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ABSTRACT 

Superconductivity is the disappearance of DC electrical resistance in a material 

when it is cooled to a certain critical temperature, when a material changes from 

normal state to superconducting state when it is cooled to a certain critical 

temperature is known as phase transition. Superconductivity occur when electron-

phonon interaction is attractive and this occur when the energy difference 

between the electronic states involved is less than the phonon energy, and vice 

versa, that the critical temperature for transition to the superconducting state 

depends on the isotopic mass. This pointed to the possibility that the 

superconducting transition involved some kind of interaction with the crystal 

lattice. This electron-phonon interaction is likely to overcome the Coulomb 

repulsion and binds the fermions into pairs which then condense and super 

conduct. In exotic pairing three electrons take part in the superconducting current 

and that they interact with each other through harmonic forces. Two of these 

electrons form a bound pair while the third one is a polarization electron which 

hops from one lattice site to another lattice site of similar symmetry. The 

polarization electron causes perturbations leading to contraction of 3pCu O  

bond. Three types of possible interactions between electrons in the crystal that are 

believed to cause transition to superconducting phase are explored theoretically 

using perturbation theory. According to the theory of second quantization, if a 

perturbation commutes with the rest of the Hamiltonian, it leads to a phase 

transition.  The objective of the study is to investigate the commutability of the 

three interactions if it can lead to phase transition of a superconductor: The three 

types of interactions are interaction of electrons through phonons exchange, 

simultaneous existence of electron-phonon interaction and Coulomb interaction, 

and exotic pairing of electrons. Thus the interactions commute and can lead to a 

phase transition, and they can be used to study the properties of superconductors.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

When temperature of frozen mercury is reduced below its critical temperature of 

about 4.2 K, its electrical resistance disappeared resulting in the flow of electrical 

current of the order of 510  Amperes (Onnes,1911). This disappearance of electrical 

resistance was termed superconductivity, and it opened up a new research field that 

was envisaged to usher in ideal electrical conductors. Later, it was found that a 

number of pure metals, alloys and doped semiconductors also become 

superconductors at very low temperatures, which are nowadays called conventional 

superconductors. 

In 1957, an acceptable microscopic theory for superconductivity, based on the 

concept of pairing of electrons of opposite spins and momenta (time-reversed states) 

near the Fermi surface, was given by Bardeen, Cooper and Schrieffer and is usually 

referred as BCS Theory (Bardeen, et al., 1957). 

The effective interaction between a pair of electrons (Cooper-pair) results from the 

virtual exchange of a phonon between the two electrons constituting the pair. Such an 

interaction is called electron-phonon interaction. The interaction is attractive when the 

energy difference between the electronic states involved is less than the phonon 

energy, and vice versa. The important contribution to the interaction energy is given 

by short rather than long wavelength phonon. The strength of this electron-phonon 

interaction also reaches peak when the electrons are in the states of equal and opposite 

momenta and of opposite spins. 
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It is found that the critical temperature for transition to the superconducting state 

depends on the isotopic mass (any of two or more forms of a chemical element, 

having the same number of protons in the nucleus or the same atomic number but 

having different numbers of neutrons in the nucleus or different atomic weight). This 

pointed to the possibility that the superconducting transition involved some kind of 

interaction with the crystal lattice. This supported the concept of electron-phonon 

interaction (Reynolds et al., 1950; Maxwell, 1950). 

Bednorz and Muller (1986) discovered superconductivity in Lanthanum-based cuprate 

perovskite material, which had a transition temperature of 35 K. 

The vanishing of the direct current electrical resistance below the critical transition 

temperature, TC is one of the characteristic properties of a superconductor. Thus, the 

electrical conductivity, ,  tends to infinity for T<TC for superconducting materials.  

The current density, J is given by Ohm’s law as: 

EJ          (1.1) 

Where  is the conductivity of the material and E is the electric field across the 

conductor. If the current density is finite, then equation (1.1) shows that the 

conductivity is inversely proportional to the applied electric field, and hence as 

  , when 0E  inside a superconductor. The Maxwell’s law of electromagnetic 

induction is given by: 

t

B
E









                              (1.2) 

Where B


is the magnetic field. Thus, if E = 0 inside the superconductor as implied 

above, then equation (1.2) becomes: 
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0




t

B
        (1.3) 

On integrating equation (1.3) with respect to time, it gives the value of B as a constant 

inside the superconductor, i.e. 

ConstantB          (1.4) 

Thus, the magnetic field, B, does not change with time inside a material whose 

electrical conductivity, ,  is infinite.  It is found that the ratio of the resistance
SR  in 

the superconducting   state and that in the normal state 
nR is: (Khanna, 2008) 

1510
n

S

R

R
        (1.5) 

When the resistance disappears, there will be no heat dissipative effect and hence 

circulating electrical current in a superconducting ring can persist for a very long 

time. The existence of persistent current is a proof of zero resistance. 

Several theories have been advanced to describe the transition of materials from the 

normal state to the superconducting state, but their full understanding and 

simplification continue to emerge. In this work, three types of possible interactions 

between electrons in the crystal that are believed to cause transition to 

superconducting phase are explored theoretically using perturbation theory.  The three 

types of interactions are interaction through phonons exchange, simultaneous 

existence of electron-phonon interaction and Coulomb interaction, and exotic pairing 

of electrons.  
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1.2 Statement of the problem 

In the study of the phenomena of superconductivity, mainly two types of 

superconductors exist. One are called conventional superconductors whose properties 

are explained by the Bardeen-Cooper-Schrieffer Theory (BCS Theory) and the others 

are called high-temperature superconductors (HTS).As of to-day there is still no 

definite understanding of what type of interaction between the electrons leads to high-

temperature superconductivity. What is common between the BCS Theory and the 

high-TC Theories is that the interactions between the electrons play a predominant role 

in leading to the phenomena of superconductivity. Since the nature of materials that 

fall under BCS theory is quite different from the nature of materials that can be 

classified as high TC superconductors, the interactions between the electrons in the 

two cases have to be different. But what seem to be common in the nature of 

interaction is the electron-phonon interaction. In conventional superconductors or 

BCS type superconductors, the interaction between a pair of electrons results from the 

virtual exchange of a phonon between the two electrons constituting the pair. It is 

found that the critical temperature for transition to the superconducting state in BCS 

theory depends on the isotopic mass, which hints of a possibility that the transition 

involves some kind of electron-phonon interaction in the crystal lattice. This electron-

phonon interaction is likely to overcome the Coulomb repulsion and binds the 

fermions into pairs which then condense and super conduct. In exotic pairing two of 

the electrons form a bound pair while the third one is a polarization electron. The 

polarization electron causes perturbations leading to contraction of 3pCu O  bond. 

Thus, theoretical understanding of interactions between electrons is very important in 

order to show if whether phase transition can take place, and use them to study the 

properties of superconductors. 
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1.3 Objectives of the study 

1.3.1. General objective 

The general objective of this research is to investigate various types of electrons 

interactions and show if it can lead to phase transition of a superconductor if they 

commute.  

1.3.2 Specific objective 

The specific objective of this research is;  

To show that perturbed and unperturbed Hamiltonian can lead to phase 

transition of a superconductor if it commutes under the following 

interactions:  

(i) Electrons interaction via the exchange of phonons using Frohlich 

Hamiltonian as unperturbed Hamiltonian. 

(ii) Simultaneous existences of electron-phonon interaction and Coulomb 

interaction using Nakajima Hamiltonian as unperturbed Hamiltonian. 

