OPTIMAL DESIGN FOR SECOND-DEGREE KRONECKER MODEL

MIXTURE EXPERIMENTS FOR MAXIMAL PARAMETER SUBSYSTEM

KENNEDY KIPLAGAT

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR AWARD OF THE DEGREE OF MASTER OF
SCIENCE IN BIOSTATISTICS TO THE SCHOOL OF SCIENCE,
UNIVERSITY OF ELDORET, KENYA

2014



DECLARATION

Declaration by the student

This thesis is my original work and has not been presented for a degree in any other
University. No part of this thesis may be reproduced without the prior written permission

of the author and/or University of Eldoret.

KENNEDY KIPLAGAT Sign.........c.ccoeuenne. Date...............oooii

SC/PGM/077/11

Declaration by the Supervisors
This thesis has been submitted for examination with our approval as the University
supervisors.

Dr. KORIR C. BETTY, Sign.....ooooeiiiii.

Department of Mathematics and Computer Science,
University of Eldoret,
P.O. Box 1125,

Eldoret, Kenya.

Dr. KIMELI K. VICTOR, Sign..................... Date.....ocoovviiiiiiii
Department of Mathematics and Computer Science,

University of Eldoret,

P.O. Box 1125,

Eldoret, Kenya.



DEDICATION

To my beloved parent, friends and future family



ABSTRACT

Products in many disciplines frequently involve blending two or more ingredients
together. The design factors in a mixture experiment are the proportions of the
components of a blend, and the response variables vary as a function of these proportions
making the total and not the actual quantity of each component. This study investigated
optimal design for maximal parameter subsystem for second-degree Kronecker model
mixture experiments put forward by Draper and Pukelsheim. Based on the completeness
result, the investigations was restricted to weighted centroid designs. In mixture model on
the simplex an improvement is obtained for a given design in terms of increasing
symmetry as well as obtaining a larger moment matrix under the Loewner ordering.
These two criteria constitute the Kiefer design ordering. The parameter subsystem of
interest K'@ in the study was maximal parameter subsystem which is a subspace of the
full parameter space . In this model the full parameter subsystem was not estimable. By
a proper definition of parameter matrix, a maximal parameter subsystem in the model
was selected. Canonical unit vectors and the concept of Kronecker products were
employed to identify the parameter matrices as well as the information matrices. For the
second degree mixture model with two, three, four and m ingredients, a set of weighted
centroid designs were obtained for a characterization of the feasible weighted centroid
designs for the maximal parameter subsystem. After obtaining the feasible weighted
centroid designs the information matrix of the design was computed. Derivations of A-,
D- and E-optimal weighted centroid designs were then obtained from the information
matrix. The optimality criteria A, D and E were used to compute optimal centroid
designs. The results based on maximal parameter subsystem, second degree mixture
model with m>2 ingredient for A-, D- and E-optimal weighted centroid design for K'6
exist for the choice of the coefficient matrix specifically in this study. Optimal weights
and values for the weighted centroid designs were numerically computed using Matlab
software.
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CHAPTER ONE

INTRODUCTION

1.1 Background Information

A mixture problem is one where two or more ingredients are mixed together to form a
product. This product has desirable properties that are of interest to the manufacturers.
Many practical problems are associated with investigation of a mixture of m factors,
assumed to influence the response only through the proportions in which they are blended
together. The response is a measurable quantity or property of interest on the product. It
is assumed that, the experimenter can measure quantities of the ingredients in the mixture
without error. It is further assumed that, the responses are functionally related to the
product composition and that, by varying the composition through the changing of
ingredients proportions, the responses will also vary. The experimenter’s motives to
studying the functional relationship between the response and the controllable variables

are;

(i) To determine whether some combination of the factors can be considered best in
some sense
(ii) To gain a better understanding of the overall system by studying the roles played
by the different ingredients.
The aim of studying the functional relationship between the measured property
(response) and the controllable variables is to determine the best combination of
ingredients that yield the desired product.

Some examples are:



(i) Cake formulations using baking powder, shortening, flour, sugar and
water.
(i) Fruit punch consisting of juices from watermelon, pineapple and orange.
(iii) Building construction concrete formed by mixing sand, water and
cement.
In each of the cases, one or more properties that are desirable are, fluffiness of the cake,
such that fluffiness is related to the ingredient proportion, the fruitiness flavor of the
punch, which depends on the percentages of water melon, pineapple and orange that are
present in the punch, and the hardness or compression strength of the concrete, where the
hardness is a function of the percentages of cement, sand and water in the mix (Cornell,
1990).

1.2 Mixture Experiment

A mixture experiment is an experiment which involves mixing of proportions of two or
more components to make different compositions of an end product. Consequently, many
practical problems are associated with the investigation of mixture ingredients of m
factors, assumed to influence the response through the proportions in which they are
blended together. The definitive text by Cornell (1990) lists numerous examples of
applications of mixture experiments and provides a thorough discussion of both theory
and practical. Early work was done by Scheffe’ (1958, 1963) who suggested and
analyzed canonical model forms when the regression function for the expected response

is a polynomial of degree one, two or three.



For i=1,..m, let t, €[01] be the proportion of ingredient i in the mixture. We

assemble the individual components to form the vector of experimental conditions,

t=(t,,...t,)", subject to the simplex restriction

iti e e (1.1)

i=1

Let 1, =(, ..., )’ eR™, be the unit vector. Thus, the experimental domain is then the
standard probability simplex T, , represented as;

T, ={t=(,...t,) 0" 1 t=1

Under experimental conditions teT,,, the experimental response Y,, is taken to be a

scalar random variable. Replications under identical experimental conditions as well as

responses from distinct experimental conditions are assumed to have equal (unknown)

variance, o2and to be uncorrelated.

An experimental design, z on the experimental domain T_, is a probability measure

m?

having a finite number of support points. If z assigns weights wi, Wo, ... to its points of

support in T,,, then the experimenter is directed to draw proportions wi, Wy, ... of all
observations under the respective experimental conditions. Let the observed response Y,
be expressed as Y, =7(t,®) + &(t) , where n(t,®) is the expected response and &(t), is

the error term at t. we assume that for independent observations, the errors, £(t) are

statistically independent and have mean zero and the same variance. Further we assume

that, n7(t,®) can be expressed as a polynomial function in t.



A particular polynomial regression model for mixture experiments suggested by Draper

and Pukelsheim (1998) is the second-degree Kronecker model. Its regression function
fiT, >R t=(t,1,) >t®t=tt, i j=1..m with the index pairs (i),

1<i< j<m ordered lexicographically yields the model equation;

E(Y,)=f()6= ientf + i(eij F O (1.2)

i,j=1
i<j

where Y,, the response under experimental condition t €T, is taken to be a real valued

. 2 .
random variable and 8 =(6,,,0,,,...,6,,,) € R™ an unknown parameter. All observations
taken in an experiment are assumed to be uncorrelated and to have common unknown

variance o2 € (0,0).

1.3 Statement of the problem

The study investigates optimal designs in the second-degree Kronecker model for
mixture experiments and obtained a design with maximum information on the parameter
subsystem. Since the full parameter subsystem is not estimable, coefficient matrix K'é
of interest is chosen to make it estimable subject to the side condition. The full system 4
is made estimable by dividing the interacting factors by the total number of interacting

parameters in the model. This maximum is accomplished through the application of the @

-optimality criteria of a weighted centroid design following the Kiefer Wolfowitz

equivalence theorem.



1.4 Study objectives

The objectives of the study are;
1.4.1 General objective
To obtain optimal weighted centroid designs for secord degree Kronecker model mixture
experiments.
1.4.2 Specific objectives
1. To obtain optimal moment and information matrices for second degree Kronecker
model for mixture experiments.
2. To derive D-, A- and E-criteria for optimal weighted centroid design for second-
degree K-model.

3. To obtain a design with maximum information on the parameter subsystem K'@

1.5 Justification

Since the Kronecker model’s full parameter subsystem 6eR™ is not estimable, we

consider a maximum parameter subsystem K'é where the range R(K) coincides with the
span of the regression range X ={f (t) :t € z,,}. This formalizes the idea of estimating as

many parameters as possible. This study is desirable since it helps in identifying the

optimal design for second-degree Kronecker model mixture experiments.



CHAPTER TWO

LITERATURE REVIEW
2.1 Introduction

Mixture experiments were first discussed in Quenouille (1953). Later on, Scheffe” (1958,
1963) made a systematic study and laid a strong foundation. Pukelsheim (1993) and
Gaffke and Heiligers (1996) gave a review of the general design environment on mixture
experiments. Klein (2004) and Cheng (1995) showed that the class of weighted centroid
designs is essentially complete for m > 2 for the Kiefer ordering. As a consequence, the
search for optimal designs may be restricted to weighted centroid designs for most
criteria particularly applied to mixture experiments, Kiefer (1959, 1975, 1978, 1985) and
Galil and Kiefer (1977). Klein (2004) and Kinyanjui (2007) showed how invariance

results can be applied to analytical derivations of optimal designs.

Draper and Pukelsheim (1998) proposed a set of mixture models referred to as K-models.
They are alternative representation of mixture models based on the Kronecker algebra of
vectors and matrices. They offer alternative symmetries, compact notations and
homogeneous in ingredients.

The first-degree model is;
ENVI=D 66, =10 o (2.1)
i=1

where Y,, the response under experimental condition t T, is taken to be a real valued

. 2 .
random variable and 0 =(0,,,0,,,...,6,,,) € R™ an unknown parameter. All observations
taken in an experiment are assumed to be uncorrelated and to have common unknown

variance o2 € (0,).



For the second-degree model, Draper and Pukelsheim (1998) proposed a representation
involving the Kronecker squaret ®t , the m*x1 vector consisting of the squares and cross
products of the components in the lexicographic order of the subscripts. This is referred

to as Kronecker-model with a Kronecker-polynomial as the regression function given as:

AT ) T (= LA 22)

i=1 j=1

2.2 Kronecker products

The Kronecker product approach bases second-degree polynomial regression in m

variables t = (t,,...,t. )" on the matrix of all cross products:

tlz tltZ tltm
tt,  t2 . tt

t =] 2 M (2.3)
tmtl tmtz tri

rather than reducing them to the Box-hunter minimal set of polynomials
(t?,---,t2,tt,,---,t__t ). The benefits enjoyed are;
(i) That distinct term are repeated appropriately according to the number of times
they can arise.
(i) That transformational rules with a conformable matrix R become simple,
(R)(Rt)" = R(tt"R’

(iii) That the approach extends to third degree polynomial regression.

For a kxm matrix A and a | x nmatrix B, their Kronecker product A® B is defined to

be the klxmn block matrix



A®B=| & (2.4)
a,B - a,B

m

The Kronecker product of a vector s e R™ and another vector t e R" then is simply a

special case,

T N e X 0 OO (2.5)

in  lexicographic order

A key property is their product rule

(A@B)(S®t) =(AS)®(Bt) . teevriiieiiieieiieee (2.6)
This has nice implications for transposition, (A® B)' = (A") ® (B"), for Moore-Penrose
inversion, (A®B)" = (A")®(B") and if possible for regular inversion
(A®B)"'=(A)®(B™).
It is of specific importance that the Kronecker product preserves orthogonality. That is, if
A and B are individual orthogonal matrices, then their Kronecker product (A® B) is also
an orthogonal matrix. Thus while the matrix tt' assembles the cross products t;t; in an
mxm array, the Kronecker square t®t arranges the same numbers as a long m? x1
vector. The transformation with a conformable matrix R simply amounts to
(Rt) ® (Rt) = (R® R)(t ®1t). This greatly facilitates our calculations when we now apply

Kronecker product to response surface models.

2.3 Kiefer design ordering

Kiefer design ordering has two steps. The first step is the majorization ordering. The

second step is an improvement relative to the usual Loewner matrix ordering within the



class of exchangeable moment matrices Draper and Pukelsheim (1998).For the second-
degree Kronecker-moment matrix homogeneous in degree four, the moment matrix for
four factors exhausts all the moments. Given two moment matrices M(n) and M(z) in two
factors, M(n7)=M(z) if and only if u, (17) = 44, (z) and p,(77) > p,(7) . The vertex
design points 7, and the overall centroid design 7, play a special role; they are used to
generate weighted centroid designs in the following sense; for weights «,,«, >0 with
a, +a, =1, the design n =y, + a,n,Will be called a weighted centroid design. In the

second-degree mixture model for m=4 ingredients, the set of weighted centroid designs

n={em +...+ a1, (ey,....a,,) € T}is convex and constitutes a minimal complete class

for the kiefer ordering. Draper and Pukelsheim (1998) suggested that within the class of
weighted centroid designs, however, other criteria would be needed to attain further

improvement, for example, the determinant criteria.

2.4 Model and notation

The linear model,
Y=F() O+ i (2.7)

with a real valued response, y, experimental conditions, t chosen from the experimental
domain, T, , a regression function f :T_ > %", an unknown parameter vector, 8 € R*

and centered error term, <. In an experiment with sample size n, errors are assumed to be
uncorrelated with unknown variance 2.
The statistical properties of a design  within model (2.7), are reflected by its moment

matrix
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M(r):J'f(t)f(t)'dreNND(k), where NND(k) denotes the cone of non-negative

definite k xk matrices. We shall focus our attention to estimating a system of linear

function, K'0 of the parameter subsystem@ e R*, where the coefficient matrix

m+1
kx|
KeR ( ? J is assumed to have full column rank.
A parameter subsystem, K'@ with full column rank coefficient matrix, K is called
estimable under a given design, -, if and only if there is at least one linear unbiased
estimator for K'é¢ under r. A necessary and sufficient condition for estimability of K'9

under 7 is that the range of K is included in the range of M (z),

FK) S RIML)) e (2.8)

Thus, any moment matrix A< NND(k) with R(K) < R(A) is called feasible for K'6.
The set A(k) = {A e NND(K) : R(K) = R(A)} is called the feasibility cone for K'g.

Let M be a set of moment matrices in model (2.7). We say that a parameter subsystem
K'6 is estimable within M if and only if the set M and the feasibility cone have a non-
empty intersection. Thatis, M n A(K) = ¢ .

Let r,, =max{rankM:M e M}, be the maximal rank within M. The coefficient

m+1

kx
matrices K e R [ 2 j of parameter subsystems K'é that are estimable within M satisfy
rank K <r,,, necessarily. We now consider the extreme case rank K =r,,, capturing the

idea of estimating as many parameters as possible, within given set M of moment

matrices.
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Definition
The parameter subsystem K'@ is called a maximal parameter subsystem forM if and
only if;

(1) M NA(K) = ¢ and

(i) rankK =r,, .
) m+1 . . - .
In this case, we have r,, = 5 and K is called a maximal coefficient matrix for M .

If the set, M contains regular moment matrices, that is, k =r,,, the full parameter vector
6 or any regular transform of it, is a maximal parameter subsystem for M .

We henceforth assume the set M to be convex. Then there is a matrix M, € M with
maximal range, that is, R(M) € R(M,) for all M, € M, Pukelsheim (1993). While there
may be many matrices M, with this property, the maximal range R, =R(M,) is
unique, and we have dimR_ =r,,. This construction is analogous to that of a minimal

null space given by LaMotte (1977)

2.5 Information matrices

For a design T with moment matrix M, the information matrix for k'€, with kxs
coefficient matrix k of column rank s, is defined to be Cy(M) where the mapping Ci from
the cone NND(K) into the space sym(s)is given by;

C.,(A)= min LAL'for all AENND (k) with minimum taken relative to the Loewner
LeR™*:Lk=I

ordering over all left inverses L of K Pukelsheim (1993)

2.6 Moment and Information matrices

The information matrix mapping



Co(A) =min{LAL": L e R™, LK = 1_}& NND(S) ....covvrrereriernnn. (2.9)

in Gaffke (1987 formula 2). This minimum is taken relative to the Loewner ordering on
the space sym(s) of sxs symmetric matrices, defined by A<B if and only if

B— A NND(s), for A Besym(s). Pukelsheim (1993), showed that this minimum
exists and that it is unique. The information matrix C,(M(z)) of a design r with

moment matrix captures the amount of information that - contains on K'¢ (Pukelsheim,
1993).

Define

Ly = (KK) T K e R e (2.10)
with K e R¥™ being maximal coefficient matrix for the convex set M. Then the
information matrix mapping C, : NND(k) — sym(r,,) satisfies, C, =L,AL, for all
A e NND(k) with R(A) < R,. Hence Cy is a linear mapping on M and enjoys the
inversion property A=KC, (A)K' for all Ae NND(k) with R(A) < R,, (Kinyanjui
2007)

If K'@ is an arbitrary parameter subsystem and A e NND(k) a given matrix, then there is

always a left inverse L =L(A) independent of A with R(A)c R, such that

C,(A) = LAL’, Pukelsheim (1993). The linearity of C, (M (7)) as a function of M (z)
entails linearity of C, (M(z)) as a function of z . Furthermore, the linearity of Cy is a
generalization of the obvious identity C, (A) = A for all A< NND(k), which states that

moment matrices are information matrices for the full parameter vector. Whence,

information matrices should be understood as modified moment matrices.
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With the matrix L, € R"™* defined in equation (2.10), we now consider the model:

Y = (L F O] Bt &1 oo (2.12)

with the same experimental domain T, as model (2.7), the regression function
L, f :T, — R™, parameter vector S eR™ and moment matrix M(r) of a design .
Then, for every design r on T, with R(M(r)) < R, we have M(r) =C,(M(z)) and
the set M =1{C, (M);M =M} < NND(r,,) is a convex set of moment matrices in model

(2.11). Thus the full parameter vector £ is estimable within M, (Kinyanjui, 2007).

In order to study design problems for a parameter subsystem K’'@ in model (2.7) we

introduce an information functiong¢: NND(s) - [0,00]. That is, ¢ is non-constant,

positively homogeneous, superadditive with respect to the Loewner ordering and is upper
semi continuous. It suffices to consider optimal moment matrices rather than optimal
designs.

Let M be a subset of moment matrices in model (2.7). A moment matrix, M, e M is
called ¢ —optimal for K'@ in M if and only if it solves the design problem

Maximize ¢(C, (M))withM e M

SUBJECEIO M @ M MV A(K) cvvieet e (2.12)
Lemma 2.1
Let M =¢ be a convex set of moment matrices in model (2.7) and let K e R be
maximal coefficient matrix forM . Define the set M :{Ck(M);M gM} of moment
matrices in model (2.11). Finally, let ¢: NND(r,,) + [0,o0) be an information function.

Then a moment matrix, M, e M in model (2.7) is ¢ —optimal for K'@ if and only if the
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moment matrix, M =C,(M;) in model (2.11) is ¢—optimal for the full parameter
vector B inM , ( Kinyanjui, 2007).
2.7 Nonnegative definite matrices

Let A be a symmetrick xKk matrix with smallest eigenvalue 4

min

(A) . Then we have;
Ae NND(K) < 4., (A) =0
< traceAB >0 For all A, BENND(k)
AePD(Kk) <= 4,;,(A)>0

<=trace AB>0 for all 0#BENND(K)

2.8 Feasibility cone

The most important case occurs if the full parameter vector 6 is of interest, i.e. if k=I.
Since the unique left inverse L of k is then the identity matrix Iy, the information matrix
for 8 reproduces the moment matrix M,

C,(M)=M .
In other words, for a design &, the matrix M(¢) has two meanings; it is the moment
matrix of & and it is the information matrix for 6.
But if the matrix M lies in the feasibility A(C), Gauss-Markov Theorem provides the

representation
C.(M)=(cMTc)*
Here the information for ¢'@is the scalar (C'M ‘10)‘1, in contrast to the moment matrix M.

