v

g u v uv uv u v

            

     

       

   

          

      

…..  (8) 

 

Using the relevant commutation laws, Eq. (8) leads to, 

 
2 2 2 2

2 2 2 2

2 2 2 2

( ) 2 ( ) 2

H guv u v guv u v guv

g u v uv g u v uv

      

    

 

 

              

          

          (9) 

 

To diagonalize this Hamiltonian in Eq. (9), the coefficients of the non-diagonal terms in 

Eq. (9) must be put equal to zero. The non-diagonal terms refer to and   
.  

Hence 

 
2 2( ) 2 0g u v uv             (10) 

 

or 

 
2 2 2u v

uv g


               (11) 
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The diagonal form of Eq. (9) becomes, 

 
2 2 2 2

2 2 2 ( ) 2 ( ) 2DH guv u v guv u v guv                         (12) 

 

Thus the quasi-particle energy eigenvalue 2E is given by, 

 
2 2

2 2 2 ( ) 2 2E guv u v guv                 (13) 

 

Substituting for 
2 2( )u v from Eq. (11) in Eq. (13) gives, 

 
2

2

2
2 2 2 2E guv uv guv

g




 
    

 
         (14) 

or 

 
2

2

4
2 2E uv guv

g


                         (15) 

 

The quasi-particle energy eigenvalue 1E of Eq. (7) is, 

 

1E g               (16) 

 

Comparing the values of 1E and 2E , we can point out the exact difference between the 

two energies. Energy 1E refers to the difference between the two kinds of energy involved; one 

being the kinetic energy  , and the other being the coupling energy g . Whereas in 2E , the 

energy  and g are related to each other via the coefficients of transformation u and v . The 

crux of the problem is as to how to determine the values of u and v . We know that, for bosons, 

 
2 2 1u v              (17) 

 

From Eq. (11) we can write,  

 

2 2 2
u v uv

g


              (18) 

 

Adding and subtracting between Eqs. (17) and (18) we get, 

 

2 1

2

uv
u

g


              (19) 

 

2 1

2

uv
v

g


              (20) 
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Now we can write, 

 
2 2 2

2 2

2

1

4

u v
u v

g


   or  

2
2 2

2

1
1

4
u v

g

 
  
 

  or  

 
1

2 2 22

g
uv

g





             (21) 

 

Substituting for uv from Eq. (21) in Eq. (15) gives 

 
2 2

2
2 2

2
2

g
E

g







 


                   (22) 

 

Eq. (22) shows that the relative magnitudes of the free particle kinetic energy and the 

coupling constant g  will determine the magnitude of the quasi-particle energy 2E . For 
2

g


 , 

 

2 2.023 2 0.023E                  (23) 

 

If g is taken as the contact potential between the two bosons (two component boson 

system) [10], then  

 

22 BB

BB

a
g

m


                (24) 

 

Thus we get, 

 

 
2

2

2

2 4
0.023 2 0.023 2 0.023BB BB

BB BB

a a
E g

m m

 
                           (25) 

 

We can now draw the graph for 2E against BBa  

The values of 2u and 2v can also be determined as follows; 

 

2 2 1u v  ;
2 2 2u v

uv g


                      (26) 

2 21u v  and 21u v             (27) 

 

Substituting for 2u in Eq. (26) we get 

 
2 2 2 2 2

2 2

2 1 1 2

1 . 1

u v v v v

uv g v v v v

   
  

 
 

 

or    2 22 1 (1 2 )v v g v     
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or     2 2 2 2 2 2 2 4 24 1 (1 2 ) (1 4 4 )v v g v g v v        

or    2 2 2 4 2 2 4 2 24 4 4 4v v g g v g v      

or       2 2 4 2 2 2 24 4 4 4 0g v g v g                              28) 

 

Let 2v x , then 

 

   2 2 2 2 2 24 4 4 4 0g x g x g                (29) 

 
2 2 2 2 2 2 2 2

2 2

(4 4 ) (4 4 ) 4(4 4 )

2(4 4 )

g g g g
x

g

  



     



 

1

2 2 2 2 2 2 22

2 2

(4 4 ) (4 4 ) (4 4 ) 4

2(4 4 )

g g g g

g

  



     



 

 

2

1
2 2 2

1

2
4 4

v

g





 
   
 



            (30) 

 

Thus 2v has two values, 

 

 

2

1
2 2 2

1

2
4 4

v

g





  



 and 

 

2

1
2 2 2

1

2
4 4

v

g





  



       (31) 

 

The first value of 2v  will lead to imaginary v , and this is not acceptable since v  is real. 