(iii) Exotic pairing of electrons using Hamiltonian for simple harmonic 

oscillator as unperturbed Hamiltonian 

1.4 Justification 

Superconductors have been of great importance since their inceptions in early 20
th

 

century as a result of their ability to carry large quantities of electric current without 

heat loss as well as generate strong magnetic field. Thus, electric generators made 

with superconducting wires are far more efficient than conventional generators wound 

with copper wire. In addition, a Superconducting Quantum Interference Device 

(SQUID) is a device capable of sensing a change in a magnetic field over a billion 
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times weaker than the force that moves the needle on a compass. Thus, varied and 

practical applications of superconductors are on the rise and theoretical knowledge on 

their behavior is beneficial for development of newer and cheaper superconductors. 

One of these characteristics is its ability to undergo a phase transition, and this study 

gives a simplified theory of analyzing it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 
 

CHAPTER TWO 

 LITERATURE REVIEW 

2.1 Introduction 

The discovery of liquefied helium by the Dutch physicists Heike Kamerlingh Onnes 

in 1908 opened up a new field in low-temperature physics and this was a precursor to 

the discovery of superconductivity three years later (Dirk and Kes, 2010).  

Superconductivity is the disappearance of electrical resistance in an electric 

conductor, and since its discovery in 1911 (Onnes, 1911), scientists and engineers 

have been searching for theoretical understandings and practical applications 

respectively to date. Various theoretical and experimental studies have been done and 

published and substantial knowledge and information on superconductivity now exist 

in literature.  

2.2 Superconductivity 

A superconductor is a material that loses all electrical resistance to the flow of electric 

current when it is cooled below a certain temperature, called the critical temperature 

or transition temperature, TC.  In addition to suddenly achieving zero resistance at 

temperatures below TC, the superconductor gains other unusual magnetic and 

electrical properties. Two anomalous properties that a superconductor attains at 

temperatures below TC  are: 

a) The transition from finite resistivity,n in the normal state above a 

superconducting TC  to ρ= 0, i.e. perfect DC conductivity, σ= ∞, below TC, 

b) The simultaneous change of magnetic susceptibility  from a small positive 

paramagnetic value above TC  to = -1, i.e. perfect diamagnetism below TC. 
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2.3 Meissner effect 

When a metal is cooled to the superconducting state in a moderate magnetic field, it 

expels the magnetic field from its interior, regardless of whether there was a field 

inside or not before cooling below TC.  This expulsion of magnetic field from the 

interior of a conductor is referred to as Meissner effect (Meissner and Ochenfeld, 

1933).  The sketches in the Fig.2.1 illustrate how Meissner effect is developed in a 

conductor. 

 

                     Figure 2. 1: Formation of Meissner effect in a conductor 

When    ,and the applied magnetic field is small, then the constant value of 

magnetic field inside the conductor is zero. The superconducting state does not 

depend on the amount of magnetic field preserved inside the material before it is 
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cooled below CT . The relationship between the magnetic induction, B, and the 

magnetic field, H and the magnetic intensity moment, M is given by: 

MHB 4        (2.1) 

But, the magnetic susceptibility, M  is given by: 

H

M
M          (2.2) 

 Factoring H on the right hand side of equation (2.1) and using equation (2.2), 

yields 

 1 4 MB H          (2.3) 

Thus, from equation (2.3), if B = 0 inside the material, then



4

1
M .  This means 

that for low external magnetic field, the susceptibility of the material is negative and 

this is the fundamental requirement for a material to be diamagnetic (Khanna, 2008). 

 When a superconductor is placed in a weak external field H and cooled below its 

transition temperature, then the magnetic field is ejected. The Meissner effect does not 

cause the field to be completely ejected but instead the field penetrates the 

superconductor but only to a very small distance, characterized by a parameter called 

London penetration depth, λ. Beyond the length λ, the field decays rapidly to zero.  A 

superconductor with little or no magnetic field within it is said to be in the Meissner 

state, but this state breaks down when the applied magnetic field is too large, 

(Khanna, 2008). 

2.4 Types of Superconductors 

Meissner (Meissner and Ochenfeld, 1933) discovered experimentally that a 

superconductor has a tendency to exclude magnetic field from its interior.  
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Superconducting materials have the ability to exist either in the normal state or the 

superconducting state, depending on the external magnetic field they are subjected to. 

If the magnetic field is increased beyond a critical value HC, which is different for 

different materials, the Meissner effect breaks down. Based on this phenomenon, the 

superconductors are divided into two classes: 

1. Type I superconductors, and 

2. Type II superconductors. 

2.4.1 Type I superconductors 

Type I superconductors, have a single critical field CH , above which all 

superconductivity is lost. The finite temperature superconductivity is abruptly 

destroyed when the strength of the applied field rises above a critical value CH . 

Depending on the geometry of the sample, one may obtain an intermediate state 

consisting of a baroque pattern of regions of normal material carrying a magnetic field 

mixed with regions of superconducting material containing no field (Landau and 

Lifschitz., 1984; Callaway and David, 1990). 

 A magnetic field H  is completely excluded from the interior of the specimen when 

H < CH  but completely penetrates the sample when H > CH . Fig. 2.2 illustrates this 

behavior. 
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Figure 2. 2: Type I Superconductor 

2.4.2 Type II superconductors 

In type II superconductors, there is a partial penetration of the magnetic field into the 

sample when the applied magnetic field H lies between HC1 and HC2.  Small surface 

super currents may still flow up to an applied field HC3 as long as the current is not 

too large or a thin surface layer may remain superconducting up to the field 3CH . 

Beyond 3CH superconductivity is destroyed. Fig.2.3 illustrates this behavior. 

 

Figure 2. 3: Type II superconductor 
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2.4.3 Type I and II superconductors 

Another important factor, in addition to London penetration depth, in 

superconductivity is the superconducting coherence length, . One defines a 

coherence length  equals to
f


 where f is the Fermi velocity,  is reduced Planck 

constant and   is superconducting energy gap. The ratio of    to   determines 

whether a superconductor is type I or type II superconductor. Type I superconductor 

are those with 
1

0
2




   and type II superconductors are those 

1

2




  (Tinkham, 

1996). 

2.5 Phase Transitions 

2.5.1 First order phase transition 

In a phase change, the change involves a major re-arrangement of structure of the 

substance, resulting in change of volume, specific heat, entropy, viscosity, etc at the 

critical temperature  CT . Since such changes involve energy change produced at a 

finite amount of heat or the latent heat, then the transition takes place at a constant 

temperature i.e.  dT = 0 . 