The task of minimizing information sounds reasonable. For a parameter subsystem k'@ ,

the feasibility cone A(k) is defined by; A(k) ={A e NND(k);rangek — rangeA}
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A matrix Aesym(k) is called feasible for k'éwhen A e A(k); a design ¢ is called feasible
for k'@when M (&) e AK). If k is of full rank s, the Gauss-Markov theorem provides the
representation; C, (A) = (K’A™k)™.

It is in this form that information matrices appear in statistical inference.

Gauss-Markov theorem state that, Let q'ybe a linear estimator of the scalar function

p' S of the regression parameters in the model (y; XB3,o%1). Then g'yis an unbiased
estimator, such that E(q'y)=q'E(y)=q'Xg=p'g for all g, if and only ifg'X = p'".
Moreover, g'y has the minimum variance in the class of all unbiased linear estimators if
and only if

gy =q'X(X'X)"X'y=p'(X'X)"X"y.

Therefore since pis arbitrary, it can be said that ﬁ:(X'X)*lX'yis the minimum

variance unbiased linear estimator of S .

2.9 Estimability

The subsystem k'@is estimable if and only if there exist at least one N®s matrix U such

that;

E, :[UY]=K6forallde®, 6* >0

This entailsk = XU , or equivalently, rangek — rangeX’ = rangeX X

2.10 Kiefer optimality

The set of weighted centroid designs constitute a minimal complete class of designs for
the kiefer ordering. Completeness of C (set of weighted centroid designs) means that for

every design t not in C, there is a member &in C that is kiefer better than t. That is it
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must be shown that ¢ is more informative than t, M (¢)>M (), and that the two are not

kiefer equivalent. The weighted centroid design must be shown to satisfy

M (&) > M(;)< M(z), that is, M (&) >M(z)hence satisfying the kiefer optimality of

M(S).
Let H be a subgroup of nonsingular sxs matrices. No assumption will be placed on the

set M < NN(k)of competing moment matrices. A moment matrix M e M is called
kiefer optimal for k'@ in M relative to the group HEGL(s) when the information matrix
Cx (M) is H-invariant and satisfies

C.(M)>>C, (A)forall AeM,

where >> is the kiefer ordering on sym(s) relative to H.

Draper and Pukelsheim (1998) proved that the assumption M (&) > M (z) cannot hold

true, rendering the class C minimal complete.
Thus any design that is not a weighted centroid can be improved upon in terms of

symmetry and Loewner ordering.
2.11 Polynomial regression
Response surface models apply to scalar responsesY,, assuming that observations under

identical or distinct experimental conditions t are of equal (unknown) variance, o> and
uncorrelated. Moreover, these models assume that the expected response E(Y,) =7(t,®)
permits a fit with a low-degree polynomial int. Making use of the Kronecker product, the
second-degree model then is 7(t,®) = &, +1'6y, + (t ®t)'6y;,, with the mean parameter

vector,
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0,
Q=0

Oriy
The individual components have the usual interpretation with &, being the grand mean.
The mx1 vector &g =(6,,...,6,)" consists of the main effects ;. The m? x1 vector
Oy = (0,1,6,5,-.,6,,)" consists of the pure quadratic effects ¢, and the two-way
interactions ¢; with the evident second-degree restrictions 8; = 6;; for all i,j.
This model is of the form 7(t,®) = f (t)'6. The regression function t+» f(t) conforms

to the parameter vector ® and is, in turn

1
ft)=| t
t®t

As t varies over the experimental domainT,_ , the vector f (t) spans a space of dimension

(m+1)(m+2)

5 . This number coincide with the components of the parameter vector ©.

Thus the Kronecker model of degree two is seen to be over parameterized.

An experimental design,z, on the domain T, is a probability measure that has finite
support. Suppose the support points are; t,t,,---,t, and they have corresponding weights;
W, W,,--,W,, then the experimenter is directed to draw a proportion, w; of all
observations under experimental condition t;. For a linear model with regression function

f (t), the statistical properties of a design, r are captured by its moment matrix

M(z) =Y w f )T () = [ f@Of@)de.

i<l T
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Because of overparametrization, any such moment matrix is rank deficient, and so is the
dispersion matrix of the least squares estimator for ® . Unfortunately then, regular matrix
inverses do not exist. This compels the invoking of generalized inverses which performs

equally well.

The dependence of the expected response on the experimental conditions, t is described

by the model response surface, t+ 7(t,®). The parameter vector ® is generally not
known. When we replace the true parameter by its least squares estimate, © , we shift our

interest to the estimated response surface, t > 7(t,©) = f(t)'©. When & is calculated

from observations drawn according to the experimental design , the statistical properties

of the estimated response surface are determined by the variance surface

t>v ()= f@t)M(z)*f(t), or equivalently by the information surface,

t|—>ir(t)=%. These quantities do not depend on the choice of the generalized
VT

inverse, provided the vector, f(t) lies in the range of the matrix M(zr); otherwise a
continuity argument suggests setting v, (t) =c and i_(t) =0, which also makes good
sense statistically. The information surface i_(t) ranges from zero to some finite

maximum, whence it is easier graphically depicted than the variance surface (Draper and

Pukelsheim, 1998).
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CHAPTER THREE

METHODOLOGY
3.1 Introduction

This chapter presents the space of the moment and information matrices that were
involved in our design problem under study.

3.2 Space of Design Matrices
3.2.1 Invariant symmetric block matrices for design of mixture experiments

A quadratic subspace of symmetric nxn matrices is a linear subspace ¢ of sym(n) with

additional feature that C € 9, implies C* € 4. Rao, et al. (1998), gave an introduction to
the subset and some of its statistical applications. In the theory of statistical experiments,
quadratic subspaces of symmetric matrices arise when certain invariance properties of
information matrices involved in the design are considered. We analyze a specific
example of such a quadratic subspace and demonstrate how to apply the results of this

analysis to designs in a second-degree polynomial regression model for mixture

experiments, for m>2 , we denote the canonical unit vectors in R™ by e,,e,,---,€

m:-

m
2

The canonical unit vectors in SR( ) are denoted by Ej; with lexicographically ordered

index pairs (i,J), 1<i< j<m. Let 4, denote the symmetric group of degree m, and let

perm(m) be the group of mxm permutation matrices.

We define
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with
R, =) e.,e € perm(m)
i=1

and
m ’ m
S, = _Z:lE(ﬂ(i)Jr(j))T E; € perm ) forall ze 9, .
ij=
i<j

Where (z(i), z(j)) T denotes the pair of indices z(i), z(j) in ascending order. The set

m+1
H is a subgroup of perm& 5 j] and is isomorphic to3,, . It acts on the space

m+1
sym([ 5 j] through the congruence transformation (H,C)~ HCH’ and induces

subspace

m+1 m+1
sym(( 5 ),Hj={Cesym£[ 5 D:HCH for all HEH} .................. (3.2)

of H-invariant symmetric matrices. Since H is a subgroup of the orthogonal group, the

m+1
space sym[( 2+ JHJ is a quadratic subspace, Pukelsheim (1993). This quadratic
subspace is the object of our study.

Draper et al (1991) characterize rotatable symmetric matrices in first and second-degree
models, where rotatability means invariance under congruence transformation with
matrices from a certain group isomorphic to the orthogonal group. Gafke and Heiligers

(1996) considered moment matrices which are invariant under a finite subgroup of the
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orthogonal group including permutations and sign changes. Eigenvalues of invariant
moment matrices are then used in numerical algorithm for finding optimal designs in

certain cubic models.

In a similar fashion, Draper et al. (1996), compute numerically optimal designs in a
rotatable cubic model. A particular example of H-invariance already occurs in Galil and
Kiefer (1977) while Galils and Kiefers treatment of H-invariance is less formal and does
not mention quadratic subspace, their numerical approach to optimal designs for mixture
experiments is well aware of the structure and exploits eigenvalues of H-invariant
symmetric matrices. Klein (2004) and Kinyanjui (2007), showed how invariance results
can be applied to analytical derivations of optimal designs. The spectral analysis of

invariant symmetric matrices yields both eigenvalues and eigenvectors.

3.2.2 The Quadratic subspace sym(s,H)

Since H is a subgroup of the permutation matrix group, H-invariance of a matrix

C e sym(s) means that certain entries of C coincide. The following lemma describing the
. m+1 . . . .
linear structure of sym(s,H), (s= 5 ), shows that an H-invariant symmetric matrix

has at most seven distint elements.

Lemma 3.1

We define the identity matrices U, =1, and W, = I[m], and write 1, =(@L1---,1)’ e R".

2
Furthermore, we define

U,=11 -1, esym(m)
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V,= Y@ +ej)'ein(r:}m,

ij=1

{i, yrdk. 1) =1

i,j=1k,I=1
i<j k<l

m m m
W,=> >EE, € sym(( ZD
{, i3n{k1}=4¢
Then any matrix C e sym(s, H) can be uniquely represented in the form

al, +bU, cV,+dv,
C=lcv, +av, el(m) + W, + gW,
2

With coefficients a,---,g € R. The terms containing V,, W, and W3 only occur for m>3
and m >4 respectively.
In particular,

4 for m=2
dimsym(s,H)=46 for m=3.
7 for m=>4

Proof

Given a symmetric matrix C < sym(s,H ), we partition this matrix according to the block

structure of matrices in H, that is
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With Cll = Sym(m)’ CZl (S i}{(Z )Xm and C22 e Sym((r;jJ .

Then, H-invariance of C can be expressed by the blockwise conditions;

R.C,R. =C,,,S,C,,R! =C,,.S.C,,S  forall 7€, ..ccooevviiiiiiiiiiiiiiinn. (3.5)
Straightforward multiplication shows that the blocks given in equation (3.3) satisfy these
conditions. For the reverse direction, we compare the entries of the matrices on both sides

of the equations in (3.5) and obtain C,, € span{U,,U,}, C,, € spa¥V,,V,} and

C,, € span{W, W, , W, }.

Uniqueness of this representation in equation (3.3) follows from the linear independence
of the sets {U,,U,}, {Vv,,V,} and {W, W, W,}-~

We now turn to the quadratic structure of sym(s, H), that is, the additional property that
sym(s, H) is closed under formation of matrix powers. The block representation given in
equation (3.3) implies that, powers of H-invariant symmetric matrices involve products
of U;, Vj and Wy. The following lemma presents a multiplication table for these matrices.
Lemma 3.2

The results of multiplication of the matrices U; V; and Wy are as follows:

0] Products in span{U,,U,}

m-1 m-2
VV,=(m-DYuU,+U,, V)V, = 5 U, + 5 U,,

VV, =V, =(m-2U,, UZ=(m-1U,+(m-2U,.

(i) Products in spar{V,,V,}
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VU, =V, +2V,, V,U, = (M=2)V, + (m-3)V,,
WV, =(M=2V, +2V,, W,V, =(m—2)V, +2(m-3)V,,

m-2 m-3
W3V1 = (m _3)\/2’ W3V2 = 2 1t 2 2

(iif)  Products in span{W,,W, ,W,}
VV,/=2W, +W,, V.V, =(Mm-2)W, + (m-3)W, + (m—-4)W,,

VV, =V, =W, + 2W,, W, =2(m—2)W, + (m—2)W, +4W,,

, (m=2 m-3 m-—4
W3 = 2 1T 2 2 T 2 37
W,W, =W,W, = (m-3)W, +2(m—-4)W,
Proof

The equations are verified by elementary calculations and by occasionally using the

1 =

3 5 )

With lemma (3.2), products of matrices in sym(s, H) can be calculated by mere symbolic

identities; U, +U, =11, V, +V, =1

m=—m !

1, and W, +W, +W, =1

manipulation and by multiplication of scalars. It is this result that allows us to perform
the calculations involved in the design problem (2.12) in an effective way. Furthermore,
the multiplication table can be implemented in a computer-algebra system like maple.

As a side result of lemma (3.2) and the fact that traceU, =traceW, =traceW, =0, the

basis matrices;

u, 0 u, 0 0V 0V,
Blz 182: 183: aB4: )
0 O 0 O vV, 0 vV, 0
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0 0 0 O 0 O
B, = , By = and B, = e e e (3.6)
0 W, 0w, 0w,

implicitly given in lemma (3.2) form an orthogonal basis of sym(s,H) with respect to
Euclidean matrix scalar product (A, B) — traceAB. Lemma (3.2), also implies the

following results on Moore-Penrose inverses, denoted by a superscript + sign and on
schur compliments:
Corollary 3.1

For any m > 2, suppose the matrix C e sym(s, H) is partitioned as in equation (3.4) with

diagonal blocks C13, Cy; and off diagonal block C,;. Then we have
Ci espafU, U}, C;; -C;),CpC, e spa{U,, U, }

ng € Span{\Nl,Wz ’Wa}a Cyp - C21C1+1C£1 € Span{\vawz !Ws}-
Proof

C 0
The assertions on C;; and C;, follow from ( 51 c ]e sym(s,H) and the fact that
22

quadratic subspaces are closed under Moore-Penrose inversion, (Rao, et al.1998,
corollary 13.2.3). Together with lemma (3.2), these results imply the claims on the schur

complements of C 13 and Co,.

3.3 Optimality Criteria

The most prominent optimality criteria in the design of experiments are the Determinant
criterion, (D-criterion), the Awverage-variance criterion, (A-criterion), the smallest

eigenvalue criterion (E-criterion) and the trace criterion, (T-criterion). These are

particular cases of the matrix means, ¢,, with parameter p e[—oo/1].
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The optimality properties of designs are determined by their moment matrices,
Pukelsheim (1993). The computation of optimal design for the second order Kronecker

model involves searching for the optimum in a set of competing moment matrices. The

matrix mean ¢, which is an information function, serves as a basic tool in this study.

The amount of information inherent to C, (M (7)) is provided by Kiefers ¢, —criteria
) m+1 m+1 m+1 . - )
with C, (M (7)) € PD([ ) D the set of ( 5 jx( 5 J positive definite matrices.

These are defined as follows

A (C) i p=—oo

4,(C) = get©)* it p=o0 ,

{ﬁtracecp] if  pe[-1]\{0}

2

(C) refers to the smallest eigenvalue of C.

min

. m+1
forall Cin PD([ 5 D,Where A

By definition, ¢,(C) is a scalar measure which is a function of the eigenvalues of C for

all pe[-x1], (Pukelsheim,1993). The class of ¢, —criteria includes the prominently

used T-, D-, A- and E-criteria corresponding to parameter values 1,0,-1 and —oo

respectively. These are thus defined as:

o 1
The trace criterion, T-, ¢ (C) = —traceC,
S

1

The determinant criterion, D-, ¢,(C) = (detC)s ,
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1 -1
The average variance criterion, A-, ¢, (C) = {—tracec ‘1j and,
s

m+1
The smallest eigenvalue criterion, E-, ¢, (C) = A,;,(C ™), where s :( ) ]

The problem of finding a design with maximum information on the parameter
subsystem K'6@ can now be formulated as;

Maximize ¢,(C,(M(7))) with z T

Subject to C, (M (2)) € PD(S)....eeeeveeeeeeeeeeeee e, (3.7)
where T denotes the set of all designs on T,.
The side condition C, (M(z)) e PD(s) is equivalent to the existence of an unbiased

estimator for K'@ under 7, (Pukelsheim,1993). In this case, the design,z is called

feasible for K'¢. Any design that solve problem (3.7) for fixed p e[-x]], is called
¢, —optimal for K'¢ in T. For all p e[-x1), the existence of ¢, —optimal designs for

K'6 is guaranteed in Pukelsheim (1993).
Definition
The j™ elementary centroid design n;, Je{l...m}, m=>2 is the uniform distribution

on all points taking the form,

j
E_Zek eT, with 1<k, <k, <---<k; <m.
)=

A convex combination, 7n(a) = Zajnj with a =(a,,...,a,,) €T, is called a weighted
j=1

centroid design with weight vector « restricted by Z“i =1.
i=1
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These designs were introduced by Scheffe” (1963). Weighted centroid designs are
exchangeable, that is, they are invariant under permutations.

Klein (2004) summarized the work by Draper and Pukelsheim (1999) and Draper, et al
(2000) by putting forward an idea that affirms the importance of weighted centroid
design for the Kronecker model. He showed that, in the second degree Kronecker model
for mixture experiments with m>2 ingredients, the set of weighted centroid designs is an
essentially complete class. That is, for every pe[-o0;1] and for every design 7 €T there

exists a weighted centroid design 7 with

(@, °C, oM)(17) = (¢, °C, o M)(2).
Thus for every design, €T there is a weighted centroid design n whose moment
matrix M(n) improves upon M(z) in the kiefer ordering. (Draper, et al. 1998) and

(Pukelsheim, 1999).

Under the Kiefer ordering, we say a moment matrix M is more informative than a
moment matrix N if M is greater than or equal to some intermediate matrix F under the
Loewner ordering, and F is majorized by N under the group that leaves the problem
invariant:

M>>N < M>>F <N for some matrix F.
Two moment matrices M and N are said to be Kiefer equivalent when M>>N and N>>M.
We call M Kiefer better than N when M>>N without M and N being equivalent. A design

7 is kiefer better than a design & when M(7) is Kiefer better than M(&).
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As a consequence, we may restrict the set of competing designs in problem (3.7) to
n(T,,), thus obtaining a mere allocation problem for the weight vector & € T,,. Hence the
problem of finding a design with maximum information simplifies to;
Maximize (¢, cC, oM on)a with a €T |

SUBJECt t0 M (17()) € A(K) . neeeeee e (3.8)

Weighted centroid designs are exchangeable. This property points to H-invariance of

information matrices,

HC, (M(m)H =C,(M(n)) forall HeH, nen(T,) ..ccivivviiiaan.. (3.9)
where H is the matrix group defined in equation (3.1). Equivalently, we may say that the
information matrix, C, (M (7)), lies in the quadratic space
sym(s,H)={C esym(s):HCH'=C  for all HeH} of H-invariant symmetric
matrices, that is, a subspace of matrices closed under formation of matrix powers C",
neN.

Definition

A weighted centroid design 7(«), satisfying the side condition M (77(«)) € A(K) in
problem (3.8), is called a feasible weighted centroid design for K'@ in T.