Thus, 

 

 

2

1
2 2 2

1

2
4 4

v

g





  



                     (32) 

 

Now for v  to be real the term, 

 

 
1

2 2 2

1

2
4 4g









 

or     
1

2 2 2
1

4 4
2

g    

or     2 2 21
4 4

4
g    

or     2 2 2g                    (33) 
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which is correct since  2 2 2g   provided g  . In fact, combining Eq. (20) and Eq.(21) 

we get the same equation as in Eq. (32). Similarly we can calculate the value of 2u . 

 

2. 2. Demixing of two-component Boson superfluid 

The transition temperature cT   for the Bose-Einstein-Condensation is given by, 

2

2 3

2

3.31

4
c

n
T

kM
          (34) 

 

where n is the critical density
N

V
(particle number density). Temperature cT  is the critical 

temperature at which the addition of more particles leads to BEC or the superfluid state. Here 

M is the particle mass of the given boson gas. Now for a two-component mixture of bosons, let 

1m  be the atomic mass of one component, and 2m be the atomic mass of the second component 

of the mixture of bosons. The critical particle number density n  may be the same or different 

for each component. For ideal mixture (non-interacting components) of the two components, 

Eq.(34) shows that cT   may be different for each component. 1cT for large 1m  component will 

be smaller compared to the 2cT  for small 2m . This means that if 1c cT T , the two component 

Bose system will be superfluid. However, if 1c cT T , then the component with mass 2m  alone 

will be superfluid. This may be called de-mixing of the two-component boson superfluid by 

changing cT . 

 

2. 3. Calculations 

Different combinations of two component bosonic mixtures can be used to calculate 2E

provided we know the values of BBa . The following three specific combinations have been used 

[11]. 

 

Table 1. Values of scattering lengths BBa  for bosonic Isotopes. 

 

ISOTOPES 
SCATTERING LENGTHS ( )BBa  

0a = Bohr Radius 

39 39

19 19K K  3

6 0(140 )a


  (Same Bosons) 

41 41

19 19K K  0(85 2)a   (Same Bosons) 

39 41

19 19K K  0(113 3)a   (Two-component Bosons) 

 

 

Using the values of BBa  given in Table 1, the values of quasi-particle energy 2E  in Eq. 

(25) are calculated. The values are given in Table 2. 
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Table 2. Calculated Values of Quasi-Particle energy for bosonic Isotopes. 

 

ISOTOPES 

SCATTERING 

LENGTHS ( )BBa in 

terms of Bohr Radius

0( )a  

Quasi-Particle Energy Density 

2( )E in Joules. 

41 41

19 19K K  083a  524.116 10 J  

41 41

19 19K K  085a  524.215 10 J  

41 41

19 19K K  087a  524.314 10 J  

39 41

19 19K K  0110a  525.594 10 J  

39 41

19 19K K  0113a  525.747 10 J  

39 41

19 19K K  0116a  525.899 10 J  

39 39

19 19K K  0134a  526.985 10 J  

39 39

19 19K K  0140a  527.298 10 J  

39 39

19 19K K  0143a  527.456 10 J  

 

 

3.  DISCUSSION 

 

In many-body physics, whether it is nuclear physics, condensed matter physics or solid-

state physics, a modern theme in research is to study the effect of inter-particle interactions 

among the particles constituting the system. There is still no method of deriving from first 

principles as to what is the nature of two-body or many-body interactions among the particles 

constituting the system. A number of interactions, whether attractive or repulsive, that were 

proposed from time to time were based on the intuition or guesswork of the brilliant scientists 

who proposed them. 