When a substance undergoes a change of phase from phase 1(normal state) to phase 2 

(superconducting state), the accompanied latent heat, L is given by: 

 12 2 1CL T S S         (2.4) 

Where 1S  and 2S  are entropies in phase 1 and 2 respectively.  Equation (2.4) shows 

that there is a discontinuity in entropy since the heat capacity, CP is given by: 

P

P
T

S
TC 












        (2.5) 
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The heat capacity, from equation (2.5), becomes infinity at transition because at 

CT T , S  is finite at 0T  , hence 
pc  .Transition for which 12L  is finite and 

pc   is called first order phase transition (type I superconductor) (Kandie, 2008) 

2.5.2 Second order phase transition 

There are other changes of phase involving the initiation of a different kind of 

ordering in a crystal lattice, the appearance of superfluid in helium II, super-fluidity of 

a nuclear system and appearance of the solid and a super-solid 
4
He, superconductivity 

of such phase changes may involve a change of slope of S  against T at the transition 

point not a change of the value. In this case the heat capacity changes discontinuously, 

but does not become infinite at CT . Such changes are called phase changes of the 

second kind. For such changes, there is no discontinuity in volume (V1=V2) or 

entropy ( 1 2S S ) during the transition is called second order phase transition (Type II 

superconductivity) (Kandie, 2008) 

2.6 Thermodynamics of superconductors 

The Gibbs free energy density of a system when the external magnetic field is 

changed is given by: 

PVSTUG         (2.6) 

Differentiating equation (2.6) gives: 

VdpPdVTdSSdTdUdG      (2.7) 

But 
4

B
V


   and  dP dH , and substituting them in equation (2.7) gives: 

dH
B

SdTdG
4

       (2.8) 
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Where S is the entropy per unit volume. Using equation (2.8) and holding the 

magnetic field, H and temperature, T constant separately yields respectively the 

entropy S as: 

HdT

dG
S 








        (2.9a) 

TdH

dG
S 








 4        (2.9b) 

If we consider a long superconducting cylinder in a magnetic field that is parallel to 

the axis of the cylinder and then increase the value of H from 0 to some value H at a 

constant temperature  (-SdT=0), equation (2.8) becomes 


H

dHHBTGHTG
0

')'(
4

1
)0,(),(


    (2.10) 

The right hand side of equation (2.10) gives the magnetic work stored per cm
3
 of the 

material. However, in the normal state B H  and in the homogeneous 

superconducting region 0B  , hence 

 824

1
''

4

1
)0,(),(

22

0

HH
dHHTGHTG

H

nn    (2.11) 

And in the superconducting state 

0'0
4

1
)0,(),(

0
 

H

SS dHTGHTG


    (2.12) 

Hence, equation (2.12) gives: 

)0,(),( TGHTG SS        (2.13) 

Since these two phases are in thermodynamic equilibrium at the critical field  CH T , 

then  
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),(),( CnCS HTGHTG        (2.14) 

Using equations (2.13), we can write  

)0,(),()0,(),()0,()0,( TGHTGTGHTGTGTG nCSnSnS   (2.15) 

Or 

)0,(),()0,()0,( TGHTGTGTG nCnnS     (2.16) 

Using equation (2.11) in equation (2.16), we get 

8
)0,()0,(

2

C
nS

H
TGTG       (2.17) 

This, equation (2.17), shows that negative condensation energy 
8

2

CH
  per unit 

volume accompanies the formation of a superconducting state. Subtracting equation 

(2.11) from (2.13) and re-arranging the terms, we get, 

       
2

, , ,0 ,0
8

S n S n

H
G T H G T H G T G T


       (2.18) 

Or 

   
2 2

, ,
8 8

C
S n

H H
G T H G T H

 
         (2.19) 

Or 

      
2

2 21
, ,

8
S n CG T H G T H H T H


    
  

   (2.20) 

Equation (2.20) implies that the superconducting state is indeed the equilibrium state 

for all ( )CH H T . Using equation (2.9) for the entropy S and equation (2.20), we get 

     
 1

,0 ,
4

C

S n C

dH T
S T S T H H T

dT
      (2.21) 
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According to the Nernst theorem, S→0 when  T→0, and from equation (2,21),  it 

follows that 

0
dT

dHC         (2.22) 

Hence, equation (2.22) shows that HC(T) has zero derivative at T = 0. However, from 

experiment, equation (2.22) takes the form: 

0
dT

dHC         (2.23) 

Which implies that SS<Sn. The superconducting state is more ordered than the normal 

state and latent heat QL is given by, 

   
 1

4

C

L S n C

dH T
Q T S S TH T

dT
       (2.24) 

The empirical relation for the variation of HC(T) with the temperature T is 

   
2

0 1C C

C

T
H T H

T

  
   
   

      (2.25) 

This gives that at CT T ,   0CH T   and the  CH T  is a maximum at 0T   Using 

these facts in equation (2.14),we get that the latent heat QL vanishes at 0T   and 

CT T  (since at CT T  ,   0CH T   

Finally specific heat is 

H

H

S
C T

T





 
   

 
       (2.26) 
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Using equation (2.9) in equation (2.26) and then substituting for entropy in the 

expression for the specific heat, we get the expression for s nC C  

2 2

24

C C
S n C

dH d HT
C C H

dT dT

  
    

   

     (2.27) 

Now the change in the specific as the specimen undergoes a transition from normal to 

the superconducting state i.e. the jump in the specific heat at CT T  becomes   

   
4C C

C

C C
S n T T T T

T T

T dH
C C C

dT 


  
      

   

   (2.28) 

Equation (2.28) is the Rutgers formula. The jump in the specific heat means that the 

transition is a second order phase transition. 

For first order phase transition to occur, there must be constant temperature and 

constant applied magnetic field; heat must be supplied to the specimen to enable it to 

make the transition from superconducting to the normal state. 

2.7 High -TC superconductivity 

Until 1986, it was believed that the BCS theory forbade superconductivity at 

temperature of about 30K or above. In that year, Bednorz and Muller discovered 

superconductivity in lanthanum-based cuprate with a transition temperature of 35 K 

and they won the Noble Prize of physics in 1987 (Bednorz and Muller, 1986) for this 

discovery. 

It was later found by Wu and Chu that replacing the lanthanum with Yttrium raises 

the critical temperature to 92 K (Wu et al., 1987) which was important because liquid 

nitrogen could then be used as a refrigerant, since its boiling point is 77 K at 
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atmospheric pressure. Thus, high CT  superconductor was defined as one whose 

critical transition temperature CT  is greater than 30 K and the superconducting state 

can be reached by cooling in liquid nitrogen. 

The discovery of possible high CT  superconductivity in Lanthanum-Barium-Copper-

oxide (La-Ba-Cu-O, TC=30K) system was an important and decisive break through in 

the high TC superconductivity research. There was a great success with La-Ba-Cu-O 

and La-Sr-Cu-O compounds whose transition temperature were more than 90 K. The 

three main families of mixed oxides that have shown high CT  superconductivity 

properties are; 

1. Yttrium-Barium-Copper-Oxide (YBa-Cu-O , CT =90K) 

2. Bismuth-Strontium-Calcium-Copper-Oxide (Bi-Si-Ca-Cu-O , CT =105K) 

3. Thallium-Barium-Calcium-Copper-Oxide (Ti-Ba-Ca-Cu-O, CT =110K) 

By March 2007, the World record of high TC superconductivity was held by a ceramic 

superconductor consisting of Thallium, Mercury, Copper, Barium, Calcium, 

Strontium and Oxygen ( CT =138K). A patent has also been applied for a material 

with CT =150 K. Many other cuperate superconductors have been discovered and 

some of them with their values of CT  are given below;  

Formulae   Highest CT (K) 

YBa2Cu3O7-S               92 

Bi2Sr2CaCu2O8   90 

Bi2Sr2CaCu2O10   122 
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TL2Ba2Ca2Cu3O10              127 

TLBa2CaCu2O7   90 

HgBa2Ca2Cu3O8   135 

TL2Ba2CaCu3O8   110 

Although by now quite a few high CT  superconductors (HTS) have been discovered, 

attempt to make HTS was not successful in 1970’s. But finally discovered in 1986-

1987, and the mechanism of HTS is still not obvious and still continues to be a subject 

for theoretical study. There is a lot of experimental data on HTS that cannot be 

explained by BCS theory and the high CT theories proposed up to today. 

2.8 Anharmonic Apical oxygen vibration in high-TC superconductors 

There are a number of theories that have been proposed to explain the properties of 

high-TC superconductors (Khanna, 2008). The theory of anharmonic apical oxygen 

vibration in high-TC superconductors is briefly described here. 