An equivalent but more tractable condition is the regularity of C,(M(n(«))),
(Pukelsheim, 1993). From the linearity of the information mapping Cy in equation (3.14),

we get, forevery a €T,,,

CoM@@) = S @ CalM@7,))s oo (3.10)

jed(a)

with 0(a) ={j=12,....,m:«; >C}.
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Since the information matrices C; = C, M (7;) are non-negative definite, this implies;

RC M) = > R(EC)).

jed(a)
The above equation suggests studying the ranges of the information matrices;

Cy, Cy, ..., Cy, of the elementary centroid designs. These matrices can be calculated by

invoking the linear transformation to moment matrices M (7;) given by (Draper et al,

2000).
Forj=1,2, ..., m, we obtain
c,,. C.
G| (3.11)
Caj Cop
With blocks
1 1 j-1
Couj =, +——3U,,

i’m ™ jPPmm-1

2 J_1V+ 2 J—lJ—ZV

C,i= :
1 Pmm-1" Pmm-1m-2
4 j-1 4 j-2j-2 4 j-1j-2j-3
Coj :TJ— my T3 J ; W, +—3 ; ; : 3
j°’mm-1 [Zj ’mm-1m-2 Imm-1m-2m-3

where the matrices; U,, V,, V,, W,, W,are defined in lemma (3.1). The terms

containing V,, W, and W, only occur for m>3 and m> 4 respectively.

3.4 Motivating design problem
Mixture experiments are experiments in which the experimental conditions are

nonnegative quantities summing to one. Formerly, the experimental conditions are points

in the probability simplexT, ={te R":1 t =1, withl =(1....1)’ € ®R". In a polynomial
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regression function, a real-valued quantity Y; observed under the experimental conditions

tET, will be assumed to be random with expected value E[Y{] which is a polynomial in t.

The polynomial coefficients are unknown and have to be estimated from the
observations. One instance of such a model introduced by Draper and Pukelsheim (1998),

is the second-degree Kronecker model (2) with the regression function f(t)=t®t and

2 - -
unknown parameter vector ©=(6,,,6,,,...,6,,,) €R" . All observations taken in an
experiment are assumed to be uncorrelated and to have common unknown variance.

When fitting this model to a set of observations, a parameter subsystem, say K'@, of

interest will be chosen withk € R™ *°.

We define the K matrix as

K= (KK & R e (3.12)
K, = Zeiiei' m ,
where, i=1 and K, :LmZ(eij +e;)E;
2 |
4

The parameter subsystem considered in this study can be written as

(eii )Jsigm

m+1
fmj(eij +0ji)’]5i<j£m ESR( 2 ]
2

The amount of information a design r contains on K'@ is captured by the information

K@=

matrix;
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m+1

C.(M()) = min{LM ()L Le sn( 2 o LK = I[””l]}’ .................. (3.14)

m-+!

where I[ :

m+1) (m+1
1] denotes the ( ) }{ ) J identity matrix and L is the left inverse of K.

The above minimum is understood relative to Loewner ordering on the space
m+1 m+1) (m+1
sym(( 5 D of symmetric ( ) jx[ 5 ] matrices, defined by A<B if and only if

B — A is non-negative definite.

An experimental design for a mixture experiment is a probability measure 7 on T, with
finite support. Each support point tesupt directs an experimenter to take a proportion
T({t}) of all observations under the experimental condition t. The statistical properties of

a design 7 are reflected by the moment matrix

M () = ij FE)F ) dr e NND(M?), oo, (3.15)

where NND(m?) denotes the cone nonnegative definite m? xm? matrices. The amount of
information which the design T contains on the parameter subsystem k'@ is captured by
the information matrix for k'0

C.(M(2)) = (KK) kM ()K(KK) ™ € NND(S) . ..ovvoveeoeeeoreeeere . (3.16)

The information matrix Cx (M (7)) is the precision matrix of the best linear unbiased
estimator for k'@ under the design t Pukelsheim (1993). The equation (3.16) is a linear

function of M (7) and is due to the fact that k'@is a maximal parameter system for

Kronecker model (Klein 2001).
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A family of scalar measurements for the amount of information inherent to Cy (M (7)) is

provided by Kiefer’s ¢, —criteria , with p€[-00,1] . These are defined by;

Ain (C)ifp = —o0
$,(C) = (detC)sifp =0

éuwcwwme@mnwm

for all C in PD(s), the set of positive definite sxs matrices. Here A_.. (C)stands for the

smallest eigenvalue of C. By definition, ¢, —(C) is a function of the eigenvalues of C for

all p€[-o0,1] Pukelsheim(1993). The family of ¢, —criteria includes the often used A-,

D-, T-, and E-criteria, corresponding to parameter values 1, 0, -1, and -co respectively.
The problem of finding a design with maximum information on the parameter subsystem
k'@ can now be formulated as

Maximize ¢,(C, (M (z)))with teT

Subject to C, (M (7)) € PD(s)
where T denotes the set of all designs Tr,. The side condition C, (M (7)) € PD(S) is equal
to the existence of an unbiased linear estimator for k'@ underz. In which case, the design
7 will be called feasible fork’@. Any design having the above problem for a fixed pe[-=
1] is called ¢, —optimal for k'@will be guaranteed by theorem 7.13 in (Pukelsheim,

1993).

The set of competitors in the design problem above can be substantially reduced. In a

mixture experiment with m ingredients, the j™ elementary centroid design n; with je
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18 :
{1,...,m} in the uniform distribution on all points of the form —_Zeki eT, with
i1

0<k <..<k;<m.

m
A convex combination 7(«) = 2“1771 with weight vector @ =(a,,...,¢,) €T is called a
j=1

weighted centroid design. The set 7(r,) of weighted centroid designs constitute an
essentially complete class of designs with respect to the target function of the design
problem. That is, for every design T €T there is a weighted centroid design 7 €7(T,,)
with
(@, ©C, oM)(17) = (4, ° C, o M)(z). Therefore, the design problem reduces to

Maximize (¢, ©C, oM o) with a €T

Subject to C, (M (17(2))) € PD(s) .

A necessary and sufficient condition for ¢, —optimality of a weighted centroid design

n(a)with weight vector «a=(a,,...,a,) €T, follows from the Kiefer-Wolfowitz
equivalence theorem in (Pukelsheim, 1993) and given by (Klein, 2001). Suppose 7(«)
satisfies the side condition C, (M (r7(«))) € PD(s) and C,written as C; =C, (M (z,)) for
j=1,...,m. Then, 7(«) solves above problem with p&(-c2,1] if and only if

=traceC, (M (r7(x)))" for all jed(a)

traceC ;C, (M (77()))* {s traceC, (M ((c)))® otherwise

with o(a) ={j\«; >0}. The case p=-co, that is, E-optimality, has a similar optimality

condition Klein (2001). Without further knowledge of the information matrices involved,
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the optimality condition above will be hard to solve. However, invariance arguments will
help to considerably simplify the problem. (Pukelsheim, 1993) gave a general discussion
of invariance methods in experimental design. Weighted centroid designs are
exchangeable, that is, they are invariant under permutations of the ingredients. Formally,

the group perm(m) of mxm permutation matrices acts on the set T of designs through

(R,7) >T¥ =T oR™. Exchangeability of a design 7 €T then means z =z through

congruence transformation. The group H defined acts on the space sym(s) through

congruence transformation. This action is linked to that of perm(m) on T by equivalence
property

C,(M(T " )) =C (R ®RM (7)(R; ®Ry))

= HHCk(M (T))Hﬁ
for all [Ieo and 7 €T, with matrices R; and H. As a consequence, information

matrices of exchangeable designs and in particular, all information matrices involved in
the design problem, lie in the quadratic subspace sym(s, H) defined in (Klein, 2004).
Hence analysis of quadratic subspace may help in solving the design problem, and the

optimality criteria serves as a guide for the analysis.

(Klein, 2004) and (Kinyanjui, 2007) showed how invariance results can be applied to
analytical derivation of optimal designs. The spectral analysis of invariant symmetric

matrices Yyielded both eigenvalues and eigenvectors. (Kinyanjui, 2007) investigated
¢, —optimal weighted centroid designs for k'@by adopting the General equivalence

theorem as given in Pukelsheim (1993) and derive the general forms for the unique A-

optimal, D-optimal, T-optimal, and E-optimal designs fork'é. Later on, (Ngigi, 2009)
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gave the optimality criteria for ¢, —optimal weighted centroid designs for k'¢and found
that for second-degree model with m=2 ingredients, a unique A-optimal, D-optimal, and

T-optimal weighted centroid designs for k'€ exist. E-optimal designs could only be
derived for experiments with two ingredients. Cherutich M. (2012) also showed that
second degree mixture experiments for non-maximal parameter subsystem unique D-and

A-optimal weighted centroid designs for K’ alsodo exist.

This study investigated mixture models on the simplex an improvement is obtained for a
given design in terms of increasing symmetry as well as obtaining a larger moment
matrix under the Loewner ordering. The study adopted the second-degree mixture model
put forward by Draper and Pukelsheim (1998). The parameter subsystem of interest in the
study was maximal parameter subsystem which is a subspace of the full parameter space.
For this model the full parameter subsystem was not estimable. By a proper definition of
parameter matrix, a maximal parameter subsystem in the model was selected. Canonical
unit vectors and the concept of Kronecker products were employed to identify the
parameter matrices as well as the information matrices. For the second degree mixture
model with two, three, four and m ingredients, a set of weighted centroid designs was
obtained for a characterization of the feasible weighted centroid designs for the maximal
parameter subsystem. After computing the feasible weighted centroid designs the
information matrix of the design was obtained. Derivations of A-, D- and E-optimal
weighted centroid designs were then computed from the information matrix. The
optimality criteria A, D and E were used to obtain optimal centroid designs. The results
based on maximal parameter subsystem, second degree mixture model with m>2

ingredient for A-, D- and E-optimal weighted centroid design for K'@ is obtained based
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on the choice of the coefficient matrix specifically in this study. Optimal weights and
values for the weighted centroid designs are numerically computed using Matlab

software.
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CHAPTER FOUR

RESULTS
4.1 Introduction

This chapter contain information matrixes, A-, D- and E-optimal weighted centroid

design of the designs under study form=2,m=3, m=4and m> 2 ingredients.

4.2 Information matrices

For a design t with moment matrix M, the information matrix for k'€, with kxs
coefficient matrix k of column rank s, is defined to be Cy(M) where the mapping Ci from
the cone NND(K) into the space sym(s)is given by;

C,(A)= min LAL'For all AeNND (k) with minimum taken relative to the Loewner
LeR™*:Lk=I

ordering over all left inverses L of K Pukelsheim (1993)

4.2.1 Information matrix for m=2 ingredients

Table 4.1. Weighted centroid design for m=2 ingredients

Design points t; t,

1 1 0
2 0 1
3 Yo Yo

The elementary centroid designs are;

o (o

NI, N
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Lemma 4.1

The K matrix for m=2 ingredients is given by;

0
1
2

K:
00 %
2

Proof

From equation (3.12), we have K = (K,K,) e R where;

m ' 1 m ,
K, :Zeiiei K, =—mZ(eij +e;)E;
i=1 2{ :,<]l=1
2

For m=2 ingredients, then;

2 1 2 .
K,=D eie'=e,e'+e,e,' and K, = 5 D (e +€;)Ef = (e, +€,,)E, with
i-1 i,j=1
i<j

1 0
Define, e; =€, ®e, i,j=1,2, ¢ :( J and e, :( j
0 1

Thus
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Substituting these in equation (4.1), we obtain

giving K =

OoON|FPN|FRO

o NIk N ©

Theorem 4.1

The information matrix C, (M (n7(«))) for a mixture design 7(«) with m=2 ingredients is

given by
[ 8a, +a, a, 05__
16 ] 16 8
a a,+a, «
C,=CaM@eM=| T2 Tl L
%4 4L %
.8 8 4 |

Proof

The moment matrix for the weighted centroid design with two ingredients is given as

Hy  Hzp  Hip Hy
M (7(ax)) = Hzw My Hyy  Ha
Har Hy Hyp  Ha
My Hzp Hzr  Hy

where the fourth moments are defined as

wa () = [t dn, g1y, (n) = [0, g1, (1) =tt3dn
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For m-ingredients there are m elementary centroid designs placing equal weights 1 on
m
( Jj
: _— . 1
the points having j out of their m components equal to — and zeros elsewhere. A convex

combination 7(«) = Zajnj with o = (e, ,,...,a,,) €T, is called a weighed centroid
j=L

design with weight vector « such that Z“i =1.
j=1

2
For the case, m=2, n(a) = Y a;n; = ayy, +a,m, With a = (e, @,,0,0) €T, and
=1

o, +a, =1.
The fourth order moments are for j=(1,2, ..., m)

j_

- When m=2 these moments are;
j'm(m-1)

1
,u4(77j) :j3_m and /'131(77,') :ﬂzz(nj) =

1 1 1
=, My (1) = 1, (17) =0, 1, (17,) = — and p5,(17,) = 11,(17,) = — .

1y (ny) = 2 16 16

Thus the moment matrices for designs 7, and 7, are:

M (7,) = M) =|Y P PR

O O OoON|Ek
O O o o
O O o o

N|IRO O O
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From equation (3.16), we obtain the information matrix as follows;

L =(KK)'K'=

o o

0
0
1

= o o
o +F o

For the design 7, , the information matrix is given as;

172 0 0
C,=C.(M@)=LM@IL =| 0 172 0|eeiiioiooiieoeeeeeee e (4.2)
0 0 0

And for the design 7, , the information matrix is given as

1/16 1/16 1/8
C,=C.(M(m,)) =LM(7,)L" =|1/16 1/16 1/8|...ceivieoeeeoeeeeeeeeeeeeee . (4.3)
1/8 1/8 1/4

From equations (4.2) and (4.3) we can obtain the information matrix for the design 7(«)
as;
Ci (M (7(2))) = ,C, (M (1)) + 2,C, (M (17,)) -

This on simplification yields;

8a, +a, a, a,
16 6 16 8
a a, +a, «
C,(M(n())) = ﬁ # ?2 .............................................. (4.4)
% 4 %
8 8 4
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4.2.2 Information matrix for m=3 ingredients

Table 4.2. Weighted centroid design for m=3 ingredients

Design points ty t2 t3
1 1 0 0
2 0 1 0
3 0 0 1
4 Yo Ya 0
5 Y 0 Y
6 0 Y Y
7 75 V! Vs

From definition above (under theorem 4.1), there are m-elementary centroid designs, n;,
. : 1 : _— . 1
placing equal weights —— on the points having j out of their m components equal to —
m
[J’ j

and zeros elsewhere. These are for, m=3

1 0) (0 1/2)\(1/2)(0 1/3
7 =40 |1} [O|p,m,=4|2/2||0 ||1/2]|; and 7, =4|1/3
0) \0) (1 0 1/2)\1/2 1/3

A convex combination r(a) = 2“1771 with o = (e, a,,...,x,,) € T,, is called a weighed
j=1

m
centroid design with weight vector « such that Zaj =1.
j=1

3
For the case, m=3, n(a) = Zajnj =, +a,n, +o,n, With o = (o, «,,0,0) €T, and
j=1

o +a, =1



Theorem 4.2

The K-matrix for m=3 ingredients is given by

10 0 0
L

6
000010
6
000%00
K= 0 0 O
001
6
000010
6
00000%
0O 01 0 0 O

Proof

From equation (3.12), we have K = (K,K,) e R where;

=7~ (eij +eji)Eij,

Klzzeiieil K, = m
2

For m=3 ingredients, then;

3
Ky =) ee' =6, +e,e,+e,e; and
i=1

13 ,
Kz == Z(eij +eji)Eij
6=
i<j

l ! 1 !
= E[(eﬂ +€,)Ef, + (65 +85) Efs + (6,5 +€5,) Ej]

3
with E; e al?



1 0 0
Define, e; =¢, ®e; ij=1,23¢e ={0|,e,=(1|and e;=|0].
0 0 1

Thus

!

e,=¢6®e=1000000 00

e,=6®e=(0 000100 0 0

e, =6, ®e, =(0
e, =6 ®e,=(0
e, =¢,®e =(0
e,=¢6 ®e,=(0
e, =6, Qe =(0

e,,=¢,®e,=(0

e,=€®e=(0 00000 0 1 0)

!
)

00000GO0 D0 1),

!

1000000 0

!

001000 0 0

!

01000000

!

000O0O0100)

000O010 0 0)

)
i)
i)
i)
!
k)

!
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The vectors E;'s are obtained by considering the index pairs {i,j}with i, j {1, 2,3}and

i<j. They represent the standard basis of %®° and the index pairs should be in a

lexicographic order. They are;

E,=( 0 0)

E,=(0 1 0) and

E23=(O 0 1)'
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Therefore we obtain;

O O O O O O O O dH
O O O O 4 O O © O

— O O O O O O o o

€.6 l"'ezzez '+83363 =

K, =

O O O O O A O -Ho O
O O Hoe O O O Hoe O O
O «Ho O +Hoe O O O O O
Il
[s2]
- N
L
~
N
o™
<3}
IT
(a2}
N
[¢B)
N .
IT
) O O O o o
L
- O O <o O O
e3
+ O o O -o O
™
tl
) O O O o o
+2 O O O o
s
— O O O o

andK, = (e, +e,)E

—o O

0 00O
0 00
0 00

o O

o O

0 01O

K :(Kl Kz)

Thus
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Theorem 4.3

The information matrix C, (M (7(«x))) for a mixture design 7(«) with m=3 ingredients is

given by
8oy +a, o % Z X
24 48 48 8 8
% Bamta, a4 & g X
48 24 48 8 8
%2 X bnta, o 4 @
C.=CM(a)=| 8 48 4, 8 8
% % 0 °% 9 0
8 8 4
% 0 % 0 3a, 0
8 8 4
0 % % 0 g 3
8 8 4
Proof

For m=3, the moment matrix for the weighted centroid design 7(«) is given by;

My  Hzy  Hazn Mz Hyp Han Han Hoin Ho
Hzr  Hypp Mo Hap Han Hoin Main Mo Hon
Ha1  Han  Hap Honn Hain HMoain Moz Han M
Hzr  Hypp  Han HMap Har Hoin Main Mo Hon
M) =| pp, My Mo s He Mz Mo My Mo
HMa1in Hain Honn Hoin HMan Mo Mo Mo Ha
Mz Hoin Mo Mo Mo Hoin Mz Mo Ha
HMain Hain Honn Hoin HMan Mo Mo M Ha
My Hoin Mz Mo HMap Han Han Ha My

The moments of order four are, for j=1, 2, ..., m:

1

p’m’

;U4(77j)=

j-1

1u31(77j) =ﬂ22(77,-) :m,
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(-9 -2)
i*'m(m-1)(m-2)

/1211(77;) =
When m=3, these moments are;

1
) ﬂsl(ﬂz) = ,U22(772) = 4_

1 1
w1, () = 51 sy (1) = 5y (11,) =0, p150,(7,) =0, p,(n,) = 2_ 3

4

and 14,,,(17,) =0.