In the recent past, there has been a tremendous increase in activity in the field of cold 

atoms where lasers are used to confine the particles. Both experimental [12] and theoretical [13] 

studies on the properties of confined cold atoms are available in these articles. Over the past 

more than a decade, there has been an increased interest in the so-called optical lattice, along 

with the ability to tune all the relevant interactions, including changing from weak to strong 

interactions, attractive (negative scattering length) to repulsive (positive scattering length) 

interactions via the method of Fesh-back resonances [14, 15]. Early studies were mainly 

confined to one-component cold-atom systems with finite-range interactions. Recently multi-

component systems, such as binary bosonic mixtures in deep optical lattices have been 

investigated [16-19]. To explore quantum many-body physics, two component lattice bosons 

[20] and coupled superfluidity of binary Bose mixtures have been studied [21] to understand 
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how the intercomponent and intracomponent interactions, the attractive and or repulsive 

interactions and the strong and weak interactions, determine the properties of the ultra-cold two 

component Bose gases. In this study, we have considered a two-component Bose gas in which 

the interaction between particle of the two-components Bose gases is assumed to be some 

constant. It is rather a contact potential between the particles of two-component Bose gas. We 

have thereby, calculated the quasi-particle energy eigenvalues for different two-component 

Bose gases having different scattering lengths that were obtained from experimental 

observations. 

The calculations in this manuscript given in Table 2 show that the quasi-particle energy 

of the two-component boson systems in the superfluid state (ZMS) is more or less the same in 

magnitude for any different two-component boson mixture. As a rule in the superfluid state, the 

magnitude of the energy should not depend on the internal physical characteristics of the 

components constituting the two-component boson mixture. The inherent property of the 

superfluid is frictionless flow without dissipation. Thus, the superfluid state should not 

remember the physical properties of the constituents composing the mixture. 

It is possible that under certain conditions, there could be demixing of the Bose 

components or there may be phase separation. If the number of bosons of one component are 

much more than the other, then at some critical temperature cT , one component may be 

superfluid and the other may not be, and the superfluid system may be surrounded by the normal 

system. Such a system will be studied theoretically separately later. 

The physics of two-component bosonic mixtures when in a degenerate state plays 

important role in understanding the properties of ultra-cold atomic gases of different species 

[22]. Two-component Bose droplets and mixtures have been studied experimentally to 

understand whether superfluidity can sustain, and how the superfluid behavior in each 

component is affected by the presence of the other [23-27]. However, the effect of finite 

temperature and the effect of variation in the boson-boson scattering length ( )BBa  on the state 

of coupling of the two components and their superfluid behavior needs to be studied. The 

interspecies interaction can result in low-energy phonon excitations of the two components 

[28]. Our results suggest that low energy phonon excitations can lead to coupled superfluidity 

in both the components. Since the transition temperature to superfluidity will be different for 

each component, coupled superfluidity may exist only if the temperature T of the mixture is 

lower than the lower transition temperature of the two components. This can be explained by 

using Eq. (34). 

Now if the temperature of the mixture is such that one component is not in the superfluid 

state, then there could exist a dissipative drag on the superfluid component by the non-

superfluid component. But close to zero but finite temperature, such a situation may not arise 

since at such very low temperatures there will exist long-wavelength (very low energy) 

phonons, and the phonon energy fluctuations will be so small that dissipative drag may not 

exist; hence superfluidity of the two- component Bose mixture will sustain [21]. 

 

 

4.  CONCLUSIONS 

 

The quasi-particle energy excitation spectrum 2( )E , varies as the boson-boson scattering 

length ( )BBa  varies (the value of 2E increases as the value of BBa  increases). This is natural 
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since at large scattering length, to maintain coherence in the superfluid state, the energy 2( )E

must increase with increase in BBa . The value of 2E  is quite small and this refers to the phonon 

spectrum of the two-component boson system. Such a system is homogeneous and stable since 

there is no singularity in the value of 2E . It will be interesting to study the conditions under 

which the de-mixing of the components of the boson-boson mixture can take place. We plan to 

study this problem in a later communication. 
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