The structure of a high temperature superconductor is closely related to perovskite 

structure and the structure of these compounds has been described as a distorted, 

oxygen deficient multi-layered system. 

One of the properties of the crystal structure of oxide superconductors is an 

alternating multi-layer of CuO2 planes with superconductivity taking place between 

these layers. The more the layers of CuO2, the higher the TC, but there is no change in 

TC for layers more than three. 

The charge carriers are electrons and the pairing mechanism between the electrons is 

exotic. The electronic pairing in exotic superconductors is such that three electrons 
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take part in the superconducting current and that they interact with each other through 

harmonic forces. Two of these electrons form a bound pair while the third one is a 

polarization electron which hops from one lattice site to another lattice site of similar 

symmetry (Khanna and Kirui, 2002). 

Studies that have been done in photo-induced Raman scattering have confirmed that 

there exists strong anharmonic nature of apical oxygen vibrations (Mihailovic et al., 

1990). When the spectral function of electron-phonon interaction is compared with 

the phonon spectrum in bismuth compound it is noted that, both low frequency 

vibrations and high frequency vibrations contribute to the electron-phonon coupling. 

High frequency vibrations are referred to ’Breathing mode’ and low frequency 

vibrations are called ‘Buckling mode’. Fig 2.4 is the apical oxygen atom that 

contraction when polarization electron causes perturbation. 

 

Figure 2. 4: Apical oxygen atom 

2.9 Phase Transition in superconductors and superfluids 

Phase transition is of first–order when the latent heat is finite and not equal to zero 

and are of second-order phase transition when there is a specific heat jump at the 

transition temperature CT . 

The well-known superfluid is liquid 
4
He in which there is a discontinuity in the 

specific heat at the λ-transition temperature. Such a transition is of second–order 
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phase transition and takes place at 2.176CT T K  , and this transition exists also in 

3
He. Again in liquid 

4
He when the specific heat is measured belowT ; particularly in 

the region 0K to 1K, the specific heat varies continuously as shown in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5: Specific heat capacity 

Thus, if another phase transition takes place in the region 0<T<1K, it is not clearly 

known what kind of phase transition it could be, This is still an open question to be 

solved theoretically. 

There is a possibility of investigating the crossover from a Bardeen-Cooper-Schrieffer 

(BCS) to Bose-Einstein Condensate (BEC) superfluid (Astrakharchik et al., 2004). In 

these systems the strength of the interaction can be varied over a very wide range by 

magnetically tuning the two-body scattering amplitude. For positive values of the S-

Wave scattering length ‘a’, atoms with different spins are observed to pair into bound 

molecules which, at low enough temperatures, form a Bose condensate (Jochim et al., 

2003). The molecular BEC state is adiabatically converted into a ultracold Fermi gas 
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with a< 0 and FK

a
<<1 (Bartenstein et al., 2004 and Bourdel et al., 2004) where 

standard BCS theory is expected to apply. In the cross-over region the value of a   

can be orders of magnitude larger than the inverse Fermi wave vector 
1

FK 
. In dilute 

system, for which the effective range of the interaction OR  is much smaller than the 

mean inter particle distance F OK R <<1, the energy of the non-interacting Fermi gas is 

FG   where, 

m

K F
FG

22

10

3 
        (2.29) 
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CHAPTER THREE 

THEORY AND DERIVATIONS 

3.1 Introduction 

This chapter presents the equations that were used to investigate the mode of electrons 

interactions in the conductor crystal to explain the transition to the superconducting 

states. 

3.2 Phase transition 

In classical thermodynamics, the order of phase transition is determined by a 

definition given by Ehrenfest (Huang, 1975). Ehrenfest defines a phase transition to 

be an n
th

 order transition if, at the transition point  

1 2

n n

n n

G G

T T

 


 
       (3.1) 

And 

 
1 2

n n

n n

G G

p T

 


 
       (3.2) 

Where 1G  and  2G  are the Gibb’s free energy in the two phases, whereas all lower 

derivatives are equal. Apart from the well-known gas-liquid transition, there is one 

known example of a phase transition that fits into the schemes of Ehrenfest the second 

order phase transition in superconductivity. With the discovery of different types of 

superconductors namely , type I superconductors, type II superconductors, BCS 

superconductors , High Temperature superconductors etc. It is found that in some 
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cases the superconducting transition is of the first order and in some cases the 

superconducting  transition of second order. 

In some cases, the variation of specific heat with temperature is used to study the 

order of phase transition. Since the specific heat is related to the second derivative of 

G, these examples cannot be characterized by the behaviours of the higher derivatives 

of G, because they do not exist. Thus the Ehrenfest scheme is not the most general 

classification of the phase transitions. 

According to second quantization, if a perturbation commutes with the unperturbed 

Hamiltonian, it can lead to a phase transition (Fock,1932). However, it gives no 

indication of whether the phase transition will be first order or second order. To 

determine the order of phase transition, we have to use either the Ehrenfests rule or 

study the variation of specific heat with temperature. In general in a reversible 

thermodynamic process involving finite latent heat, the transition is of first-order. 

For instance the basis for the thermodynamics description of a superconductor is the 

assumption that a superconductor in a magnetic field is in a single thermodynamic 

stable state. When the acting external magnetic field  0CH H , for CT T , the phase 

transition at  CH H T is of the first order, i.e. the latent heat is involved or it is 

finite. However, the latent heat goes to zero as CT T  so that the transition at CT , 

when   0C CH T  (i.e. when there is no acting external magnetic field) is a second 

order phase transition. Thus the superconducting transition is of the first order in a 

finite magnetic field (latent heat is involved), and it is of the second order in the 

absence of the external magnetic field (latent heat is zero) 
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The electronic specific heat in the normal state for CT T  is roughly given by T .In 

the superconducting state this varies as kT

C eT /2 , and it is about three times the 

normal value T  and the experimental variation shown in fig.3.1 indicates a second 

order phase transition like the one in liquid 
4
He. 

                                                                                | 

                                                                               | 

                                                                              | 

                                                                             | 

                                                                             | 

 

 

Figure 3. 1: Second order phase transition in liquid Helium 

In general, phase transitions are common occurrence in ordinary matter, 

superconducting and superfluid matter. From experience it would be simplest to 

characterize a phase transition as the manifestation of a certain singularity or 

discontinuity in the equation of state and or the specific heat. It is common knowledge 

that the phenomena of phase transition is a possible consequence of molecular 

interaction as in matter and superfluid 
4
He and other similar superfluid system and 

also the interaction between electrons and nucleons leading to superconductivity of 

different types of materials and the superfluidity of nuclear matter, finite nuclei and 

neutron stars. 
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The attempt here is to revisit what kind of interactions can lead to a phase transition in 

superconductors, use of second quantization and perturbation to determine the type of 

phase transition can be the milestone of this research. To determine whether the 

transition is first-order or second-order, either the variation of specific heat with 

temperature is to be studied or the Ehrenfest’s rule has to be used.  