Thus the moment matrices for the design 7, and », are:

/73 0 0 O O O O o0 O
o o0 0O o O O o o0 o
o o0 0O o O O o o0 o
o 0 0O O o O o o0 o
M(@#)={ 0 0 O O0 212/3 0 0 0 ©
o o o0 o O O o o0 o
o o o0 o O O o o0 o
o o 0O o O O o o0 o
o o o0 O o o o o0 13
and
1/24 1/48 1/48 1/48 1/48 0 1/48 0 1/48
1/48 1/48 0 1/48 1/48 0 0 0 0
1/48 0 1/48 O 0 0 1/48 0 1/48

1/48 1/48 0 1/48 1/48 O 0 0 0
M(n,)=|1/48 1/48 0 1/48 1/24 1/48 0 1/48 1/48|.
0 0 0 0 1/48 1/48 0 1/48 1/48

1/48 0 1/48 O 0 0 1/48 0 1/48
0 0 0 0O 1/48 1/48 0 1/48 1/48
1/48 0 1/48 0 1/48 1/48 1/48 1/48 1/24

The fourth moments of the weighted centroid design 7(«) are obtained as

8a, +a,

(@) =——,
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sy (@) = w1, (7)) = 48

(1)) =0

The matrix L = (K'K)™ K’ with K from equation (3.12) is

L =(KK)'K'=

o O O O O Bk
O O w O O o
O W O O O o
O O w O O o
O O O o~ O

The information matrices for the designs », and 7, are obtained as follows:

C,=C,(M(m,)) = L(M(m,))L' =

and

C,=C (M (,)) =L(M(,))L" =

w O O o o o
o W O O o o
w O O o o o

O O O O O

/3 0 0 O
0 1/3 0 O
0 0 1/3 O
0O 0 0 O
0O 0 0 O
0O 0 0 O

1/24 1/48 1/48
1/48 1/24 1/48
1/48 1/48 1/24

1/8 1/8 0
1/8 0 1/8
0 1/8 1/8

o O O O O o

1/8
1/8
0
3/4
0
0

O O O O o o

1/8
0
1/8
0
3/4
0

0
1/8
1/8

0

0
3/4
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e (A7)

From equation (4.6) and equation (4.7) we obtain the information matrix for the design

n(a) as follows

C (M (n(a))) = ,C(M(1,)) +a,C(M (77,))



This on simplification becomes

8oy va, & LB B
24 48 48 8 8
% 8amtra, @@ g X
48 24 48 8 8
L % Bata, o o @
C.=CMn(a)=| 48 48 4, 8 8
% % 0 °% )
8 8 4
223 0 273 0 32, 0
8 8 4
0 % oF 0 0 3a,
8 8 4
4.2.3 Information matrix for m=4 ingredients
Table 4.3. Weighted centroid design for m=4 ingredients
Design points | t; t2 t3 ty
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 Y Y 0 0
6 Y 0 Y 0
7 Y 0 0 Y
8 0 Y Y 0
9 0 Y 0 Y
10 0 0 Y Y
11 75 V5 75 0
12 ) V5 0 Vé
13 Y4 0 Y5 Y5
14 0 V5 75 vz
15 Ya Ya Ya Ya

50



o1

From definition (under theorem 4.1), we showed that there are m-elementary centroid

design 7;, placing equal weights % on the points having j out of their m
i)

1
components equal to — and zeros elsewhere. These are for, m =4
J

1) (0) (0) (0 12\ (1/2) (1/2)(0 (0 (0
ol 1] |ol]o v2(lo [lo [|12]|1/2]]0
0ol lof |1lol[ "™ )0 [lw2llo [lu2llo [|luz2]|[
o) (o) lo)l1 o Jlo Jlw2)lo Jlw2)l12
1/3) (1/3) (1/3) (0 1/4
u3||uzllo |13 1/4
=1 y3llo s tlus| @7 =) g
o J\13)lws)l1/3 1/4

4
For the case, m=4, n(a) = Zamj =aq,n, +a,n, +an, +a,n, with
=1

a=(a,2,,0,0) T, and o, +a, =1
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Theorem 4.4

The K-matrix for m=4 ingredients is given by

1 00 0O 0 0 0 0 0
0 00 01712 0 0 0 0 0
0 00 0O 1/12 0 0 0 0
0 00 0O 0 1/12 0 0 0
0 00 0112 0 0 0 0 0
01 000 0 0 0 0 0
0 00 0O 0 0 1/12 0 0
K = 0 00 0O 0 0 0 1/12 0
0 00 0O 1/12 0 0 0 0
0 00 0O 0 0 1/12 0 0
0 01 0O 0 0 0 0 0
0 00 0O 0 0 0 0 1/12
0 00 0O 0 1/12 0 0 0
0 00 0O 0 0 0 1/12 0
0 00 0O 0 0 0 0 1/12
0 0010 0 0 0 0 0

Proof

From equation (3.12), we have K =(K,,K,) € K™ where;

K= Zm:eiiei'
i=1

For m=4 ingredients, then;

4
Ky =) epe' =€ e '+e,e, +e.e, +€,e,' and
i=1

1 4
=—§ e. +e.)E’
12”:1( ij jl) ij

i<j

K,

1 ’ ’ ! ! ! !
= E[(elz +€,0) B, + (815 +€5)Efs + (8, +€4,) B, + (855 +5,) Eos + (85, +8,,) By + (85, +€43) By ]



Define, e; =¢, ®e; i,j=1,2,3 e, = , 8, = and e, =

o B o o

1
0
0
0
Thus

e,=6®e=010000000O0O0O0O0O0TO0O0 0
e,=€,®e=0 000010000000O0T0O0O0 0
e,=6,®e,=(0 0 0000000010000 0
e44=e4®e4=(oooooooooooo0001)',
e,=¢®e,=(010000000O0O0O0O0O0O0 0,

e, =6,®e=(0 0001000000000 O0 0,

e,=6,®e,=(0 01000000O0O0O0O0GO0O0 0 0,
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e42=e4®e2=(0000000000000100)',
e,=¢,®e =0 0000000O0O0O01000 o)'and
e43=e4®e3=(o000000000000010)'.

The vectors E;'s are obtained by considering the index pairs {i,j}with

i, j €{1,2,3,4}and i<j. They represent the standard basis of %>° and the index pairs should

be in a lexicographic order. They are;

E,= 0 0 0 0 0)

E,=(0 1 0 0 0 0),
E,=(0 010 0 0),
E,=(0 0 0 1 0 0),

E,=(0 0 0 0 1 0) and

E,=(0 000 0 1)



Therefore we obtain;

’ 14 ’ ’
Kl =€,,6 +€,,6, +€3,6; +€,,6, =

O 0O O0OO0OO0OkF OOO0OOOOOOoOOoOOo
P OO O0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOoOOo

O OO 0O 000000000 OoOOoO Lk
O OO 0O O0OO0OO0OO0OO0OOoOkFr oo o oo

and

13 ,
K, = Eél(eij +e;)E;
i<j

l ! ! ’ ’ ! !
= E[(elz +€1)Elp + (Brs +€31) Els + (B, + €40 ) Ely + (B +€5,) By + (8 +€,5) By + (54 +€45) By

55



Thus

K = (K, K,) =

O O O O O O O O OO O o o o o =

0 0] 0]

1/12 O 0]

0 1/12 O

0 0] 1/12

1/12 O 0

0 0] 0

0 0] 0

0 0] 0

0 1/12 O

0 0] 0

0 0] 0

0 0] 0]

0 0] 1/12

0 0] 0

0 0] 0

0 0] 0
000 O 0
0 00 112 0
000 O 1/12
000 O 0
0 00 112 0
1 00 O 0
000 O 0
000 O 0
000 O 1/12
000 O 0
010 O 0
000 O 0
000 O 0
000 O 0
000 O 0
001 O 0

O O O O O O

1/12

1/12

O O O O O O

0
0
0
1/12

O O O O O o o o

1/12

o O O O o o

1/12

1/12

o O O O o o

O O O O o o o

1/12

o O O o o

1/12

0

O O O O O O O o o o o

1/12

1/12

0

O OO OO OO0 OoOOoOo

o Fr
~
|_\
N

0
1/12
0
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Theorem 4.5

The information matrix C, (M (17(«))) for a mixture design 7(«) with m=4 ingredients is

given by
bt @ 2 G &G &G &Gy
32 96 96 96 8 8 8
a, 8a, +a, a; & % 0 0 4 & 0
96 32 96 96 8 8 8
LA I e T T T Y
96 96 32 96 8 8 8
LA LA o Byta, 0 % B G
96 96 96 32 8 8 8
% % 0 0 3% O 0 0 0
C=CMum@)=| 3 N
% 0 % 0 0 X% o o 0 o0
8 8 2
% 0 0 % 0 0 % o o o
8 8 2
0 % % 0 0 0 o0 % o
8 8 2
0 % 0 % 0 0 o0 o0 %
8 8 2
0 0 % % o 0 0 o0 o %
8 8 2
Proof

For m=4, the moment matrix for the weighted centroid design 7(«) is given by;



Hop  Hatr Har Hoin Mo Moo Mz Hoin Har Hap Hy Ha1
Hoin Hinnn Honn Mo Huinn Mo Honn Mo Houn Hann Han Ha

Horn Hinnn Monn Mo Miinn Mo Honn Honn Honn Hann Han Mo
Hop  Hain Mo Han Mo Hapo Hoin Har Mo Hon Mo Hag

The fourth order moments are:

e (n,) = jglm ,
ugl(n,-)zuzz(m):%,
ey} = j3r$1j(r;11—)(1§(;n2—) 2)
o) =4~ -2 -3

i*m(m—=1)(m—-2)(m-23)
forj=1,2,...,m.

When m=4 these moments are;

Mz Happo Mo Mo Moy Mz Mo Mo Houn Houn Mo Hon
Hzi HMan Moo Hoin Houn Mo Hon Munn Mo Honn Har Hon
Mz Houn Houn Moo Hoin Mo M Honn Hoin M Mo Hon
Har Happ Man Hon Mo Mz Han Mo Houn Honn Mo M
Moz Mz Mo Han Han My Ha o Han o Hoyn o Han Hyppo Hong
Hon Hoin Honn M Mo HMar Moo Mo Mo Mo Hano Hon
Har Honn M Mo Mo HMar Mo Moo M Honn Mo Hon
Mz Houn My Honn Honn Mo Honn M Moo Mo Han Hon
Mo Hoin Honn M Hann Han Moo Hoin Mo Moz Han Hon

Har  Har Hain Moz Hoin Honn Mg Mo Monn M Han Mo
Hoir Hoin Hiann Mo Honn Har Hoin Moo M Mo Mo Honn

Hour
Ho11

Hon
Houg
M1
Han
Hou1
M
Hoig
Ho1n

Hout
Hoin

1
1y (1) ==, pay () = 1,(7,) =0,  and U1 (1) = p4412(r7,) =0,

4

1
1 (11,) = 0 (17,) = % yand 4,,,(n7,) = t4414(n7,) =0

Mo Hon
Han Hon
Har Hann
Mo Hona
Hon Hun
Mz Hon
Han Hon
My Hon
M Hona
Han Hon
Har Ha
Mo Ha
Han Mo
Haz  Hon
Han Hp
Mz Ha
1
14 (17,) 32

58
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=0.

and ,U211(772)

Thus the moment matrices for the design 7, and », are:

<
O O O O O O O O O o o o o o o U
O O O OO OO o o o o o o o o o
O O O OO OO O o o o o o o o o
O O O OO OO O o0 o o oo o o o
O O O OO OO o o o o o o o o o
<
O O O OO O o o o o U o O O O o
O O O 0O 0O OO o o o o o o o o o
O O O OO OO o o o o o o o o o
O O O OO OO O o0 o o oo o o o
O O O 0O 0O OO o o o o o o o o o
<
o O O O o U O O O OO O o o o o
O O O 0O 0O O o o o o o oo o o o
O O O OO OO o o o o o o o o o
O O O OO OO O o o o o o o o o
O O O OO OO O 0O oo oo o o o
<
”_ O O O O O O O O O o o o o o o
I
~
—
<
N—r
=



and M (7,) =

11 1
32 96 96
11
96 96

1 1
96 96
L 0 0
96

11
96 96
11
96 96

0 0 0
0 0 0
1 5 1
96 96
0 0 0
1 5, 1
96 96
0 0 0
L 0 0
96

0 0 0
0 0 0
L 0 0
96

The fourth moments of the weighted centroid design 7 («) are obtained as

Hq (17(e)) =

a1 (7(@)) = 11y, (n(@)) =

Moy, (17(a)) =0

y11,((@)) =0

96

8a, +a,

32

a,

96

Sl o §l» o

o §lr o lr

o o

o 8l o §» o o

o

o §lr o §|r o

o (@]

o

Sl o §l» o

60
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(K'K)™ K" with K from equation (3.12) is

The matrix L

1000O0O0OO0OO0OOOOOO0OO0OT©O0®O

0 000010O0O0OO0OO0COOO0OGOO

000 O0OO0OOOOOOI1O0GO0OO0OO0OP O

0 000O0O0O0O0O0O0OO0OOOOO0OI1

06 006 000O0O0O0DO0O0OO0OO0OTGO
006 0O00O0OO0OG6GOO0OOOOSOGO

0006 0O00O0O0O0O0O0OSGOOO

0 000O0OO0OOSGGOOS®GGOOOOSOGO
0 000O0OOOOSGOOOOO®GOO

0 000O0O0O0OO0OOOOS®GOOG6O0

L = (KK)?*K'

The information matrices for the designs #, and 7, are obtained as follows:

.. (4.10)

0 00O0O0O
0 00O0O0ODO
000O0O0ODO

0
0

0
1/4 0 0 0 0 0 O

1/4

0
1/4

1/4

0

0

000O0O0ODO
0 00O0O0O|
0 00O0O0O
000O0O0ODO
0 00O0O0ODO
0 00O0O0O

0
0

0
0

0
0
0
0

C (M) =L(M(@p)L =

C, =
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and

C, =C,(M(n,))

1011 1 111454 ¢
32 96 96 96 8 8 8
1011 1145411
9 32 96 9 8 8 8
10111 45145141
96 96 32 96 8 8 8
1111 45451 ,4,11
96 96 96 32 8 8 8
_ ~%éo gooooo
=M@, =
Lo L 9030000
8 8 2
19 0 Y o02000
8 8 2
o ¥ 1 9 000300
8 8 2
o ¥ 0 Y o000 2o
8 8 2
1 1
o 0 - = 00000 = .
s 5 I — (4.12)

From equation (4.10) and equation (4.11) we obtain the information matrix for the design

n(a) as follows

C.(M(n(a))) = ,C(M(1,)) +a,C(M (77,))
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This on simplification becomes

8a, +a, a; a, a, o & & 0 0 0
32 96 96 96 8 8 8
2 Batra, o T T T TG T
96 32 96 96 8 8 8
% 4 Bara, a4 g 4 G
96 96 32 96 8 8 8
o o L T T T S S
96 96 96 32 8 8 8
% % 0 0 3% 0O 0 0 0

C=CM@N)=| 3 N
% 0 ol 0 0o % o 0 o0 0
8 8 2
% 0 0 % 0 0 % o o o
8 8 2
0 % % 0 0 0 0 % o o
8 8 2
0 % 0 % 0 0 o0 o0 % g
8 8 2
0 0 % % 0O 0 0 0 3a,
8 8 2

4.2.4 Information matrix for m> 2 ingredients
For a given value of m>2 ingredients, the matrices C, and C, can be expressed in
terms of m. Also, the matrix C,, which is a linear combination of the matrices C, and

C,, can be expressed in m, «, and «,. Thus we find it a noble task to establish a general
expression for the weight vectors and corresponding optimal values for a given number
of ingredients, m

From equation (3.3), any matrix C < sym(s, H) can be uniquely represented in the form

al, +bU, cV,/+dv,
C=lcv,+dv, el
Y
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With coefficients a,...,g € R. The terms containing V, , W, and W3 only occur for m>3

or m >4, respectively.

In the proof of equation (3.4), any given symmetric matrix C esym(s), can be

partitioned according to the block structure of matrices in H, that is

c,, C.
C oo o (4.14)
C21 C22

m

xm m
With C,; e sym(m),C,, € SR(ZJ and C,, € sym([zj} From equation (3.11), we obtain

for j=1;

ClLl = i Im , C21,1:0 and C22,1:0_
m

and, for j=2;
1 1 1 m(m—1)
C,=—I1,+—7U, C,,==V,and C,,, =———=1 .,
112 8m m 8m(m—1) 2 212 8 1 22,2 [r;])

where Uy, U, and V; are as defined in lemma (3.1).

Thus we have

1
Coml O (4.15)
0 0
% " 8m(ri1—1) ? %Vl’
and C, = 1 m(m—1) (M) | (4.16)
~V, |
8 8 2

From which we obtain

C(a) =a,C, +,C,
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8a, +a, G Qy\
| 8m " 8m(m-1) ° g8 ! 417
- a,, L (4.17)
g 8 "
2

4.3 A-Optimal Weighted Centroid Design

We now derive optimal weighted centroid designs for the average variance criterion, ¢ ,.

We begin by adapting the general equivalence theorem as is given in Pukelsheim (1993).
This theorem provides a necessary and sufficient condition applicable to our specific
problem.

Theorem 4.6

Let « €T, be the weight vector of a weighted centroid design 7(«) which is feasible for
K'@and let () = {j =12, mia; > O)}, be a set of active indices. Furthermore, let
C=C,(M(n(a))) and p e (-o1]. Then n(a) is ¢, —optimal for K'@ in T if and only
if;

=traceC” for all jeod(a)

traceC,C"™* _
<traceCP otherwise

Proof

The two major arguments of the proof are the linearity of the information matrix mapping

depicted by equation (2.8) and the fact that 7(T,,) is the convex hull of the elementary

centroid designs 7,,77,,+++,7,,. From Pukelsheim (1993), 7(a) is ¢, —optimal for K'6

in T if and only if there exists a generalized inverse G of M = M (n7(«x)) satisfying
traceM (7(3))GKCP"K'G’ <traceC” forall BeT .......cccoevvviviiineeiinnn.. (4.18)

With C = (K'K) ' KMK(K'’K) ™, M =K(K'K)™ KM and
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M (77(B)) = KC, (M (n(«)))K", the left-hand side may be written as
traceM (7(3))GKC"K'G’
=trace(K'GMK(K'’K)™)'C, (M (7(8)))(K'GMK(K'K)™)C"™*..... (4.19)
Due to the feasibility of 7(«), we have R(K) =%R(M). Hence K =MZ for some Z and
ul

Now the right-hand side of equation (4.19) simplifies to traceC, (M (7(53)))C"* and

s0 K'GMK(K'K)™ =ZMGMK(K'K)™* =ZMK(K'K)™ =1

equation (4.18) turns into traceC, (M (17(3)))C"™* <traceC” forall S eT, .

According to equation (3.10), we can write the left-hand side as

pBtraceC ,C* . Giving traceC,C"* <traceC” forall 1< j<m.
j=1

Finally, equality must hold for any j € o(«x) *

In addition, the following theorem guarantees that, the weighted centroid designs with
first and second weight positive are unique.

Theorem 4.7
Let p e (—xl)and ;(a) with a €T be a weighted centroid design that is ¢, —optimal
for K'@ in T. Then the following assertions hold:

i. If O(a)={1,2}, then there is no further design z €T thatis ¢, —optimal for

K'@ in T, thatis, n(«) is the unique solution of problem (3.7).

i. If o(a)={,23}, then there is no further exchangeable design 7 T that is

¢, —optimal for K'@ inT.
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If there is a non-exchangeable design which is ¢, —optimal for K'6, then all its

support points are centroids of depths 1, 2 or 3. (Klein 2004)=

We begin investigating A-optimal designs for a mixture experiment with two ingredients.

4.3.1 A-Optimal design for m=2 ingredients

Theorem 4.8

In the second-degree Kronecker model for mixture experiments with two ingredients, the
unique A-optimal design for K'@is

n(a™) =an, +a,m, = (5-25)n, + (~4+2/5)1,.