3.3 Electron-phonon interaction 

To explain the phenomena of superconductivity, large number of interactions between 

the electrons has been proposed. These interactions can be treated as perturbations on 

the unperturbed Hamiltonian (Frohlich,1950). The first such attempt was due to 

Frohlich who considered the interaction between the electrons via an exchange of a 

phonon. The Frohlich Hamiltonian, (HF) is written as: 

pheF HHH  0        (3.3) 

Where 0H  is the unperturbed Hamiltonian given by  

  
q

qq

k

kkk aqaCCH  0      (3.4) 

Here the creation 

kC and annihilation kC operators refer to electrons and qa refer to 

phonons. The value of pheH  is given by: 

  kk

kk

qqkkphe CCaamH 

  
,

     (3.5) 

Where kkm is the electron-phonon matrix element, the term kkq CCa 

 refers to the 

scattering of an electron from 'k  to k with the emission of a phonon of wave vector 

number kkq  '  and the terms kkq CCa 
 refers to the scattering of an electron from 

'k to k with the absorption of a phonon of wave number  
'q k k  .Now to 
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understand whether the perturbation pheH   will lead to a phase transition, one has to 

calculate the value of  pheHH ,0 and if it turns out to be zero, then such a 

perturbation can lead to a phase transition. 

The purpose is to understand that if a perturbation does not commute with the 

unperturbed Hamiltonian, it cannot lead to a phase transition. Since Superconducting 

transition is a phase transition, such a perturbation cannot be considered. This method 

helps in the elimination of electronic interaction that cannot lead to Superconducting 

phase transitions. 

3.4 Simultaneous existence of electron-phonon and Coulomb interaction 

Another Hamiltonian also exists which is called the Nakajima Hamiltonian (Taylor, 

1970) and is denoted by NH . In this Hamiltonian, in addition to the electron-phonon 

interaction, the Coulomb interaction between lattice of bare ions has been taken into 

account. The mutual interaction between the electrons is also added to NH , and is 

given by: 

   kkqk

qkk

qkkqq

kk

kk

i

kkFN CCCVCCaammHH ''

,',',

''
2

1 





    (3.6) 

Where qV is the Fourier transformation of the mutual interaction between the electrons. 

Now if HF is taken as the unperturbed Hamiltonian, then the perturbation H1 will be 

the rest of two terms in such a system, HF  and  H1 have to commute i.e. 1, 0FH H  if 

there is to be a phase transition. 
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3.5 Exotic pairing 

Another form of interaction between the electron in a superconductor is when the 

charge carriers are electrons and the pairing mechanism between the electrons is 

exotic (Cox and Maple, 1995). The electronic pairing in exotic superconductors is 

such that three electrons take part in the superconducting current and that they interact 

with each other through harmonic forces (Khanna and Kirui, 2002).Two of these 

electrons form a bound pair while the third one is a polarization electron which hops 

from one lattice site to another lattice site of the similar symmetry. Studies that have 

been done in photo-induced Raman scattering (Mihailovicet al., 1990) have 

confirmed that there exists strong anharmonic nature of apical oxygen vibrations. 

When the spectral function of electron-phonon interaction is compared with the 

phonon spectrum in Bismith compounds, it is noted that both low frequency 

vibrations (bucking mode) and high frequency vibration (breathing mode) contribute 

to the electron-phonon coupling (Khanna, 2008). 

It was therefore assumed that the polarization electron causes perturbation with 

respect to the apical oxygen vibrations leading to the contraction of 3PCu O  bond. 

This perturbation is assumed to be of the form: 

43

1 xxH          (3.6) 

Where   and   may or may not depend on the temperature. The parameter, x is 

given by: 

  aax
2

1


       (3.7) 
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Where
2


  , and   is the reduced mass of the pair of electrons,  is the phonon 

frequency, a and a
+ 

are annihilation and creation operators for the electron. Now the 

unperturbed Hamiltonian 0H  for such a system is, 

22
2

0
2

1

2
x

P
H 


        (3.8) 

For such a system to undergo phase transition, we must have, 

  0, 10 HH         (3.9) 

A large number of high TC Superconductors exists whose structures are different from 

each other, where some of them have layered structures. The role of attractive 

interlayer and intralayer interactions, in layered high temperature cuprate 

superconductors have been investigated. The interlayer interactions play an important 

role in the enhancement of TC in layered high TC cuprates (Arvind and Kakani, 

2008).In fact, both interlayer and intralayer interactions play a significant role, hence 

we can write the value of the unperturbed Hamiltonian H0 and that of the perturbed 

Hamiltonian H1,where 

erntrai HHH int1         (3.10) 

In order that such a system can undergo a phase transition, I have to calculate 

 0 1,H H  and see if it is zero. 

In this thesis I will obtain the value of  pheHH ,0  and  10 , HH  using theory of 

second quantization and see if it will lead to a phase transition. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this chapter, results and discussions will be presented. The three types of 

interactions will be shown if it contribute to transition to superconductive state, if they 

commutate. 

4.2 Electron-phonon interaction 

The Frohlic Hamiltonian, HF is given is given in section 3.3 and forms the basis for 

electron-phonon interaction. We will calculate [H0, He-ph] and if it gives a value of 

zero, then it can lead to a phase transition, i.e. the electron-phonon interaction can 

lead to a phase transition. 

   000 , HHHHHH phephephe  
      (4.1)

 

Replacing 0H and pheH   with the corresponding value, we get; 

   ' ' ' '

' ', ,

k k k q q q q q k q q k k k k q q qkk k kk k
k q k qk k k k

c c a a M a a c c M a a c c c c a a          

 

         
          

         
     

          (4.2)

 

Equation (4.2) is broken into two parts; the first term will be; 

 ' '

',

k k k q q q q q kkk k
k q k k

c c a a M a a c c    



   
   

   
    

' ' ' ' ' ' ' '

' ' ' ', , , ,

k k k q k k k k q k q q q q k q q q q kkk k kk k kk k kk k
k k q qk k k k k k k k

c c M a c c c c M a c c a a M a c c a a M a c c            

           

          (4.3)
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The second part will be; 

 ' '

',

q q k k k k q q qkk k
k qk k

M a a c c c c a a    



   
   

   
    

' ' ' ' ' ' ' '

' ' ' ', , , ,

q k k k k q k q q q q k k k k q k q q qkk k kk k kk k kk k
k q k qk k k k k k k k

M a c c c c M a c c a a M a c c c c M a c c a a            

           

          (4.4)

 

Now equation (4.1) i.e.  pheHH 0 will be; 

' ' ' ' ' ' ' '

' ' ' '

' ' ' ' '

' ' '

, , , ,

, , ,

k k k q k k k k q k q q q q k q q q q kkk k kk k kk k kk k
k k q qk k k k k k k k

k k k q k k k k q k q q q qkk k kk k kk
k k qk k k k k k

c c M a c c c c M a c c a a M a c c a a M a c c

c c M a c c c c M a c c a a M a

   

  

         

 

      

 

 
     
 

 

       

      ' ' '

',

k q q q q kk kk k
q k k

c c a a M a c c  
 

 
 

 

          (4.5) 

Opening the bracket of equation (4.5) we get;

 ' ' ' ' ' ' ' '

' ' ' '

' ' ' ' ' '

' ' '

, , , ,

, , ,

k k k q k k k k q k q q q q k q q q q kkk k kk k kk k kk k
k k q qk k k k k k k k

k k k q k k k k q k q q q q kkk k kk k kk k
k k qk k k k k k

c c M a c c c c M a c c a a M a c c a a M a c c

c c M a c c c c M a c c a a M a c c

   

  

         

 

       

 

    

 

       

      ' '

',

0q q q q kkk k
q k k

a a M a c c    

          

(4.6) 

Hence electron-phonon interaction can lead to a phase transition. 