The maximum of the A-criterion for m=2 ingredients is

3(~20 +9+/5)

V(¢—1) = ( \/g

] =0.16718427.

Proof
From theorem (4.6), putting p=-1, it implies that n(«) is ¢, —optimal forK'é in T if
and only if tracC,C(a)™ =traceC(a)™ forall je{LZ}...cccoovvviiviiiirininn, (4.20)

The inverse of the information matrix provided in theorem (4.1) is as follows;

2 5
o, a,
. 2 -1
[CM@)]=| 0 P o R (4.21)
1 1
-1 -1 4a,+a,

a, o o,
Now

[CM (7(e)))]* =[C(M(()))"T* =[C(e)] *, gives
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5 1 —(4a, +3a,)
0‘12 alz alzaz
— (4
C@l?=| = > “War3a) (4.22)
a; a, o a,
—(4a, +3at,) —(4a, +3a,) 16a’ +8a,a, +3a}

0512052 alzaz alzazz
For j=1, traceC,C(M (n())) ™ =traceC(M (n(x)))".
From equations (4.2) and (4.22), we have

5 1 —(4a, +3a,)

20 2ot 20} a,
— (4
C.[C(a)] = 12 52 ( a12+3a2)
20, 2a 20, a,
0 0 0
hence, traceC,[C(a)]™* = 52 + 52 +0= iz
20 20 oy
From equation (4.21),
trace[C(a)] = 2 + -2 4 2t 4oy +d5a, (4.23)
o o0 a,a, oaa,

Thus, traceC,C(M (i7(x))) = traceC (M (17(c))) ™, implies that

5 4a,+5 . .
= = 2% 9% trom which we obtain
a, o,

a} —10a, +5 =0, after utilizing the fact that ¢, +c, =1. Which upon solving gives

a1=5+2\/§ or a1:5—2\/§.

But since «, e (0,1), then it implies that, o, =5—2+/5.

Similarly, for j=2, equation (4.3) and (4.22) gives,
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-1 -1 4o +a,
2o, 20,0, 2005
- 1 -1 4o +a
C,IC()]” = -
20000, 2040, 200,
-1 -1 4o +a,
0, oo, a,a;
- - 4
traceC,[C(a)]* = 1, 1 +20’2 - iz
2000, 2,0, o, a,

Thus, traceC,C(M (17(c))) =traceC (M (n(x))) ™, implies that

4 4o, +5 . .
= =2 T2%  from which we obtain,
a, o,

5ar +4a,or, —4a, = 0. Substituting o, =1—a,, yields
a’ +8a, —4 =0, which upon solving gives

a, =—4+2/5 or a, =—4—-2.5.

But since r, € (0,1), then it implies that «, = —4+245.

Thus for m=2 ingredients, we have o, =5— 24/5 and o, =—4+ 245.

From Pukelsheim (1993), the average-variance criterion, is given by;

1 N\ m+1
v(¢_1)=(gtraceC(a) 1) , Where s:( 5 )

A
For m=2, we havev(g_,) = (%tracec () 1j :

From equation (4.23), we have, trace[C(a)] ™" = foy +5a; _ V5 :
a.Q, —-20+ 9\/§

Thus the optimal value becomes,
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=0.16718427 =

4o, +5a, ]l _ 3(-20+94/5)

1 2
v(¢_l):(§traceC(a) j _( NG

3o,

4.3.2 A-Optimal design for m=3 ingredients

Theorem 4.9

In the second-degree Kronecker model for mixture experiments with three ingredients,

the unique A-optimal design for K'@ is

38-4+/38 —-16+4+/38
T+ yre
22 22

77(05A) =apn ta,n, = (

The maximum of the A-criterion for m=3 ingredients is

25.82882991

-1
5 j =0.23229856.

)~
Proof
From theorem (4.6), putting p=-1, it implies that n(«) is ¢, —optimal forK'@ in T if
and only if

trace C,C(a) ™ =traceC(a) ™ forall jefL 2} ..coevreiiiriiiiiieieiieeene, (4.24)

The inverse of the information matrix provided in theorem (4.3) is as follows
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3 0 0 -1 -1 0
a, 20, 20,
0 3 0 -1 0 -1
a, 20, 20,
0 0 3 0 2__1 2__1
a o, o, a,
[CM ()] = 11, Sata 1 P FS— (4.25)
20, 2a 6a,, 12¢, 12¢,
-1 0 -1 1 8a, +a, 1
20, 20, 12c 6, 12¢,
0 -1 -1 1 1 8a, +a,
20, 20y 120 12¢, 6o,
Now
[C(M ()] =[C(m((e)) 'T* =[C(e)] *, gives
a b b c c d
b a b c d c
b b a d c c
() 2 = 4.26
[C(a)] c c d e f f (4.26)
c d c f e f
d c ¢ f f e
Where;
_ _ _ 2 2
. 192,b: 12, _ 39a2216al’d: 121e:74a2+4(82112+a2) and
20, 4o 24a 12a; 144 a;
§ o Mo, + 320,
1440 a,

For j=1, traceC,C(M (17(cx))) ? = traceC (M (r7(«))) .

From equation (4.6) and (4.26) we have
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19 1 1 -39, -16a, -39, -16¢, -1
6 12a) 120} 72a}a, 720} a, 36a;
1 19 1 —39¢, —16¢c, -1 —39¢, —16a,
120 60 120 72dla, 36, 72dla,
CC(a)*=|_1 1 19 -1 -39, -16a, -39, -16a,
1207 12!  6a 360, 720l a, 72dla,
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Hence traceC,[C(a)]* = 192 + 192 + 192 +0+0+0= 192
6o, 6a; 6a; 20

From equation (4.25) ,

trace[C(a)] " = 3(% . 3(8“1 i) j _8 42, L

o, 6oy, 204,

Thus, traceC,C(M (17(«x))) ? = traceC (M (i7(«))) ™, implies that

19 8«
20

+19a, , from which we obtain
204,

11e} —38a, +19 =0, after utilizing the fact that o, =1—
which upon solving gives

38+ 4+/38 38— 4+/38
al:T or ==

38-44/38

But since ¢, €(0,1), we have, «, = 2

Similarly, for j=2, we have, from equation (4.7) and equation (4.26),




-1 -1 -1 16, +3c, 160, +3a, 1
b, 12, 12, 12040} 2a,a} 36,
-1 -1 -1 16¢, +3a, 1 16, + 3a,
Lo, 6baa, L2aa, T2aa; 36, 2a,a?
-1 -1 -1 1 16, +3a, 160, +3a,
2 2
C,IC()]? = 12?11052 12?110:2 60((1)052 83’02ai02{22 720:5L1052 720;1052
2, 204, a0 120, 120,
-1 0 -1 1 8a, +a, 1
204, 2o,a, 12¢0,cr, 6,0l 120,
0 -1 -1 1 1 8a, + a,
2000, 2040, 12¢,cr, 12¢,cx, 6,0t
traceC,[C(a)]” = 3[ -1 J + 3(8“1—+0;2J = iz
6, 6, a,

Thus, traceC,C(M (17(c))) =traceC (M (n(x))) ™", implies that

4 8 +19; om which we obtain,

2
a, 204,

1105 +16a, —8=0 after substitutinge;, =1-«a, .

Which upon solving gives

~16+4+/38 ~16-4/38
Qy=——— Of Oy =
22 22
But since a, € (0,1), we have, a, = w
Thus for m=3 ingredients, we have ¢, = w =0.6064701081
and a, = w = 0.393529818

From Pukelsheim (1993), the average-variance criterion, is given by;

73
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1 A\ m+1
V() :(gtracec () 1) , Where s :( 5 j

1
For m=3, we havev(g_,) = (%tracec (a)l) :

Substituting the values of ¢, and «, obtained above in equation (4.27), we have,

8a, +19¢,

trace[C(a)] ™" = = 25.82882991.

(24127

Thus the optimal value becomes,

- (25.82882991

v(d.,) =(%tracec (a)lj = 5 j_ =0.23229856 =

4.3.3 A-Optimal design for m=4 ingredients

Theorem 4.10

In the second-degree Kronecker model for mixture experiments with four ingredients, the
unique A-optimal design for K'@is

n(a™) = an, +a,n, =0.6689537487, +0.33104625177, .

The maximum of the A-criterion for m=4 ingredients is

V(g)=——0 0273979051,
36.49914091

Proof

From theorem (4.6), putting p=-1, then 7(«) is ¢, —optimal forK'@ in T if and only if

tracC ;C(ar)* =traceC(a) ™ forall jefLZ . .ccoooviriririiiiaiieieieie, (4.28)
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The inverse of the information matrix provided in theorem (4.5) is as follows

[CM ()] =
4 0 0 0 -1 -1 -1 0 0 0
o, 3o, 3, 3o,
0 4 0 0 -1 0 0 -1 -1 0
a, 3a, 3a, 3a,
0 0 4 0 0 -1 0 -1 0 -1
o, 3, 3a, 3,
0 0 0 4 0 0 -1 0 -1 -1
o, 3, 3, 3,
-1 -1 0 0 120, + 1 1 1 1 0
3o, 3oy 18a,0, 36a, 36, 36a, 36a,
= 0 -1 0 1 120, + 1 1 0 1
3o, 3, 36a, 18a 2, 36, 36a, 36a,
-1 0 0 -1 1 1 12a, +a, 0 1 1
3o, 3a, 36a, 36a, 18a,cr, 36a, 36a,
0 -1 -1 0 1 1 0 120, + 1 1
3a, 3a, 36, 36a, 18a,a, 36, 36a,
0 -1 0 =3 1 0 1 1 120, + a, 1
3, 3o, 36a, 36, 36a, 18a,c, 36a,
0 0 -1 -1 0 1 1 1 1 12a, +a,
3a, 3oy 36a, 36a, 36¢, 36a, 18a,cx,
.................................................................................................. (4.29)
Now

[C(M ()] = [C(m((ex))) 1" =[C(e)] *, gives

a b b b c ccddd
b ab b c ddoc c d
b bab dc dc dc
b b baddocdocc
" c cdd e f f f f ¢
[C(a)]° = codocod foe f f g f| e (4.30)
c ddoc f f e g f f
d ¢ccd f f g e f f
d ¢cdc f g f f e f
d dccg f f f f e




Where;

a2 1 (et 12a) -1 37al + 2] +12aa,
3a?’ 9’ S4ala, ’ 540’ 1620 a} ’
f 75a, +21405l dg= :
648¢c; a, 3240,

For j=1, traceC,C(M (n())) > =traceC(M (n(x)))".

From equation (4.10 ) and (4.30) we have

a bbb ccocddd
4 4 4 4 4 4 4 4 4 4
b abbcddcocd
4 4 4 4 4 4 4 4 4 4
bbabdecdcde
4 4 4 4 4 4 4 4 4 4
b 'bbaddecdecc
ClC(@)]?=|4 4 4 4 4 4 4 4 4 4
0 0 00O O 0 O O0°@O
0 0000 O 0 0O O0O
0 0000 0 0 0 0O
0 0 00O O 0 O0OO0OTDO
0 0 00O O 0 0O O0°O
0 0000 O 0 0 O0°@O
L, a a a a 49
Hence, traceC [C(a)] " =—+—+—+—+0+0+0+0=a=——;
4 4 4 4 3,
From equation (4.29),
trace[C(a)] ' =4 AN 6 Lo +a,) | ey +8a,
o, 18¢,cr, 3oy,

Thus, traceC,C(M (17(x))) ? = traceC (M (i7(«))) *, implies that

492 = 120, +49a, , from which we obtain
3o 3oy,

37a +98a, —49 =0, after utilizing the fact that o, +a, =1.
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Which upon solving gives

o, =1.9796949 or o, =0.668953748.
But since o, €(0,1), we have, o, =0.668953748 .

Similarly, for j=2, from equation (4.11) and (4.30) we have,

a b bboc cc ddd
b abboc ddc c d
b babdocdocdec
b bbaddocdocc
clc@i=| s Y
e f f g f
k I I k f f e g f f
Il kK k I f f g e f f
Il kK I k f g f f e f
I I k k g f f f f e
Where; a= -1 . b= -1 , :6“1—+“§, _ 1 , :12051“52,
120, 36, 108¢,¢, 216a,cx, 18a,cx;
fo— bt g0, k=e—2 andl=o0.
36, 3,

traceC,[C(a)]” =4 —1 +6 12a, +0;2 :iz, using o, =1-a,.
12¢,cx, 18, x5 a;

Thus, traceC,C(M (77(«x))) 2 = traceC (M (17(cx))) *, implies that

iz _ 120, +49a, , from which we obtain,
a; 3oy,

37a’ +24a, —12 =0 after substituting e, =1—ax, .
Solving this equation we obtain
a, =—0.9796949 or «, =0.331046251.

But since o, €(0,1), we have, r, =0.331046251.
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Thus for m=4 ingredients, we have ¢, =0.668953748 and «, = 0.331046251

From Pukelsheim (1993), the average-variance criterion, is given by;

1 A\ m+1
v(¢_1)=(gtraceC(a) 1) , Where s:( ) J

-1
For m=4, we havev(¢,) = (%tracec (a)‘lj :

From equation (4.27), we havetraceC[C(a)]™" = 120y +49a, =36.49914091,
&,
Thus the optimal value becomes,
1 LY 10
v(¢,) =| —traceC(x) =——————=0.273979051=
10 36.49914091

4.3.4 A-Optimal design for m>2 ingredients

Theorem 4.11
In the second-degree Kronecker model for mixture experiments with m > 2 ingredients,

the unique A-optimal design for K'6 is

77(05A) =i, t+ A,y

~ m®—m? +1) - 2dm* —2m* + m’ + m-1 +—4(m—1)+2\/m4—2m3+m2+m—1
(m® —m? —4m+5) ' m® —m?-4m+5

7,

The maximum of the A-criterion for m ingredients is

V(¢_1)={ 2(m* —m* —-4m+5) } .

m(m +1)l(m4 —2m® +5m? —7m +3) — 4(m -1)Vm* —2m® + m® + m —1J
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Proof

Let o = (e, ,,0,...,0)" €T, be a weight vector with 6(«) ={1,2} and suppose () is
A-optimal for K'@ inT. Let C(a) =C, (M (n7())).

Theorem (4.6) implies that

_ -1 i
trace(C,C 2)~ raee(C(@) 3 e e T (4.32)
<trace(C(a)™) otherwise

We now compute for the optimality candidates, «, and «, in (0,1) as follows.
An inverse of a matrix in sym(s,H) can be computed by solving a system of linear
equations. By the same approach we obtain the blocks of C(c) " as obtained in equation

(4.16) in the partitioning suggested by lemma (3.1), namely

m ) ﬁvl'
-1 al m-— al
C(a) = _1 V 2[4(m _1)a1 + az] I N 1 .................. (4.33)

1 ——W,
(m-1)e, m(m-1)2a,a, [2j m(m-1)2e,

We can now obtain C(a) as

C@)* =[C(@) ' -

mz(m—1)+1| N Y _[8(m—1)a1+[m2(m+1)2—m]az}/,_ 2 ,
m-Da? " (m-1%)a? ° mm-1)°a2a, Y omm-1)tal
8(m-Da, +[m*(m+1)>-mla, |, A3AM-1’a; +16(M-Daya, +(M*(M+1)* +2m)a;]
B mm-1)°a’a, }/1 m*(m-1)*eja; [Zj
_%Vz +16(m—1)a1+[m2(m—1)2+m+2]a2W2+ 4 3
m(m-1)°a; m*(m-1)*a’a, m*(m-1)*a?

We now compute for the optimality candidates, ¢, and «, in (0,1) as follows.

For j =1, we have traceC,C(a)? =traceC(a)™



Now from equations (4.15) and (4.34) we have

_(S(m ~1)a, +[m?(M+1)% —m]e,

m'm-+1 1 m*(m-1)°aa,
CC@)” = mm-DaZ " mm-12a ° 2 v
m*(m-1)°a}
0 0
Hence
2 a—
traceC,C(a)* =trace m-(m 1)+21|m+ L — Y,
m(m-1a; m(m-1)° e,

2 —_—
_m (m 1)Jrzltrace(lm)+%trace(uz)
m(m-1)a; m(m—-1)° e,
2 —
=m(m—1)2+1 , since trace(l,) =m and trace(U,) =0.
(m-De;

From equation (4.33) we have

a,

trace(C(a)™) = trace(m |mJ . trace( Adm-Ney+a,], 1 Wz}

_4(m-De, +[m*(Mm-1) + 1],
- (M-,

trace (W,)=0
Thus,
traceC,C(a)? =traceC (c) 2, implies that

m?’(m-1)+1  4(m-Da,
(m —1)0512 - (mM-Daa,

, since trace[l (

m(m-1)2a,e, [';] m(m—-1)2,

m
2

_ m(m-1) and
j 2

2 —
+[m°(m -1+, , from which we obtain

4m-Daf +[m*(m-1) + ey, —[M*(M-1) + 1> =0

or (m* —m? —4m+5)a —2(m* +m* +1) o, + (M* —m* +1) =0, since a, =1—a,.
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)vl,




this upon solving gives

o= (m* —m? +1) —2Jm* —2m* +m® + m -1
=

(m® —m® —4m +5)

Similarly, from equations (4.16) and (4.34) we have
CZC(a)_Z =

8(m-Yeo, + me, ,,,
2 3 2 1 +
-1 | 1 m*(m-1)° o,
m(m-Da,a, "

2 :
-———F U
mm-D’aa, °

m*(m-1°a,, °

I Y
(m-Ya,e,
8(m-De, +ma,,,, 2 ,
mz(m—1)3a1a22 ! mz(m—l)3a1a2 ? A4(m-Dea, +a,] 1 "
) 1y, m(m-1)’ o, ("2‘] m(m-1)°afa, -
(m —1)0{1062
Hence
4(m -, +a,]
2 1 1 m(m-1)’a,0l (2]
traceC,C(a) “ =trace I, - 5 U, |+trace
m(m-Ye,«a, m(m-1) e, 1
+ ﬁwz
m(m-1)°e; a,
m(m-1) .
buttrace(l,,) =m, traceU,) =0, trace(l(m]) = and trace(W,) =0. Giving
2
L 4
traceC,C(a) " =—.
,

Thus

traceC,C(ar) ? =traceC () ?, implies that

4  Am-Da, +[m*(m-1) + 1o : -
— = 1 2 from which we obtain
a, (m-Daa,

[m*(m-1) +1a? + 4Mm-Deyar, + 4M -1y, =0
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or (m* —m? —4m+5)a? +8(m-1a, —4(m-1)=0, using o, =1-a,.

This upon solving gives

o - —4m-1) +2Jm* —2m® + m2 + m -1
? m®—m?—4m+5 '

Thus for m ingredients, we have the unique solution in (0, 1) as the weight vector given

in the theorem as

C(mP-m?+D)-2Vm* —2m® +m? +m-1

— and
(m*—=m*“—-4m+5)

1

o - —4m-1) +2JVm* —2m® + m2 + m -1
? m®—m?—4m+5 '

By construction, the weight vector o™ =(a,"”,,",0,...,0)" satisfies the two
equations in condition in theorem (4.7).
Therefore, (‘™) is indeed A-optimal for K'6 in T.

To obtain the optimal value for m factors, we adapt the definition of Average-variance

criterion as provided in Pukelsheim (1993). That is

1 A\ m+1
v(¢1):(gtraceC(a) 1) , Where s=[ , ]

-1

m(m +1) traceC (a) 1) :

For m-factors, we have v(¢ ) :[

4(m-1a, +[m*(m-1) +1]e,

From equation, (4.33), trace(C(a)™) = -1
—Haa,

3_m2 _ 4 53 2 _
Substituting for the values of «, = (m”—m” +1) 3 NT 2m”+m’+m-1 and
(m”—m“—-4m+5)
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_ —4m-1)+2Jm* —2m* +m’ + m-1
m® —m? —4m+5

2 , we obtain

(m* —m? —4m+5)°
(m* —2m® +5m? — 7m +3) — 4(m —DVm* —2m? + m* +m -1

trace(C(a) ™) =

Hence the optimal value becomes

V(d,) = mtrace C(a)*
2 n
:{ 2(m* —m? —4m +5)° }1

m(m +1)[(m4 —2m® +5m2 —7m+3) —4m-1vm* —2m® +m? + m —1J

4.4 D-Optimal Weighted Centroid Design

This section contains the derivation of optimal weighted centroid design for the

determinant criterion, ¢, .

4.4.1 D-optimal design for m = 2 ingredients
Theorem 4.12
In the second-degree Kronecker model for mixture experiments with two ingredients, the

unique D-optimal design for K'@ is

2 1
U(a(D)) =iy + a0, 25771 +§772-

1
The maximum of the D-criterion for m=2 factors is v(¢,) = [ﬁy =0.20998684 .
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Proof
From theorem (4.6), we have thenn () is ¢, —optimal for K'@ in T if and only if

=traceC® for all jed(a)

. <traceC® otherwise

traceC,C ”‘1{
Putting, p =0, we have that () is ¢, —optimal for K'@ in T if and only if
-1 0 .
traceC,C(a)~ =traceC(a)” =tracel for all je{l2}.

The inverse of the matrix C(«) is given in equation (4.21).

From equations (4.2) and (4.21), we have;

1 0 -1

o, 20,
CC(a)™=| 0 e

a, 2a

0 O 0
Hence
traceC,C(a) ™" = 1.1 0= 2 and tracel =3.

a o a,

Thus

trace C,C(a) " =tracel , implies that

2
a1=§.



Also from equations (4.3) and (4.21), we have

00 -

2at,

C,C(e)*=|0 0 L
2a,

00 1

a,

Now

traceC,C(a)™ = 1
a,

Thus
traceC,C(a) " =tracel , implies that

1
a, =—.

Thus for m=2 ingredients we have o, :g and «, :% as provided in the theorem.

From Pukelsheim (1993), the determinant criterion is obtained as

V(4,) = (det[C()])s , where, s = [mgl) |

For m=2, we have v(4,) = (det[C(a)])s

From theorem (4.6), the information matrix for the design with two factors is

[ 8a, +a, a, ﬁ_
16 o 16 8
o o, +a, «
C(a) =Cx (M (n(a))) = ﬁ # ?2-
% 4L %
. 8 8 4 |
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Substituting for the values of o, = % and «a, :% we get

Cle)=| = —

Det[C ()] = ﬁ .

1
. 1
Hence the optimal value becomes v(g,) = (det[C(a)])s = [%)3 =0.20998684 .

4.4.2 D-optimal design for m=3ingredients

Theorem 4.13
In the second-degree Kronecker model for mixture experiments with three ingredients,

the unique D-optimal design for K'@ is

1 1
77(0‘(0)) =y T a,n, = 5771 +§772-

1

The maximum of the D-criterion for m=3 factors is v(g,) = (Zije =0.25.

12

Proof

From theorem (4.6), we have thenn(«) is ¢, —optimal for K'@ in T if and only if

=traceC? for all jed(a)

traceC,C*™ _
<traceC"® otherwise

Putting p =0, we have that n(«) is ¢, —optimal for K'@ in T if and only if

traceC,C(a) ™ =traceC(a)" =tracel ~ for all  je{1,2}.



The inverse of the matrix C(«) is given in equation (4.25).

From equations (4.6) and (4.25), we have;

1 0 0 -1 -1 0
a, 6a, 6o,
0 1 0 -1 0 -1
a, 6, 6c,
CCa)'=|g o L o =t =1
a, 6o, 6,
0O 0 0 O 0 0
0O 0 0 O 0 0
0O 0 0 O 0 0
Hence
traceC,C(a)™ = 1 + 1 + £l +0= 3 and trace(l) =6.
a o o oy
Thus

traceC,C(a) ™ =trace(l), implies that
ool
1 2 '

Also for equations (4.7) and (4.25), we have

0 00 SN 0
6a, 6a,

000 = o L

6a, 6a,

000 O 61 6i

C,C(a)™ = L @2 0%

000 — 0 0

a,

000 O £l 0
a,

000 O 0 1

a,




88

Now

traceC,C(a)™ = 3
o,
Thus traceC,C(a) ™ =tracel , implies that
.
2 2 '
Thus for m=3 ingredients we have o, :% and «a, :% as provided in the theorem.

From Pukelsheim (1993), the determinant criterion is obtained as

V(d,) = (detC(a))é , where, s = [m;l} :

For m =3, we have v(g,) = (detC(a))%.

From theorem (4.3), the information matrix for the design with three factors is

8oy +a, o % % X
24 48 48 8 8
% Bauta, a4 @ g &
48 24 48 8 8
% % Bamta, a4 @
C.=CM(@)=| 8 48 4, 8 8
-z -z 0 =2 0 0
8 8 4
% 0 % 0 3%
8 8 4
0 % % 0 g 3
8 8 4

_— 1 1
Substituting for the values of «, = > and o, = 5 we get
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2 11 11
48 96 9 16 16
19 1 1 41
9% 48 96 16 16
11 9 45 11
Cla)=|% % 48 16 16
= = 20
16 16 8
1 _o§0
16 16 8
o £ L o o 3
16 16 8

Det[C(a)] = %

1
Hence the optimal value becomes, v(¢,) = (det[C(a)])% = (%)6 =0.25.

4.4.3 D-optimal design for m =4 ingredients

Theorem 4.14

In the second-degree Kronecker model for mixture experiments with four ingredients, the

unique D-optimal design for K'@ is

2 3
77(05(D)) = a7y + a1, =gf71 +g772-

9Gl

10
The maximum of the D-criterion for m=4 factors is v(¢,) = (WJ =0.373719282.

Proof

From theorem (4.6), we have thenn () is ¢, —optimal for K'@ in T if and only if

=traceC? for all jed(a)

J

traceC .C"™* _
<traceCP otherwise



Putting p =0, we have that r(e) is ¢, —optimal for K'0 in T if and only if
traceC,C(a) ™" =traceC(a)° =tracel for all je{1,2}

The inverse of the matrix C(«) is given in equation (4.29).

From equations (4.10) and (4.29), we have;

1 0 0 0 — 1 -1 - 0 0 0
a, 120, 120, 12c,
0 1 0 0 — 1 0 0 -1 -1 0
a, 12¢, 12a, 12«
0 0 1 0 0 -1 0 -1 0 -1
o, 12¢, 12¢, 12¢,
4 |0 0 0 R o —* o =t -1
CCla)™ = a, 12a, 12, 12a,
0 0 0 0 O 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0
Hence
traceC,C(a)™ = 1 +i +i +i +0= 4 and trace(l) =10.
o o o o0 o,
Thus

traceC,C(a) " =trace(l), implies that

2
(leg.



Also for equations (4.11) and (4.29), we have

0 00O 1 1 1 0 0 0
12a, 12a, 12a,
0 000 L 0 0 L 1 0
12a, 12, 12«,
0 000 L 0 L 0 L
12c, 12¢, 12¢,
000O0 O 1 0 1 1
12¢, 12a, 12c,
0 000 1 0 0 0 0 0
C,Cla)™ = “ 1
000O0 O — 0 0 0 0
a,
1
000O0 O 0 — 0 0 0
a,
1
0 00O O 0 0 — 0 0
o,
1
000O0 O 0 0 0 — 0
a,
1
000O0 O 0 0 0 0 —
a,
Now

traceC,C(a)™ =0+ 6[iJ _5
a, a,

Thus

traceC,C(a) " =tracel , implies that

3
a, Zg.

Thus for m=4 ingredients we have o, =§ and «a, :g as provided in the theorem.



From Pukelsheim (1993), the determinant criterion is obtained as

v(4,) = (det C(a))s, where s (mglJ |

1
For m=4, we have v(¢g,) = (det C(c) )zo.

From theorem (4.5), the information matrix for the design with four factors is

32 96 96 96 8 8
% Sytra, % % %
96 32 96 96 8 8
% % Syta, % 5 %
96 96 32 96 8 8
o o o 8ata, 0 %
96 96 96 32
% % 0 0 SO 0
8 8 2
Cla) =
(@) 23 0 % 0 0 32, 0
8 8 2
%, 0 0 %, 0 0 Bi
8
0 %, %, 0 0 3a,
8 8
0 % 0 % 0 0 0
8 8
0 % % 0O 0 0 0
8 8




Substituting for the values of o,

19 1 1 1
160 160 160 160
1 19 1 1
160 160 160 160
1 1 19 1
160 160 160 160
1 1 1 19
160 160 160 160
3 3
w0 a0 °
Cla) =
3 9 32 9
40 40
3, , 3
40 40
o 2 3 9
40 40
o 3 o 2
40 40
o o 3 3
40 40

Det[C(a)] = 1% .

1
Hence the optimal value becomes, v(g,) = (det C(a) )i = (1

2 3
=— and a, = — we get
5 2 =g Wed

3
40

0
3
4

o

0

4.4.4 D-optimal design for m> 2ingredients
We now derive the general expressions giving the optimality candidates in (0,1) and the

optimal value for the D-criterion.

Theorem 4.15

N IN
o 8lw o Blw o

o

96

010

1

10
] =0.373719282.
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In the second order Kronecker model for mixture experiments with m> 2 ingredients,

the unique D-optimal design for K'@ is
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2 +m—1
mr1 ™ it

77(05(D)) =, T a0, = 75 -

The maximum of the D-criterion for m factors is

2
m(m+1)

m

m(m—l)z}@{ 2

8(m+1) m(m+1)

V(¢o) = |:

Proof
From theorem (4.7), the proposed optimal design is unique. We start by first deriving the

optimality candidate.

Let a =(,,,0,...,0)" €T, be aweight vector with d(«) ={1,2}and suppose 7(x) is
D-optimal for K'9 in T. Let C(a) =C, (M(n7(r))) .

Theorem (4.6) implies that

=trace(C(a)?) for je{12}

trace(C,C™) . _
<trace(C(a)”) otherwise

after substituting for p=0.

From lemma (3.1), any matrix C e sym(s,H) can be uniquely represented in the form
al, +bU, cV,+dv,
C=|cv,+dv, el . +fW,+gW,
Y
With coefficients; a,...,g € R. The terms containing V. , W, and W3 only occur for
m >3 or m=>4, respectively.
In the proof of lemma (3.1), any given symmetric matrix C € sym(s), can be

partitioned according to the block structure of matrices in H, that is



C — (Cll Cél]
C21 C22
- (2} m
with C,; e sym(m),C,, e R and C,, € sym 5|

For j=1, we have
traceC,C(a) " =traceC(a)°® =trace(l)

Now from equations (4.15) and (4.33), we obtain

i| —_1 '
CC@)'=|ag, " mm-1a, *
0 0

Hence, trace(C,C(a)™) = trace(i ImJ = since trace(l,,) =m.
o, o,

m+1
Also for m factors, trace(l,) = m(rr;+1) , Where s :( 5 J

Thus traceC,C(ar) ™ =traceC(a)® =trace(l) , implies that

m_ m(m +1)

o, 2

From this we get o, = ——.
m+1

Similarly, from equations (4.16) and (4.33), we obtain

m(mll) Vi
C,Cla)" = ;1 “ |

@ (1)

Hence

95
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_ m(m-1)

) 2a,

trace(C,C(a)™) =trace 1 N
@ (3]
Thus, traceC,C(a) ™" =traceC(a)° =trace(l), implies that

mm=1) _ MM+ pi gives, a, = —m_i
m+

2at,

Thus for m factors, we have the unique solution in (0, 1) as the weight vector given in

2 m-1
the theorem when o, =—— and o, = ——.
m+1 m+1

Secondly, we verify the D-optimality.

From equation (4.17), the information matrix for a design with m factors is given as

8a, + a, L% 23VY.
8m " 8m(m-1) ° g
Cla) = @, m(m-1a, |
8 ! 8 (7]

Substituting the values of «, = 2 and a, = m—_i , We get
m+

m+1
m+15 | 4 1 U m-1 _,,
8m(m+1) " 8m(m+1) >  8(m+1) *
Cla)= m-1 m(m —1)?
8(m+1) 8(m+1) (";j
Now
det(C(a)) = m(m-1)* (2] 2 T
8(m+1) m(m+1) |

From Pukelsheim (1993), the determinant criterion is obtained as

V(d,) = (detC(a))é , where, s = [m;l} :
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Hence the optimal value becomes

m

m(ml)TEZj{ 2

8(m+1) m(m+1)

m(m-+1)

V(#) = (det(C (e) i) = {

4.5 E-Optimal Weighted Centroid Design
This section contains the derivation and calculation of optimal weighted centroid designs

for the smallest eigenvalue criterion, ¢__, that is, E-optimality criteria. We need to adopt

two theorems in Pukelsheim (1993), which specifically focuses on E-optimality.
Theorem 4.16
Assume the set M of competing moment matrices and convex, and intersects the

feasibility cone A(c) . Then a competing moment matrix M € M is optimal for c’é in

M if and only if M lies in the feasibility cone A(c) and there exists a generalized

inverse G of M such that c'GAGc<c'M ¢ for all AcM-~

Theorem 4.17

Let o €T, be the weight vector for a weighted centroid design, 7(«) which is feasible

for K'0 and let o(ax) be the set of active indices, (0(a) ={j =1..,m:a; >0}).

Furthermore, let C =C, (M (7(«))) and p € (—,1] . Then the following assertions hold
Q) The weighted centroid design 7(«) is E-optimal for K'@ in T if and only if

there is a matrix E e sym(s, H) m NND(s) satisfying

=4, (C) for all jed(a)

traceE =1 and traceC .E )
" l< 4,4, (C) otherwise

where 4. (C), denotes the smallest eigenvalue of C.

min
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(i)  Suppose n(«x)is E-optimal for K'¢ in T and E is a matrix satisfying the
optimality condition for 7(«) given in (i). furthermore, let 7(3) be a further

weighted design which is E-optimal for K'@ in T. then the information matrix

C =C,(M(n(B))), satisfies

CK=4_ (C)E=

min
The following theorem dictates on the choice of the matrix E of theorem (4.17) above.
Theorem 4.18

Let M € M be a competing moment matrix that is feasible for K'@ and let +z € R°be an

eigenvector corresponding to the smallest eigenvalue of the information matrix, C, (M).

!

Then, M is ¢, —optimal for K'¢ in M and the matrix E = 2

” ” satisfies the normality
z

2

inequality of theorem (4.17) if and only if M is optimal for z’K’@ inM . If the smallest

eigenvalue of C, (M) has multiplicity 1, then M is ¢, —optimal for K'¢ in M if and

only if M is optimal for z’K'€@ in M .
Proof

We show that the normality inequality of theorem (4.17) for ¢__ —optimality coincides

!

with that of theorem (4.16) for scalar optimality. With E = ﬁ the normality inequality
z

of theorem (4.17) reads;

2
2'’K'G'AGKz < L ,forall AeM .
ﬂ’min (Ck(M))

The normality inequality of theorem (4.16) is

c'G'AGc<c'M ¢ forall AeM
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With ¢ = Kz, the two left hand sides are the same. So are the right hand sides, because of

2
cM c=zKM Kz=zC'z= L
ﬂ“min (Ck(M))

If the smallest eigenvalue of C, (M) has multiplicity 1, then the only choice for E is

!

2z
|2

Therefore in obtaining optimal designs for E-ctriterion, we need to obtain smallest

eigenvalue and its corresponding eigenvector, of the information matrix for the weighted
centroid design. We proceed as follows:
From equation (3.4), the information matrices involved in our designs can be uniquely

partitioned as

C,, C.
C= (C” cﬂj ..................................................................... (4.35)
21 22
For A e, let

C11 _/1U1 C;l
C-Al, = e sym(s,H).
C21 sz _ﬂ’wl

Then the characteristic polynomial can be written as

7.(A) =det(C - Al,) = det(C,, — Al ) det[(C,, — AW,) —C,,(C,, —AU,) "C.]...... (4.36)
Where the matrix (C,, — AW,) —C,,(C,, — AU,)*C}, is the schur complement of
C,, — AU, and lies in the spar{W, W, W,}(as shown in corollary (2.1)).

The roots of this polynomial are the eigenvalues of the information matrix C and are

computed as follows:
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Lemma 4.2

Let a,---,g € R be the coefficients of the matrix C e sym(s,H), as given in lemma(3.1)

with d, f and g occurring only when m > 3o0r m > 4 respectively.

Furthermore, define

Dlz{a+(m—1)b—e—2(m—2)f—(mz_zjg} +2m-D2c + (m-2)d]

.......... (4.37)
D, =[a-b-e-(m-4)f+(m-Dgf +4m-2)c-d)* .. (4.38)
Then, in the case m > 4, the matrix C has eigenvalues:
A =B = 2 g, e (4.39)
A, = a+(m—1)b+e+2(m—3)f+[m_ jgi Dl} and oo (4.40)
Aus :i-a—b+e+(m—4)f —-(m-3)g J_r,/DZ]
2 (4.41)

m(m —3)
2

With multiplicities; , Land (m—1) respectively.

In the case m=2, only the eigenvalues A4,,4,,4,0ccur, whereas for m=3 there are four
eigenvalues A,,4,, 4, and A;.

The poof of this lemma is provided by Klein (2004).

4.5.1 E-optimal design for m = 2ingredients

Theorem 4.19
In the second-degree Kronecker model with m=2 ingredients, the weighted centroid
design

n(a®) = ayn, +a,n, =0.454545457, +0.545454547,
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is E-optimal for K'@ inT.

The maximum of the E-criterion for m=2 ingredients is v(¢_,) =0.09090909.

Proof

We begin by observing that the proposed optimal design is unique in view of theorem

(4.7). From theorem (4.6), we obtained the information matrix

8a, +a, a, a,
16 o 16 8
a o, +a, «
Ck (M (77(05))) = ﬁ # ?2 ....................................... (442)
% 4% %
8 8 4

From equation (3.3) any matrix C e sym(s, H) can be uniquely represented in the form

al,, +bU, cV,+dv,
C=| v, +av, el(m)+f\N2+gW3 :
2

For the case m=2, the information matrix C, (M (77(«))) can then be written as

co al,+bU, cV/
Loy eWw,

With coefficients; a,b,c,e € R, since the terms containing V,, W, and W3 only occur for

m>2.