4.3 Simultaneous existence of electron-phonon interaction and coulomb 

interaction 

Nakajima Hamiltonian is denoted as NH , in this Hamiltonian, in addition to electron-phonon 

interaction , the coulomb interaction between a lattices of bare ion has been taken into 

account. The mutual interaction between the electrons is added to NH .Thus the final form of 

NH  is written as; 
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  ' ' ' ' '

' '

1

2

i

N F kk kk q q k k q k q k q k k

kk kk q

H H M M a a c c V c c c c   

          

          (4.7) 

Where qV  is the Fourier transformation of the mutual interaction between the 

electrons.  Now FH is taken as the unperturbed Hamiltonian, then the perturbation 

1H will be the rest of two terms in such a system. Now we commute FH  and 1H  

 1,FH H
         (4.8)

 

 ' '

'

F k k k q q q kk q q k k

k q kk

H c c a a M a a c c    

        (4.9) 

And 

  1 ' ' ' ' '

' '

1

2

i

kk kk q q k k q k q k q k k

kk kk q

H M M a a c c V c c c c   

      
   

 (4.10) 

So 

   1 1 1,F F FH H H H H H         (4.11) 

    ' ' ' ' ' ' '

' ' '

1

2

i

k k k q q q kk q q k k kk kk q q k k q k q k q k k

k q kk kk kk q

c c a a M a a c c M M a a c c V c c c c        

   

  
        
  
    

    ' ' ' ' ' ' '

' ' '

1

2

i

kk kk q q k k q k q k q k k k k k q q q kk q q k k

kk kk q k q kk

M M a a c c V c c c c c c a a M a a c c        

   

  
        
  
    

          (4.12)

 

By considering equation (4.12) into two parts ,the first term i.e. 

    ' ' ' ' ' ' '

' ' '

1

2

i

k k k q q q kk q q k k kk kk q q k k q k q k q k k

k q kk kk kk q

c c a a M a a c c M M a a c c V c c c c        

   

  
       

  
    

          (4.13)
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But

  ' ' ' ' ' ' ' ' ' ' '

' ' ' ' '

i i i

kk kk q q k k kk q k k kk q k k kk q k k kk q k k

kk kk kk kk kk

M M a a c c M a c c M a c c M a c c M a c c       

           

          (4.14)

 

And 

 ' ' ' ' ' '

' ' '

kk q q k k kk q k k kk q k k

kk kk kk

M a a c c M a c c M a c c    

     
  (4.15) 

Then equation (4.13) becomes 

' ' ' ' ' ' ' ' ' '

' ' ' ' '

1

2

i i

k k k kk q k k kk q k k kk q k k kk q k k q k q k q k k

k kk kk kk kk kk q

c c M a c c M a c c M a c c M a c c V c c c c         

   

 
     

 
     

' ' ' ' ' ' ' ' ' '

' ' ' ' '

1

2

i i

q q q kk q k k kk q k k kk q k k kk q k k q k q k q k k

q kk kk kk kk kk q

a a M a c c M a c c M a c c M a c c V c c c c         

   

 
     

 
     

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '

1

2

i i

kk q k k kk q k k kk q k k kk q k k kk q k k q k q k q k k

kk kk kk kk kk kk q

M a c c M a c c M a c c M a c c M a c c V c c c c         

    

 
     

 
     

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '

1

2

i i

kk q k k kk q k k kk q k k kk q k k kk q k k q k q k q k k

kk kk kk kk kk kk q

M a c c M a c c M a c c M a c c M a c c V c c c c        

   

 
     

 
     

          (4.16) 

Opening the bracket of equation (4.16)

 

' ' ' ' ' '

' ' '

i i i

k k k kk q k k k k k kk q k k k k k kk q k k

k kk k kk k kk

c c M a c c c c M a c c c c M a c c        

       

 

' ' ' '

' '

1

2
k k k kk q k k q k q k q k k k k k

k kk kk q k

c c M a c c V c c c c c c     

     
 

' ' ' ' ' '

' ' '

i i i

q q q kk q k k q q q kk q k k q q q kk q k k

q kk q kk q kk

a a M a c c a a M a c c a a M a c c        

       
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' ' ' '

' '

1

2
q q q kk q k k q k q k q k k q q q

q kk kk q q

a a M a c c V c c c c a a     

     
 

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '

i i i

kk q k k kk q k k kk q k k kk q k k kk q k k kk q k k

kk kk kk kk kk kk

M a c c M a c c M a c c M a c c M a c c M a c c         

          

' ' ' ' ' ' ' '

' ' ' '

1

2
kk q k k kk q k k q k q k q k k kk q k k

kk kk kk q kk

M a c c M a c c V c c c c M a c c      

         

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '

i i i

kk q k k kk q k k kk q k k kk q k k kk q k k kk q k k

kk kk kk kk kk kk

M a c c M a c c M a c c M a c c M a c c M a c c      

       

' ' ' ' ' ' ' '

' ' ' '

1

2
kk q k k kk q k k q k q k q k k kk q k k

kk kk kk q kk

M a c c M a c c V c c c c M a c c    

     
         (4.17) 

Considering the second term of equation  (4.12)  

    ' ' ' ' ' ' '

' ' '

1

2

i

kk kk q q k k q k q k q k k k k k q q q kk q q k k

kk kk q k q kk

M M a a c c V c c c c c c a a M a a c c        

   

  
       

  
    

          (4.18)

 

But  

  ' ' ' ' ' ' ' ' ' ' '

' ' ' ' '

i i i

kk kk q q k k kk q k k kk q k k kk q k k kk q k k

kk kk kk kk kk

M M a a c c M a c c M a c c M a c c M a c c       

           

Then equation (4.18) gives, 

' ' ' ' ' '

' ' '

i

kk q k k k k k q q q kk q k k kk q k k

kk k q kk kk

M a c c c c a a M a c c M a c c       

 

 
    

 
      

' ' ' ' ' '

' ' '

i

kk q k k k k k q q q kk q k k kk q k k

kk k q kk kk

M a c c c c a a M a c c M a c c      



 
    

 
      

' ' ' ' ' '

' ' '

kk q k k k k k q q q kk q k k kk q k k

kk k q kk kk

M a c c c c a a M a c c M a c c       

 

 
    

 
      
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' ' ' ' ' '

' ' '

kk q k k k k k q q q kk q k k kk q k k

kk k q kk kk

M a c c c c a a M a c c M a c c      



 
    

 
    

 

' ' ' ' ' '

' ' '

1

2
q k q k q k k k k k q q q kk q k k kk q k k

kk q k q kk kk

V c c c c c c a a M a c c M a c c       

  

 
    

 
    

          (4.19) 

When we open the bracket of equation (4.19); 

' ' ' ' ' ' ' '

' ' ' '

i i i

kk q k k k k k kk q k k q q q kk q k k kk q k k

kk k kk q kk kk

M a c c c c M a c c a a M a c c M a c c          

          

 

' ' ' '

' '

i

kk q k k kk q k k

kk kk

M a c c M a c c  

 

' ' ' '

' '

i i

kk q k k k k k kk q k k q q q

kk k kk q

M a c c c c M a c c a a          

' ' ' ' ' ' ' '

' ' ' '

i i

kk q k k kk q k k kk q k k kk q k k

kk kk kk kk

M a c c M a c c M a c c M a c c    

      

' ' ' ' ' ' ' '

' ' ' '

i i i

kk q k k k k k kk q k k q q q kk q k k kk q k k

kk k kk q kk kk

M a c c c c M a c c a a M a c c M a c c       

       

 

' ' ' '

' '

i

kk q k k kk q k k

kk kk

M a c c M a c c  

' ' ' '

' '

kk q k k k k k kk q k k q q q

kk k kk q

M a c c c c M a c c a a          

' ' ' ' ' ' ' '