From lemma (3.1), we get

10 , 1 1) (1 0) (01
Vsl =lg ) YTl )0 1) o)

2
V, = ZE” (e, +€) eR* =E,(e,+6,)' = 1) and W, =1

2
i,j=1 2
i<j

=1.



Thus the information matrix C, (M (77(«))) in equation (4.37) can be written as

c

a b
alm+bU2 CVI' a 10 +b 01 Cl
C= =110 1 1 0 1/1=|b a c|...........
cv, ew, c ¢

cd 1) e(1)

Where: a= 2%t % p_% % qq6_ %2
16 16

From lemma (4.2), we compute the eigenvalues of the above matrix as follows;

33a} —26a, +9
64

D, =[a+b—e] +2[2c] =

2
D,=[a-b—¢] = {30(2_1}

using equation (4.43) and equation (4.40) in lemma (4.2), we obtain

. =%[a+b+ei\/51]=%[al +3+./33a? - 26, +9
again, using equation (4.43) and equation (4.41) in lemma (4.2), we obtain

A, :%[a—b+e+\/D_2]:%

Thus for the case m=2, the eigenvalues that occur are

A :%[al +3+,/33a% — 260, +9]

A, =%[al +3—+/33a — 260, +9]

-t

102
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From theorem (4.18), if the smallest eigenvalue of C, (M) has multiplicity 1, then the

!

. . 2z . . :
only choice for the matrix E is E = W where z € R°is an eigenvector corresponding
z

to the smallest eigenvalue of the information matrix C, (M). In our case, the smallest

eigenvalue is

min

A=A, =%[al+3—\/33af 2260, 49 |- et (4.44)

We therefore need to get an eigenvector, z corresponding to the smallest eigenvalue of
the matrix, C, (M).

By definition, A € R, is an eigenvalue of matrix C if

(C-—A)z2=0 < Cz=1z with z#0

Y1
where z = Yy, |, is an eigenvector of C correspondingto 4.

Ys

Thus, from equation (4.43) and equation (4.44), we have

(C-A4,4,1)z =0, implies that

6, — 2 ++/33a} — 260, +9 a, a,
16 16 8 y,) (0O
a, 6ar, —2++/33a} — 260, +9 a, _lo
16 16 8 2=
a, a, 1-50, ++/33a2 - 26, |\Ys) \0
8 8 16

If we let

D =60, —2+,/3327 260, +9, =, =1-a, and r =1—5a, ++/33a2 — 26a, +9,
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p q 2q\Y| (©
a P 29|y,|=|0
29 29 r Vs 0

we obtain the equations
Py, +ay, +2qy, =0
ay, + py, +20y; =0

2qy1 + 2qy2 +ry; = 0

Solving the above system of linear equations, we obtain the eigenvector corresponding to

lmin as;
Y1 1
7= Y, (=] 1
_4q
Ys r

Then the matrix

1 1 -4q
J 2 2
—4
7' =| 1 1 Tq and ||z||2 :w
.
—4q -4q 169°
r r r’
Thus the matrix E is given as;
r r? —4qr
2r? +169° 2r?+16q° 2r?+16q°
7' r r? —4qr
e=2 -1 T A (4.45)
||z|| 2r°+16q° 2r°+16q° 2r° +16q
—4qr —4qr 16q°
2r> +169> 2r®+16q° 2r*+16q°




from equation (4.2) and equation (4.45), we have

2 2

r r —4qr
2(2r* +169%) 2(2r* +16q°) 2(2r®+16q°)
r? r? —4qr
C,E= 2 2 2 2 2 2
2(2r° +16q°) 2(2r°+16q°) 2(2r°+16q°)
0 0 0
r2
Thus traceC.E = ———
2r° +16q
Now
traceC,E = 4 ;, (C), implies that
r 1

mzﬁ oy +3—\/33a12 —26061 +9

This simplifies to

33, —92a; +900 =360, +5 =0, ccc.oiiiie e

upon substituting the values of q and r.
The roots of polynomial (4.46) are

o, =11,0.45454545and 0.33333333
Since, o, €(0,2), then it implies that o, = 0.45454545 or ¢, =0.33333333.

When, o, =0.45454545, o, =1—a, = 0.54545454 and

A = % [al +3—,/330% — 260, + 9]: 0.09090909

When, o, =0.33333333, a, =1-«, =0.66666667 and

Ao = % [al +3—/330 — 2601, + 9]: 0.08333333

105
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: , 5 6
Is maximum when o, = — and o, = —.

We observe that A4,
11 11

Thus for m=2, ingredients we have, o, =0.45454545 and «, =0.54545454 .
From Pukelsheim (1993), the smallest-eigenvalue criterion v(¢_ ) =4, (C).

From equation (4.44), the smallest eigenvalue is

Ay = % [al +3—,/330 — 26a, +9|=0.09090909

Hence the optimal value for the E-criterion for m=2 factors becomes

v(¢_.) =, (C)=0.09090909 =

4.5.2 E-optimal design for m = 3ingredients

Lemma 4.3

In the second-degree Kronecker model with m=3 ingredients, the weighted centroid
design

n(a'®) = ayn, +a,n, = 0.666666797, +0.333333217,

is E-optimal for K'@ inT.

The maximum of the E-criterion for m=3 ingredients is v(¢ ) = 0.16666667 .

The information matrix for second-degree Kronecker model with m=3 ingredients,

C, (M (n())) can be written as

{alm +bU, cV/+dV, J
C-=

cV, +dv, el[m) + W,
2
where; azm, b=% ¢=% 4_o, ezsﬂ and f =0
24 48 8 4

with the matrices; U1, Uy, V1, V2, W1, W, and W3 defined as in lemma (3.1).
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Proof

In theorem (4.3), we have obtained the information matrix C, (M (77(«))) for a mixture
experiment design 7(«) with m=3 ingredients as

8a, + a, a, a, a

% % g
24 48 48 8 8
% B8atra, @ a4 g &
48 24 48 8 8
23 A T A
C.=CM(a)=| 48 48 4, 8 8
“2 “2 0 °“2 o
8 8 4
% 0 %y 3%
8 8 4
0 % % 0 g 3
8 8 4

From equation (3.3), any marix C e sym(s, H) can be represented in the form

al,, +bU, cV, +dv,
C=|cv, +av, el(mj + W, + gW,
2

with coefficients a,...,g € R. The terms containing V,, W, and W3 occurring for m >3
or m > 4 respectively.

For the present case m=3 and so the information matrix C, (M (77(«))) can be written as

_(al;+bU, cV/+dV,
“lovy+dv, el + W,

From lemma (3.1), we get

100 111(100) (011
U=1,=/0 1 0|,U,=11,-1,=/1 1 1|-|0 1 0|=|1 0 1],
00 1 111 {001/ (110



108

3
V, = ZEU— (e +e;) e R*®
i j=1
i<j

V1 = Elz(el "'ez),+ E13(e1 +es)"" E23(ez +e3)'

Now,
1 1 0
(e,+e,)=[1|, (e, +e;)=|0|and (e, +e,)=|1
0 1 1

The vectors, E; e R, i,je(],2,3), I<j, with index pairs (i,j), considered in their
lexicographic order are E,,, E,; and E,,. These vectors form the standard basis for 9%°

andare E,=(L 0 0), E,=(0 1 0)and E,=(0 0 1).

Thus
110
Vi=E,(e +e,) +Ep(6 +€5) +Epule, +6;)'=|1 0 1]
011

3

V,=> iEije; e RS

i,j=1k=1
i<j kefi,j}

o +— O

0
V,=E.e;+E.e,+E,e =0
1

3 3
W, = z z E;jEu €sym@3)
FETE
I<L k<l

i, i} {k, 1Y =1
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0
Wz = E12 E1’3 + E12E£3 + E13E1’2 + E13E§3 + E23E1'2 + E23E{3 =1
1

=
o b

From the definition of W3, we get that W5=0, since the side condition |{i, 134k, I}| =9,

cannot be satisfied for m=3.

Thus the information matrix for m=3 factors can be written as

1 00 011 110 0 0 1
a0 1 Of+b/1 0 1| c/1 0 1(+d{0O 1 O
0 0 1 110 011 1 00
CMO@N= "1 1 o\ 700 1) (10 0 011
cfl 0 1|+d{0 1 0| ¢0 1 O|+fl1 0 1
011 1 00 0 0 1 110
a b b c¢c ¢ d
b a b ¢ d ¢
b b a d ¢ c
S N (4.47)
c ¢cd e f f
c d c f e f
d ¢c ¢c f f e
where; a=—80{1+0{2 b=%2 ¢=% q_o, e:% and f =0.
24 48 8 4
Theorem 4.20

In the second-degree Kronecker model with m=3 factors, there is a weighted centroid
design, n(a) with d(a) < {1,2} which is E-optimal for K'@ in T.

Proof

From lemma (4.2), we compute the eigenvalues of the above matrix as follows

2
D, =[a+2b—ef +42c—dJf = /204 ~10%e, +400 (4.48)

576
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2 J—
D, =[a—b—eff +4(c—d)? = 274°0a =898y #1369 (4.49)

2304

Using equation (4.47) and equation (4.37) in lemma (4.2), we obtain for m=3

A3 =%[a+ 2b+e+ \/31]: 4%3[_120‘1 +20+,/720a ~10560, + 400]

Similarly, using equation (4.47) and equation (4.49) in lemma (4.2) we get

A =%[a—b+ei,/D2]=9—l6[—21a1 + 37+ (274507 — 35580, +1369

From lemma (4.2) the eigenvalues that A,, A,, 4, and A; occur for the case m=3. These

are

A, = % -12a, +20 + \/7200512 —-1056¢, + 400], with multiplicity 1,

Ay = 4i8 _—12051 +20— \/7200512 —1056¢, + 400], with multiplicity 1,

A= % - 21a, +37 + \/27450512 —3558¢, +1369], with multiplicity 2 and

A =9—16 —21a, +37—+/2745a2 —3558¢, +1369], with multiplicity 2.

From theorem (4.17), if the smallest eigenvector of C, (M) has multiplicity 1, then the

. . . 77’ . . .
only choice for the matrix E is, E = W where z € R°® is an eigenvector corresponding
z

to the smallest eigenvalue of the information matrix C, (M). In our case, the smallest

eigenvalue is

A=A = % [—12% +20—/72002 ~1056, +400 |.......cooovoieii (4.50)
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We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of
the matrix, C, (M).
By definition, A4 € R, is an eigenvalue of matrix C if

(C-Az=0 < Cz=Az with 20

!

Where, z=(y, Y, Y, Y. VYs VYe).isan eigenvector of C correspondingto A.

Thus, from equation (4.47) and equation (4.50)

(C -4 1)z = 0, implies that

Y1 0
P g q 6g 6g O

Y| |0
g p 9 6g 0 6q
g g p 0 6g 6qfYs| |0
60 66 o r 0 0|y | |0
6 0 6 O r O
q q Ve 0
0 6g 6g 0 O r

Yo 0

where, p =26a, —18+,/720a> —1056c, +400 , g =, =1— ¢, and

r = —24a, +16+ /7202 —1056, + 400
Py, + 0y, +ay, +6ay, +6qy; =0

ay; + Py, +0y,; +6qy, +ays =0

ay; +ay, + Py, +6ays +6qys =0

6qy, +6qy, +ry, =0

6qy, +6qy, +ry; =0

6ay, +6qy, +ry; =0



112

Solving the above system of linear equations, we obtain the eigenvector corresponding to

Aein 8S;
1
Y1 1
Y, 1
- Y, -12q
Z= T e (4.51)
y4 _12q
y5 r
ye _12q

r

Then the matrix

1 1 1 -129 -129 -12q
r r r
1 1 1 -12q -129 -12q
r r r
1 1 1 -129 -129 -12q 2 2
r_ r r r q 2 3r°+432q
2'=| _1pq _12q -12q 144q° 1a4q’ 1aaq? |29 =T
r r r r r? r?
-12q9 -12q9 -12q 1449 1449° 144¢°
r r r r r? r?
—-12q -12q -12q 144q> 1449° 144q°
2 2 rZ

r r r r r



Thus the matrix E is given as;

r.2

r.Z

I,.2

-12qr

-12qr
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-12qr

3r’ +4329°
rZ

3r? +432¢°
rZ

3r? +4329°
r2

3r® +432¢°
-12qr

3r? +4329°
-12qr

3r® +4329°
-12qr

3r? +432q°
r2

3r® +432q°
r.2

3r® +4329°
r2

3r® +4329°
-12qr

3r® +4329°
-12qr

3r® +4329°
-12qr

3r® +4329°
-12qr

3r® +4329°
-12qr

3r® +4329°
-12qr

3r® +432q°
144

3r® +4329°
144q?

3r® +4329°
144>

3r® +4329°
-12qr

3r% +432¢°
-12qr

3r? +4329°
-12qr

3r® +4329°
1449°

3r% +4329°
144q°

3r® +4329°
1449°

3r® +4329°
-12qr

3r® +432¢°
-12qr

3r® +4329°
-12qr

3r® +4329°
144

3r® +4329°
1442

3r® +4329°
144¢>

3r® +4329°

From equation (4.6)

C,E

Where a =

Thus traceC,E =3a = 3{

o O o o

O Wk

O O O 929 v D

O O O O Wik o

O O owlr o
O O o o
O O o o

o O O 9 2 D
O O O 9292 2 D
O O O T T T
O O O T T T

r2

3r? +4329°

o O o o

O O O T T T

3(3r® +432q°)

3r? +4329°

—12qr

r2

" 3(3r? +43297)

3(3r? +432q2)}

3r® +4329°

and equation (4.52), we have

3r? +4329°

3r® +4329°
(4.52)
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Now

traceC,E =1

min

(C), implies that

2

SZrT - % 1201, +20 72002 —1056ct, +400 |-......ovovoeereere. (4.54)
r-+ g

This simplifies to

— 21499084800 + 11752833020 — 26658865150¢;" + 321052999700
— 2164241204007 + T739670532c, — 1146617856 = 0 - (4.59)

Upon substituting the values of q and r.
The roots of polynomial (4.55) are «z; = 0.79999697and 0.66666679
Since, a; €(01), then it implies that o, =0.79999697 or «; = 0.66666679 .

When, o, =0.79999697 , o, =1— ¢, = 0.20000303 and

A = % [— 12¢, + 20— /7202 —10560¢;, + 4oo]= 0.133334848

When, o, =0.66666679, c, =1—c, =0.33333321 and

i = % [— 12a, + 20— |/720a? —10560, + 4oo]= 0.16666667

We observe that A_;, is maximum when ¢, =0.66666679 and o, =0.33333321.
Thus for m=3, ingredients we have, ¢, =0.66666679 and oz, = 0.33333321.

From Pukelsheim (1993), the smallest-eigenvalue criterion v(¢_, ) =4, (C) .

From equation (4.50), the smallest eigenvalue is

A =~ |12¢, + 20— /72002 — 10564, + 400]: 0.16666667
48

Hence the optimal value for the E-criterion for m=3 factors becomes

V($_) = 2. (C) =0.16666667 =
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4.5.3 E-optimal design for design m =4 ingredients

Lemma 4.4

In the second-degree Kronecker model with m=4 ingredients, the weighted centroid
design

n(a®) = an, + a,n, =,0.818189017, +0.181810997,

is E-optimal for K'G inT.

The maximum of the E-criterion for m=4 ingredients is v(¢_,) =0.18181818.

Proof

In the second-degree Kronecker model any matrix C esym(s,H)can be uniquely

represented in the form

au, +bU, dVv,'
“=loay, Y
m

And for the case m=4 ingredients the information matrix C, (M (7(«))) can then be

written as

aU, +bu, av
C= dv' cﬂ
m

With coefficients a, b,c,d e R,

where; azm, b=22 c:%,and d=0 ezsﬂ f=

=—=, 09g=0
32 96 J

with the matrices; U1, Uz, V1, Vo, W1, Woand Widefined as in lemma (3.1).

Information matrix C, (M (n(«))) equation (4.12) for a mixture experiment design

n(«) with m=4 ingredients as
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o td, % % A
32 96 96 96 8 8 8
o Bata, @ G G g g D %
96 32 96 96 8 8 8
% @ Bata, a4 B, B X
96 96 32 96 8 8 8
% 2 L T T T R Bt
96 96 96 32 8 8 8
% % 0 0 3‘;2 0O 0 0 0 0
C=CM@)=| § 3 N
% 0 % 0 0o % o o0 o0 o0
8 8 2
% 0 0 % 0 0 % o o o
8 8 2
0 % % 0 0 0 o0 % ¢ o
8 8 2
0 % 0 % 0 0 o0 o0 % 4
8 8 2
0 0 % % o 0 o0 o0 o0 =
8 8 2
................................................................................................... (4.56)

From equation (3.3), any marix C < sym(s, H) can be represented in the form

al,, +bU, cV, +dv,
C=lcv,+dv, el(mj + W, + gW,
2

with coefficients a,...,g € R. The terms containing V,, Wand W3occurring for m >3 or
m > 4 respectively.

For the present case m=4 and so the information matrix C, (M (1(«))) can be written as

_(al;+bU, cV/+dV,
“lev, +dv, el + W,

From lemma (3.1), we get
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1000
0100
U=1,= ,
0010
0001

1111)(1000) (0111

1111/ ]0100f|10011

U,=11,-1, = - - |

1111/ ]0010|1101

11110001 (1110

ij=1
i<j

1

4 1

V =>(e)eR™ =(e, +e, +e, +e,) = .
1

Thus the information matrix C, (M (17(«))) can be written as

1000 0111 1
au,+bu, dv' 0100 1011 1
: +b d
CMme)=| o  VYVI|=|a0 0 10 1101 |1
1
m 0001 1110 1
- do oot cft) |
_ 8a, +a, a, a, 3a,
Where; a=——= ,b=—=,c=—=,and d=0e=—= f=09g=0
32 96 8 2

From lemma (3.1), we compute the eigenvalues of the above matrix as follows

D,=[a+30-e-4f —gf +6[2c-2d]

B {8051 ta, @, 3a, T N 6[& T | 82502 ~14340 + 625 -eeeeeeeneeees (4.57)
32 32 2 4 256

8a,+a, «, 3 ? a ?
D,=[a-b-e+g[+8(c-d)?=| 22 _-2_"2| g2
= g]<>{32 %2}[8}

_ 7177} —12362a, +5329
2304
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From lemma (4.2), for m=4,

3o 3a 3-3ax
=e-2f+g=—"2-0+0=—"%= L
A g 2 2 2

Using equation (4.57) and equation (4.40) in lemma (4.2), we obtain for m=4

2 =%[a+3b+e+4f +gi\/ﬁl]=3—12[—21a1+25i\/825af ~1434c, + 625

Similarly, using equation (4.58) and equation (4.41) in lemma (4.2) we get

Aus :%[a—b+e— gx.D, ]: 9_16[_ 6l +73J_r\/7177o¢12 —12362c, +5329
From lemma (4.2) the eigenvalues A4,,4,,4,,4, and A5 occur for the case m=4. These are

A =e-2f +g :3% - 3_23“1 , with multiplicity 2,

A, = 3_12[— 210, +25+,/82502 —1434a, + 625], with multiplicity 1,

A= 3_12 —2lo, +25—\/8250512 —-1434¢, +625], with multiplicity 1,

Ay = 9—16 [— 6la, +73+/7177a? —12362, + 5329], with multiplicity 3 and

A = 9_16 [— 6la, + 73— 71770} 12362, + 5329], with multiplicity 3

From theorem (4.18), if the smallest eigenvector of C, (M) has multiplicity 1, then the

. . 2z’ . . :
only choice for the matrix E is, E = W where z € R® is an eigenvector corresponding
z

to the smallest eigenvalue of the information matrix C, (M). In our case, the smallest

eigenvalue is
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Ain = 3—12 [— 2101, +25—[82507 14340, +625 |, ...ovoieieiiee e (4.59)

We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of
the matrix, C, (M).
By definition, A4 € R, is an eigenvalue of matrix C if

(C-A)z2=0< Cz=Azwithz#0

!’

where, z=(y, Y, Y5 Ya Y5 Yo Y Ys Yo Vo)
is an eigenvector of C correspondingto 4.