' ' ' '

kk q k k kk q k k kk q k k kk q k k

kk kk kk kk

M a c c M a c c M a c c M a c c    

      

' ' ' '

' '

1 1

2 2
q k q k q k k k k k q k q k q k k q q q

kk q k kk q q

V c c c c c c V c c c c a a      

         
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' ' ' ' ' ' ' '

' ' ' '

1 1

2 2
q k q k q k k kk q k k q k q k q k k kk q k k

kk q kk kk q kk

V c c c c M a c c V c c c c M a c c      

        
 

(4.20)

 

Combining equation (4.17) and equation (4.20) gives; 

' ' ' ' ' '

' ' '

i i i

k k k kk q k k k k k kk q k k k k k kk q k k

k kk k kk k kk

c c M a c c c c M a c c c c M a c c        

       

 

' ' ' '

' '

1

2
k k k kk q k k q k q k q k k k k k

k kk kk q k

c c M a c c V c c c c c c     

       

' ' ' ' ' '

' ' '

i i i

q q q kk q k k q q q kk q k k q q q kk q k k

q kk q kk q kk

a a M a c c a a M a c c a a M a c c        

       

 

' ' ' '

' '

1

2
q q q kk q k k q k q k q k k q q q

q kk kk q q

a a M a c c V c c c c a a     

       

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '

i i i

kk q k k kk q k k kk q k k kk q k k kk q k k kk q k k

kk kk kk kk kk kk

M a c c M a c c M a c c M a c c M a c c M a c c         

          

' ' ' ' ' ' ' '

' ' ' '

1

2
kk q k k kk q k k q k q k q k k kk q k k

kk kk kk q kk

M a c c M a c c V c c c c M a c c      

         

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '

i i i

kk q k k kk q k k kk q k k kk q k k kk q k k kk q k k

kk kk kk kk kk kk

M a c c M a c c M a c c M a c c M a c c M a c c      

       

' ' ' ' ' ' ' '

' ' ' '

1

2
kk q k k kk q k k q k q k q k k kk q k k

kk kk kk q kk

M a c c M a c c V c c c c M a c c    

       

' ' ' ' ' ' ' '

' ' ' '

i i i

kk q k k k k k kk q k k q q q kk q k k kk q k k

kk k kk q kk kk

M a c c c c M a c c a a M a c c M a c c          

          
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' ' ' '

' '

i

kk q k k kk q k k

kk kk

M a c c M a c c  

 

' ' ' '

' '

i i

kk q k k k k k kk q k k q q q

kk k kk q

M a c c c c M a c c a a          

' ' ' ' ' ' ' '

' ' ' '

i i

kk q k k kk q k k kk q k k kk q k k

kk kk kk kk

M a c c M a c c M a c c M a c c    

      

' ' ' ' ' ' ' '

' ' ' '

i i i

kk q k k k k k kk q k k q q q kk q k k kk q k k

kk k kk q kk kk

M a c c c c M a c c a a M a c c M a c c       

         

' ' ' '

' '

i

kk q k k kk q k k

kk kk

M a c c M a c c  

' ' ' '

' '

kk q k k k k k kk q k k q q q

kk k kk q

M a c c c c M a c c a a          

' ' ' ' ' ' ' '

' ' ' '

kk q k k kk q k k kk q k k kk q k k

kk kk kk kk

M a c c M a c c M a c c M a c c    

      

' ' ' '

' '

1 1

2 2
q k q k q k k k k k q k q k q k k q q q

kk q k kk q q

V c c c c c c V c c c c a a      

         

' ' ' ' ' ' ' '

' ' ' '

1 1
0

2 2
q k q k q k k kk q k k q k q k q k k kk q k k

kk q kk kk q kk

V c c c c M a c c V c c c c M a c c      

         

          (4.21)

 

Hence electron-phonon interaction with coulomb interaction can lead to phase 

transition. 

4.4 Exotic pairing of electrons 

In exotic pairing three electrons take part in superconducting, two of this electron 

forms a bond pair while the third one is a polarization electron which hops from one 

lattice site to another lattice site of the same symmetry. The polarization electron 

causes perturbation, which was described in section 3.5, using equations (3.6) to 
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(3.8).For such a system to undergo transition, we commute perturbed and unperturbed 

Hamiltonian;

 

   
2

2 2 3 4

0 1

1
, ,

2 2

p
H H x x x  



  
    

        (4.22) 

Opening the bracket of equation (4.22)

 

     
2 2

3 4 2 2 2 2 3 4

0 1

1 1
,

2 2 2 2

p p
H H x x x x x x     

 

     
         
     

  

          (4.23) 

but     2 1 1

2 2
x a a a a

 

   
    
  

 
2

2

1

4
a a



 

   

          (4.24) 

Opening the bracket of equation (4.24) gives;

 

 2

2

1

4
x aa aa a a a a



      

       

          (4.25)

 

 3

3

1

8
x aaa aaa aa a aa a a aa a aa a a a a a a



                  

 

          (4.26)

 

4

4

1

16

aaaa aaaa aaa a aaa a aa aa aa aa aa a a aa a a
x

a aaa a aaa a aa a a aa a a a aa a a aa a a a a a a a a

           

                   

        
          

          (4.27)

 

Equation (4.23) will be; 
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3 2
2

4

8 1

2 2

16

aaa aaa aa a aa a a aa a aa a a a a a a
p

aa
aaaa aaaa aaa a aaa a aa aa aa aa aa a a aa a a

a aaa a aaa a aa a a aa a a a aa a a aa a a a a a a a a










           

           

                   

 
        

 
  

                    


32
2

4

81

2 2

16

aa a a a a

aaa aaa aa a aa a a aa a aa a a a a a a
p

aa aa a a a a
aaaa aaaa aaa a aaa a aa aa aa aa aa a a aa a a

a aaa a aaa a aa a a aa






 



   

           

   

           

      

   
    

   

       
   

                

   a a a aa a a aa a a a a a a a a            

 
 
 
 
 
 
 

  
  
   

              

          (4.28)

 

Equation (4.28) is divided into two parts i.e. 

3 2
2

4

8 1

2 2

16

aaa aaa aa a aa a a aa a aa a a a a a a
p

aa a
aaaa aaaa aaa a aaa a aa aa aa aa aa a a aa a a

a aaa a aaa a aa a a aa a a a aa a a aa a a a a a a a a










           

           

                   

 
        

 
  

                    

a a a a a   
   

   
   

          (4.29)

 

And 

32
2

4

81

2 2

16

aaa aaa aa a aa a a aa a aa a a a a a a
p

aa aa a a a a
aaaa aaaa aaa a aaa a aa aa aa aa aa a a aa a a

a aaa a aaa a aa a a aa a a a aa a a aa a a a a a a






 



           

   

           

                

       
   

                

       a a  

 
 
 
 

 
    

  

          (4.30)

 

Since  
3 8




,

4 16




,

2

2

p


 and 21

2
  are independent in equation (4.29), we deal 

with creation and annihilation operators. 

Opening the bracket of equation (4.29) gives; 
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aaaaa aaaaa aaaa a aaaa a aaa aa aaa aa aaa a a aaa a a

aa aaa aa aaa aa aa a aa aa a aa a aa aa a aa aa a a a aa a a a

a aaaa a aaaa a aaa a a aaa a a aa aa a aa aa a aa a a a aa a a

a a

           

                   

                   

 

       

       

       

aaa a a aaa a a aa a a a aa a a a a aa a a a aa a a a a a a a a a a

aaaaaa aaaaaa aaaaa a aaaaa a aaaa aa aaaa aa aaaa a a aaaa a a

aaa aaa aaa aaa aaa aa a aaa aa a aaa a aa aaa a aa aaa a

                         

           

             

       

       

      a a aaa a a a

aa aaaa aa aaaa aa aaa a aa aaa a aa aa aa aa aa aa aa aa a a aa aa a a

aa a aaa aa a aaa aa a aa a aa a aa a aa a a aa aa a a aa aa a a a a aa a a a a

     

                   

                           

 

       

       

a aaaaa a aaaaa a aaaa a a aaaa a a aaa aa a aaa aa a aaa a a a aaa a a

a aa aaa a aa aaa a aa aa a a aa aa a a aa a aa a aa a aa a aa a a a a aa a a a

a a aaaa a a aaaa a a aaa a a a aaa a

                   

                           

           

       

       

    a a aa aa a a aa aa a a aa a a a a aa a a

a a a aaa a a a aaa a a a aa a a a a aa a a a a a aa a a a a aa a a a a a a a a a a a a

               

                                   

   

      

 

The rest of the operators will give us zero except the following; 

    

     

    

   

 

    

 

2 2

2 2

2

2 3

3 3

2

2

1 2 1

1 2 1

1 2 1

1 2

1

1 1 1

1

aaa aa a n n a aaa aa n n

aaa a aa n n a aaa a a n n

aaa a a a n n n a aa aaa n n

aa aaa a n n a aa aa a n

aa aa aa n a aa a aa n

aaa aa a a n n a a aaaa n n n

aa a aaa n n a

     

     

     

     

     

     

  

    

    

    

   

  

    

   

   

     

 

2

22

4.31

1

1 1

1 1 1 2

a aaa a n n

aa a aa a n n a a aa aa n n

aa a a aa n n n a a a aaa n n n

  

     

     














  


    


      

 

Since
3 8




,

4 16




,

2

2

p


 and 21

2
  are independent, we deal with creation and 

annihilation operator in equation (4.30). Opening the bracket of equation (4.30),  

gives; 
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aaaaa aaaaa aaaa a aaaa a aaa aa aaa aa aaa a a aaa a a aaaaaa aaaaaa

aaaaa a aaaaa a aaaa aa aaaa aa aaaa a a aaaa a a aaa aaa aaa aaa aaa aa a

aaa aa a aaa a aa aaa a aa aaa a a a aaa a a

            

               

            

         

        

    a aa aaa aa aaa aa aa a aa aa a

aa a aa aa a aa aa a a a aa a aa aa aaaa aa aaaa aa aaa a aa aaa a aa aa aa

aa aa aa aa aa a a aa aa a a aa a aaa aa a aaa aa a aa a aa a aa a aa a a aa

aa

         

                    

                        



    

        

       

a a aa aa a a a a aa a a a a a aaaa a aaaa a aaa a a aaa a a aa aa a aa aa

a aa a a a aa a a a aaaaa a aaaaa a aaaa a a aaaa a a aaa aa a aaa aa a aaa a a

a aaa a a a aa aaa a aa aaa a aa a

                        

                      

          

        

        

   a a a aa aa a a aa a aa a aa a aa a aa a a a a aa a a a                        

a a aaa a a aaa a a aa a a a aa a a a a aa a a a aa a a a a a a a a a a a a aaaa

a a aaaa a a aaa a a a aaa a a a aa aa a a aa aa a a aa a a a a aa a a a a a aaa

a a a aaa a a a aa a a a a aa

                             

                            

          

        

       

  a a a a a aa a a a a aa a a a a a a a a a a a a                       

 

The rest will be zero except the following; 

      

    

     

    

   

 

2 2

2 2

2

2 3

3 3

1 2 3 1 2

1 2 1

1 2 1

1 2 1

1 2

1

aaaa a a n n n a aaaa a n n n

aaa aa a n n a aaa aa n n

aaa a aa n n a aaa a a n n

aaa a a a n n n a aa aaa n n

aa aaa a n n a aa aa a n

aa aa aa n a aa aa a n

aa aa a a n n

     

     

     

     

     

     

  

      

    

    

    

   

  

    

    

   

     

 

2 2

2

22

4.32

1 1

1 1 1

1 1

1 1 1 2

a aa a aa n n

aa a aaa n n a a aaaa n n n

aa a aa a n n a a aa aa n n

aa a a aa n n n a a a aaa n n n

  

     

     

     














  


     


    
      

Combining equation (4.31) and equation (4.32) we get; 

                     

                  

                    

           

2 2 2 2 2

2 22 2 2 3 3

2 2 22

2 2 2 2 2

1 2 3 1 2 1 2 1 2 1 2 1 1

1 1 1 1 1 2 1 1 1 1 1

1 1 1 2 1 2 3 1 2 1 2 1 2

1 2 1 1 1 1

n n n n n n n n n n n n n n n

n n n n n n n n n n n n n n n n n n n n n
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                   

                    

                   

                    

           

2 2

22 3 3 2

1 1 1 2 1 1

1 1 1 1 1 1 2 0

n n n n n n n n

n n n n n n n n n n n n n n

         

             

              (4.33) 

Hence exotic pairing can lead to a phase transition. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

By considering electron-phonon interactions, simultaneous existences of electron-

phonon interaction and Coulomb interaction between a lattice of bare ions and exotic 

pairing, and using the theory of second quantization, it has been shown that such 

interactions leads to a phase transitions because of the commutation of perturbed and 

unperturbed Hamiltonian. This has been shown in equation (4.6) for electron-phonon 

interaction, equation (4.21) for simultaneous existences of electron-phonon interaction 

and Coulomb interaction and equation (4.33) for exotic pairing. 

5.2 Recommendations 

Having theoretical understanding of interactions between electrons in electron-phonon 

interactions, simultaneous existences of electron-phonon interaction and Coulomb 

interaction, and exotic pairing that it can lead to a phase transition, it can be used to 

study the properties of superconductors and nature of phase transition can be studied. 

Theory of second quantization may be used to study whether interlayer and intralayer 

interactions in layered high temperature cuprate superconductors, can lead to phase 

transition. 

The corresponding Hamiltonian can be written such that the interaction terms between 

the electrons in the CuO  plane and that perpendicular to it, the two interactions will 

have different magnitudes and their effect on the nature of phase transition can be 

studied. 
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APPENDIX 

A state with no particles or unoccupied state is called a vacuum state and is written 

as 0 . A state with n particles will be written as n . The relation between n  and 0  

is given by, 

 

 
1

2

0

!

n

a
n

n

 
  

Where  
1

2!n  is for normalization. 

If a destruction operator ‘a’ operates on 0 , since there is nothing to destroy in the 

vacuum state, we will get  

0 0a   

Now if a creation operates on n , we get 
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This shows that when a creation operator a  acts on a state n  that has n particles, 

we get a new state with the next integer, i.e. 1n   particle state written as 1n . The 

matrix element between the two states n and n’=n+1 will be, 

 
1

2' ' 1 1n a n n n n        

  
1

21 ' 1n n n       

  
1

2
',1 n nn    

Using commutation laws, it can be shown that, 
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The matrix element between the two states n and n’=n-1 will be,  

1
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This shows that the destruction operator a lowers the particle number (or quantum 

number) by unity. Thus operating on the Eigen functions in sequence gives, 

1
2 1a a n a n n     

1
2 1n a n    

1 1
2 2n n n

n n

 

 
 

Hence the eigen value of a a n   

 

 

 