Thus, from equation (4.56) and equation (4.59)

C-1 I)E :6, implies that

min

Y1 0

3p q q q 129 12q 129 O 0 0y, 0

g 3p q g 129 O 0 129 129 O Vs 0

q g 3p q 0 129 0 129 0 12q

g q gq 3p o o 129 0 12g9 12q Ya 0

12 129 0 0 3r O O 0 0 0 |VYs 0

12g 0 129 0 0 3 0 0 0 0|y | |0

129 0 0 129 0 O 3r 0O 0 O y 0
129 12¢ 0 0 0 0 3 0 o |’

29 0 12 0 0 o0 0 3 o |Ye||©

0 0 129 129 0 0O 0 0 0 3r)y, 0

0

Y10

where

p= 3—12 [28051 — 24+ /82507 —1434a, + 625], q=a, =1-¢, and

r= 3_12 [_ 270, +23+ /82507 —1434a, + 625].
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3py, +ay, +ay, +ay, +12qy; +12qy, +12qy, =0
ay, +3py, +ay, +ay, +12qy,s +12qy, +12qy, =0
ay; +ay, +3py, +ay, +12qy, +12qy, +12qy,, =0

ay, +ay, +ay; +3py, +12ay; +12qy, +12qy,, =0

12qy, +12qy, +3ry, =0
12qy, +12qy, +3ry, =0
12qy, +12qy, +3ry, =0
12qy, +12qy, +3ry, =0
12qy, +12qy, +3ry, =0
12qy, +12qy, +3ry,, =0

Solving the above system of linear equations, we obtain the eigenvector corresponding to

ﬂ’min as,
1
1
yl 1
yZ l
Y | | -8
Vi r
.| |8
= 5 = r
Yo | | =8
Y7 lé
Yo —oq
r
Yo —8q
Y10 r
-89
r

Then the matrix
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1 1 1 1 —8q —8q —8q —8q —8q —8q
r r r r r r
1 1 1 1 -8q -89 -85 -89 —-8q —8q
r r r r r r
1 1 1 1 —-8q —-8q —8q —8q —-8q —-8q
r r r r r r
1 1 1 1 -89 -89 -85 -89 —-8q —8q
r r r r r r
—-8q -89 -89 -8q 6492 6492 6492 649° 649° 6492
r r r r r2 r2 r2 r2 r2 r2
s27—| -89 -89 -89 -8q 6492 6492 6492 64g° 649° 6492
- . r r 2 2 2 2 2 r2 |..... (4.60)
-8q -89 -89 -8q 64q2 6492 6492 649° 649° 6492
r r r r 2 2 2 2 2 2
-89 -89 -89 -—8qg 64q2 64q2 64q2 64q2 64q2 64q2
r r r r 2 2 2 2 2 2
-89 -8 -89 -—8¢g 64q2 64q2 64q2 64q2 64q2 64q2
r r r r r2 r2 r2 r2 r2 r2
-89 -89 -8 -—8qg 64q2 64q2 64q2 64q2 64q2 64q2
r r r r r2 r2 r2 r2 r2 r2
2 2
2 4r° +384q
and z" =———5—
r
Thus the matrix E is given as;
aaaabbbbbob
aaaabbbbbeob
aaaabbbbbeob
aaaabbbbbob
Ezz’bbbbcccccc
||z||2bbbbcccccc
b bbbccccecec
b bbbccccecec
b bbbccccecec
b bbbccccecec
2 2
r —8qr 64
where a= = g 9 (4.61)

—_—, = , C:
4r® +384q° 4r* +3849°°  4r°+384q9°

From equation (4.10)
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O NP

o

and equation (4.61), we have

OO0 0000 O O NPr o
OO0 0000 O MNP O O
O 0O O0OO0OO0OoOMNPFR O O O
O0OO0O0OO0OO0OO0 O O ©o
O0OO0O0OO0OO0OO0O O O O
O0OO0O0OO0OO0OO0 O O O
O0OO0O0OO0OO0OO0O O O O
O0OO0O0OO0OO0OO0 O O O
O0OO0O0OO0OO0OO0O O O O

O OO0 Oo0OOo o

O O O O o o T T T o

O O O O o o o o T o
O O O O O o o o o o
O O O O o o o T T oT
O O O O o o o o T oT
O O O O o o T o T oT

O O O O o o 2 2© v D
O O O O o o 2 2 2 DO
O O O O O o 2 2 2 D
O O O O O o 2 2 29 D

2

-8qr

Where a = 5 ' >—and b= 5 5
4(4r° +3849°) 4(4r° +384q9°)

2
Thus traceC,E =4a=4 5 d 5
4(4r° +384q9°)

Now

traceC.E =1, (C), implies that

min

r? 1
4r® +3849° 32

[— 21, + 25— +[825a —1434cr, + 625]

This simplifies to
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—1946419200¢, +11168907260c;, — 26676559870, + 33945550850,
— 242700779600, + 92437217321, —1465122816=0 v

Upon substituting the values of q and r.
The roots of polynomial (4.63) are ¢z, = 0.91966779and 0.81818901
Since, a;, € (0,1), then it implies that ¢, =0.91966779 or ¢, =0.81818901.

When, o, =0.91966779, o, =1-«; =0.08033221 and

A

mi

= 3—12 [— 21, + 25— /82502 — 1434, + 625]: 0.115435693

When, ¢, =0.81818901, o, =1-¢, =0.18181099 and

A,

mi

L= 3i2 [— 21, + 25— /8250 —1434c, + 625]: 0.18181818

We observe that 4, is maximum When ¢, =0.81818901, o, =1-¢, =0.18181099 .

Thus for m=4 ingredients we have, ¢; =0.81818901 and «, =0.18181099
From Pukelsheim (1993), the smallest-eigenvalue criterion v(¢ ) =4, (C).

From equation (4.59), the smallest eigenvalue is

A= 3_12 | 210, + 25 [825a7 —1434a, + 625 | 0.18181818

min

Hence the optimal value for the E-criterion for m=4 factors becomes

v($_) =4 (C)=0.18181818+
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4.5.4 E-optimal design for m> 2 ingredients
Theorem 4.21

In the second degree Kronecker model with m-ingredients the weighted centroid design
n(a®) = a,n, +a,n,is E-optimal for K'@ in T.

The maximum value of the E-criterion for K'6with m ingredients is
V(@) = 24 (C) =%[(—m3 +m? +6)e, +m° —m? +2J_r\/5]
m

Where

D = (m® —2m® +m* +20m® — 20m? + 36 ), — (2m® — 4m® + 2m* + 24m® — 24m? — 24,
+(m6—2m5+m“+4m3—4m2 +4)
Proof

From equation (3.3) any matrix C < sym(s, H) can be uniquely represented in the form

au,+bu, adv,’
=l e, XY

For the caseof m ingredients the information matrix C, (M (r7(«))) can then be written as

au, +buU, dv
€= dv' cﬂ
m

With coefficientsa, b,c,d e R,
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Form lemma (3.2) we get

1 0
0.
U =1 =
0 1
1 0) (1 1
1 1
U2=Im|'m_|m=- . -l ’ ol . ',and
1 1
1
V=) (e)eR™ =(e, +e, +..+¢,) =|.
st |
1

Hence the information matrix C, (M (17(«))) can be written as

0 1 1
au, +bu, av _ . | | |
! +h d
ck<M(n(a»)-{ v C\ﬂ}_ ol oo | B
m .
0 1 1 o) (1
L de 1) i)
8a1 + o, . o, U2 &V
- 8m 8m(m —1) 8 o
&V' m(m _1)a2 vy |
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From lemma (4.2) for m ingredients we have

D, =[a+(m-1b—c] +2(m-1)[2d]

{8051 ta,  (M-Da, m(m—l)aZT +2(m_1)[ ﬁ}z
8m 8m(m-1) 8

(M® —2m® +m* +20m* — 20m? + 36 ), — (2m° — 4m® + 2m* + 24m® — 24m? — 24 ),

_+(m6—2m5+m4+4m3—4m2+4)

64m?

The eigenvalues are;

1 1|8+, (M-Da, m(M-Da
As==la+(M-Db+c+ D, | == —=—2+ Z 4 2+./D

=16im (—m3+m2+6)a1+m3—m2+2i\/5]

Where
D = (m® —2m® +m* + 20m® — 20m? + 36 ),® — (2M® —4m® + 2m* + 24m° — 24m’ — 24 ),

+(m6 —2m® +m* +4m® — 4m? +4)
with multiplicity 1

Hence the smallest eigenvalue is 4, :%[(—W +m? +6)o, +m° —m? + Zi\/ﬁ]
m
Now let 4, = %[(— M +m? + 6, +m° —m? + 21\/5] then 4, is an eigenvalue for
m

C if for corresponding eigenvector, say z,we have (C—A1)z2=0 or (CZ = AzZ) with

7#0



Now let

Z

N
Il

, be the eigenvector of C corresponding to 4.

z

m+1

We therefore have (C — Al), as

m3a1—m2al+al—m3+m2—1+\/5| L%
8m ™ 8m(m-1) °
LSFAVE
8m
[24
imsal—m2a1+al—m3+m2—l+\/5|m+mu2
8m ma,V'

Let p, =m’e, —m’q, +a, —m* +m? —1+/D,
0, =a,,h :—6al—2+\/5

Weget (C—A1)z=0

q
i (plul"‘m—iluz mq,V
8m . V'V
ma, rl?
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@,
8m
—6a1—2+\/5|
8m

%)

mao,V

—6a;, —2+~/Dl

%)
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Solving these equations for z, we get,

Z 1
z = =
1
—cmq
Zm-¢—l r

where c=2 for even number of ingredients and varying fraction for odd number of

ingredients as the eigenvector corresponding to A4,

Thus
7= o, cmigt v | ana g - TG
r r’ m
Therefore
7P ORI (4.66)
= T = o TqV' $? .................................... :

And from equation (4.15) and equation (4.66)

CE= re %Ul+%U2 —cqV
YT mr?+c¢?m?q? 0 0

From theorem (4.17) a weighted centroid design r(«) is E-optimal for K'@in T if and
only if ttraceC,E = 4.;, (C).

For j=1

2 2 2

r r r
ot =
m(mr? +c’m?g?) m(mr?+c’m?g®) (mr?+c’m*q?)

traceC,E =
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Hence

2

r 1
traceC.E=1_ (C) < - —m*+m?46), +mP—m2+2+/D
] mm( ) (mr2+C2m2q2) 16m [( )al ]

Puttingg =«,, I, =6, ~2++/D and

D = (m® —2m® +m* + 20m® — 20m? + 36 ), — (2M® —4m® + 2m* + 24m° — 24m’ — 24 ),
+(m6 -2m® +m* +4m® —4m? +4)

Then solving the polynomial using Matlab, the value of «, is chosen such that
a, € (0,); substitute this values to 4, and take the values that miximizes the 4, , hence

the optimal E-criterion is

V(d.,) = A (C)=16im[(—m3+m2 +6)al+m3—m2 +2i\/5]

4.6 Numerical example

The following is a numerical example using Response (% Dead Insect) Data from
applications of 4 chemical compounds in a mixture experiment. The assumption is that a
researcher wishes to examine 4 chemical compounds (X1, X2, X3, and X4) for their
effectiveness (independently or in combinations) for insect control. The % dead insect is
determined as a response to these chemicals in this numerical example (Bondari, K.,

2005).



Table 4.4: Numerical example

Components

Run  Blend Type X1 X2 X3 X4 Resp
1 Pure Vertex 1 0 0 0 4.6
2 Pure Vertex 0 1 0 0 51.8
3 Pure Vertex 0 0 1 0 58.2
4 Pure Vertex 0 0 0 1 78.0
5 Binary Edge Centroid 0 0 05 05 108
6 Binary Edge Centroid 0 05 0 05 7.2
7 Binary Edge Centroid 0 05 05 O 58.4
8 Binary Edge Centroid 05 0 0 0.5 7.8
9 Binary Edge Centroid 05 0 05 0 75.8
10 Binary Edge Centroid 0.5 05 0 0 22.4
11 Ternary Face Centroid 0 13 13 13 450
12 Ternary Face Centroid 1/3 0 1/3 1/3 6.2
13 Ternary Face Centroid 1/3 13 0 1/3 58
14 Ternary Face Centroid 1/3 /3 13 0 23.2
15 All Overall Centroid 1/4 14 14 1/4 2.6
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4.6.1 Application of A-optimal Weighted Centroid Design

Consider the simplex centroid design for four ingredients in the above design. The A-

optimal design for four factors can now be applied to four factor numerical example. In

this study only pure blends and binary blends are considered.

From A-optimal for four ingridients, we have;

n. =

o O o B+~
o o F o

Implying that, the unique A-optimal weighted centroid design for

0) (0
0|0
1110
0)\1

1772:

1/2)(1/2
1/2]|0

0
0

1/2
0

1/2)(0
1/2]1/2
1/2110

0
0
1/2

'11/2
1/2)\1/2

K'é

ingredients is 7(a®) = ayn, + a,n, = 0.668953748n, +0.33104625177, .

Therefore the corresponding A-optimal for the above design is as follows.

in m=4



Table 4.5: Application of A-optimal Weighted Centroid Design
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Components

Run Blend Type X1 X2 X3 X4
1 Pure  Vertex 0.668953748 0 0 0

2 Pure  Vertex 0 0.668953748 0 0

3 Pure  Vertex 0 0 0.668953748 0

4 Pure  Vertex 0 0 0 0.668953748
5 Binary Edge Centroid 0 0 0.165523125 0.165523125
6 Binary Edge Centroid 0 0.165523125 0 0.165523125
7 Binary Edge Centroid 0 0.165523125 0.165523125 0

8 Binary Edge Centroid  0.165523125 0 0 0.165523125
9 Binary Edge Centroid  0.165523125 0 0.165523125 0
10 Binary Edge Centroid  0.165523125 0.165523125 0 0

4.6.2 Application of D-optimal Weighted Centroid Design

The unique D-optimal weighted centroid design for K'@ in m=4 ingredients is

U(a(D)) =ayn, +a,n, =0.4n, +0.67, .

Therefore the corresponding D-optimal Design for the above experiment is as follows.

Table 4.6: Application of D-optimal Weighted Centroid Design

Components
Run  Blend Type X1l X2 X3 X4
1 Pure Vertex 04 O 0 0
2 Pure Vertex 0 04 O 0
3 Pure Vertex 0 0 04 O
4 Pure Vertex 0 0 0 0.4
5 Binary Edge Centroid 0 0 03 03
6 Binary Edge Centroid 0 03 O 0.3
7 Binary Edge Centroid 0 03 03 O
8 Binary Edge Centroid 03 O 0 0.3
9 Binary Edge Centroid 03 O 03 O
10 Binary Edge Centroid 0.3 03 0 0
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4.6.3 Application of E-optimal Weighted Centroid Design
The unique E-optimal weighted centroid design for K'@ in m=4 ingredients is

n(a®) =an, +a,n, =,0.81818901s, +0.181810997, .

Therefore the corresponding E-optimal Design for the above experiment is as follows.

Table 4.7: Application of E-optimal Weighted Centroid Design

Components

Run Blend Type X1 X2 X3 X4

1 Pure  Vertex 0.81818901 0 0 0

2 Pure  Vertex 0 0.81818901 0 0

3 Pure  Vertex 0 0 0.81818901 0

4 Pure  Vertex 0 0 0 0.81818901
5 Binary Edge Centroid 0 0 0.090905495 0.090905495
6 Binary Edge Centroid 0 0.090905495 0 0.090905495
7 Binary Edge Centroid 0 0.090905495 0.090905495 0

8 Binary Edge Centroid  0.090905495 0 0 0.090905495
9 Binary Edge Centroid  0.090905495 0 0.090905495 0

10 Binary Edge Centroid  0.090905495 0.090905495 0 0

The above numerical example illustration demonstrates the applicability of the weighted
values of the designs in this study. It is clearly seen that the number of runs is reduced
and only pure and binary blend are considered in this case. Thus this cut on the cost

which is always the goal of every experimentor.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Investigations were done based on the selected optimality criteria and each design was
subjected to the Kiefer-Wolfowitz equivalence Theorem. The optimal moment and
information matrices were obtained based on the choice of the coefficient matrix K’ of
interest. It was found that for second-degree model with m > 2 ingredients the unique D-,
A- and E- optimal weighted centroid designs for K'@, exist for the choice of the
coefficient matrix specifically in this study.

The study indicates that for the average-variance criterion (A- criterion), as the number of
ingredients m increase, «” increases while {” decreases. The value of the maximum
criterion increases. For the determinant criterion (D-criterion), as the number of
ingredients m increase, a\” decreases while a.” increases. The value of the maximum
criterion also increases. Also for the smallest eigenvalue criterion (E-criterion), as the
number of ingredients m increase, «.” increases while «!” decreases. The value of

the maximum criterion increases.

In summary, the optimal values obtained have been found to be larger than those
obtained in the previous studies. These large values indicate that the information matrices
of these designs carry large information. Thus the model is more informative. This is

always the goal of every experimenter and it is the main result of this study.



Table 4.8: ¢, —optimal weights for K'9, m=2,34

(p)

(p)

m P ! a, Vo
2 —oo | 0.45454545 | 0.54545455 0.09090909
-1 | 0.52786405 | 0.47213595 0.16718427
0 |0.66666667 | 0.33333333 0.20998684
3 —oo | 0.66666667 | 0.33333332 0.16666667
-1 | 0.60647018 | 0.39352982 0.23229856
0 | 0.50000000 | 0.50000000 0.25000000
4 —oo |0.81818901 | 0.18181099 0.18181818
-1 | 0.66895375 | 0.33104625 0.27397905
0 | 0.40000000 | 0.60000000 0.373719282
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5.1 Recommendations

The regression function considered in this study is the Kronecker square, f (t) =t ®t.
Since the computation of the matrices with unknows is done by hand, it would therefore
be very interesting to develop a programm that can compute the optimal values.

The hypothetical example clearly indicates that the designs in this study meet the goal of
every experimenter since the cost of the experiment is reduced. Considering the simplex
centroid design for four ingredients in the above designs, the number of runs is reduced.
Therefore it can be clearly seen that the design in the study is practically applicable,
hence it is recommented that such design can be used in mixture experiments to cut on

cost.
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