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ABSTRACT 

 

Fluctuations in climate variation could influence the emergence and re-emergence of 

vector-borne infectious diseases such as malaria in highlands. The transmission of malaria 

is caused by vector and arthropod that strive in area with high rainfall and they are limited 

by low temperatures and high altitudes. Malaria vectors for many years were found in 

lowlands and not found in highlands because of weather conditions. The present research 

sought to evaluate the possible impacts of climate variability on malaria prevalence in 

Rwandan highlands. Using secondary data on malaria cases from medical records in 

selected Health Centres of highlands and meteorological parameters data collected from 

meteorological stations, regression analysis was used to determine relationship between 

climate variability and malaria prevalence. Spatial analysis methods examined the 

distribution of malaria incidence in selected Districts of Rwandan highlands, Pearson 

Correlation determined direction and strength of the linear relationship between malaria 

and the meteorological parameters while time series analysis with SARMA helped to make 

prediction. Analysis of data for 11 years period indicated that; maximum temperature did 

not have high variation; it was in the range of 23 and 25
o
C, while minimum temperature 

varied considerably with a range of 8.02 and 14.55, average of minimum and maximum 

indicated linear growth as it combines the values of maximum and minimum temperature 

(16.34 and 19.54
o
C), rainfall was increasing throughout of the period of study with high 

variation and extreme weathers, the monthly average was between 95.62 to 156 mm. In 

Karongi it varied between 87.00 to 122 mm, Muhanga it was between 80.63 to 235 mm and 

Rubavu it was between 81.33 to 136 mm. Relative humidity was also important, its 

variation was not too high since the highest value of relative humidity was 72.24% and the 

lowest was 66.10%. Generally relative humidity was decreasing with time. With 5% level 

of significance, all selected climate parameters were not correlating with malaria 

transmission at the same level; in Karongi malaria prevalence had a strong positive 

correlation with: maximum temperature and rainfall, r=0.68, a moderate positive 

correlation with rainfall and relative humidity, r=0.5 and a strong positive correlation with 

average temperature and rainfall, r=0.66.  In Muhanga malaria prevalence had a strong 

positive correlation with minimum temperature, r=0.76, while in Rubavu malaria 

prevalence had a weak positive correlation with maximum temperature and relative 

humidity, r=0.44 and a weak positive correlation with average temperature, rainfall and 

relative humidity r=0.33. It was predicted that in 2018 malaria prevalence in Karongi would 

be 879.277/1000 in Muhanga 97.69/1000 and Rubavu 3.71/1000. Results show evidence of 

the strong existence of relationship between climate parameters and malaria prevalence in 

highland areas of Rwanda. All national programs on malaria control should take into 

account this area of Rwandan highland, since it is highly susceptible to climate change and 

malaria prevalence.  
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DEFINITION OF OPERATIONAL TERMS 

 

1. Climate: Climate is the long-term weather pattern (for at least 30 years) in an area. The 

climate includes general patterns and extremes of drought, rains, storms, and freezing 

temperatures (Philander, 2008). Climate is different from weather; Weather is the condition 

that prevails at a given moment and may change within days or even hours. In fact climate 

is what you expect and weather is what you get (McMichael et al., 2003). 

2. Climate change: Climate change refers to a statistically significant variation in either 

the mean state of the climate or in its variability, persisting for an extended period 

(typically decades or longer). United Nations Framework Convention on Climate Change 

(UNFCCC), defines climate change as “a change of climate which is attributed directly or 

indirectly to human activity that alters the composition of the global atmosphere and which 

is in addition to natural climate variability observed over comparable time periods.” 

3. Climate variability: Climate variability refers to variations in the mean state and other 

statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all 

temporal and spatial scales beyond that of individual weather events (IPCC, 2001).  

4. Highland regions: In Africa, the highlands are defined to be at altitude higher than 1500 

m elevation above sea level or with daily mean temperatures of below 20°C (Githeko, et 

al., 2014 & Wandiga, et al., 2006). 

5. Incidence Rate: The incidence of disease is defined as the number of new cases of 

disease occurring in a population during a defined time interval. The number is useful as a 

measure of the risk of disease (Oleske, 2002). 

6. Malaria: The word comes from mediaeval Italian words: mal = bad, aria = air. 

Genus of mosquito-transmitted coccidian blood parasites. The name comes from Greek: 

plasmodion = small organism. 

The taxonomy of parasite is: Kingdom: Protista, Phylum: Apicomplexa, Class: 

Sporozoasida, Order: Eucoccidiorida, Family: Plasmodiidae, Genus: Plasmodium (Marcus, 

2009) 

7. Prevalence rate: The prevalence rate, often referred to as prevalence, is the total number 

of cases (both new and pre-existing) in a specific period of time (Oleske, 2002): 
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CHAPTER ONE 

INTRODUCTION 

1.0 General background  

Malaria is both preventable and treatable disease. Yet more than 220 million cases of 

malaria are estimated to occur each year, and approximately 785,000 people die from the 

disease annually. Half of the world’s population, some 3.3 billion people living in 109 

countries, are at risk of malaria (Paaijmans et al., 2009). Worldwide, malaria is the fifth-

leading cause of death from infectious diseases (after respiratory infections, HIV/AIDS, 

diarrheal diseases, and tuberculosis) (WHO, 2014).  

Examinations of climate, ecosystem, and health connections suggest that climate change 

and variability may have significant and widely ranging impacts on human health. In 1988, 

the Intergovernmental Panel on Climate Change (IPCC), a multidisciplinary scientific 

body, was established by the World Meteorological Organization and the United Nations 

Environment Program to advise governments on climate related issues. To understand the 

human health implications of weather changes, it is thus efficacious to have some 

discussion of the observed and projected changes in climate and the climate system (Patz et 

al., 2008). 

In her speech of 23
rd

 March 1999, Brundtland stressed the role of climate variation on 

human health by altering weather patterns and by disturbing life-supporting natural systems 

and processes. The discussions are still going on dealing with the exact causality between 

human behaviour and climate change. But it is well known the concern of adverse 

consequences of climate variability on human health.  

The WHO (2015), identified the scenarios in which climate change has effect on human 

health, among others it was included: increasing disease transmission seasons and altered 

geographic ranges of disease, emergence of new diseases and re-emergence of diseases that 

were at one time controlled. The disease which had been almost eliminated, and is coming 

back, sometimes surpassing earlier recorded levels and climate depending is Malaria. 
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Malaria carried by mosquitoes offers an example of a parasitic disease that may return to 

population with global warming. Rising sea levels caused by climate change may lead to 

flooding, which in turn gives the Anopheles mosquito species more breeding grounds. 

Warmer average temperatures would also increase the mosquito’s season. Global climate 

change can and will create other complex relationships between environments, human 

susceptibility to disease, and the transmission of infections (Marcy, 2004). 

In the troposphere, where viable atmosphere is located, the lapse rate defines an important 

feature of the temperature distribution that decline with height above the surface in the 

lowest 10- 15 Km of the atmosphere represented by: 

z

T

δ

δ
−≡Γ   (1)           

Where T is the temperature and z is altitude and the deltas indicate a partial derivative. 

The global mean tropospheric lapse rate is about 6.5oC km–1, but the lapse rate varies with 

altitude, season, and latitude. Temperature is the most widely recognized climatic variable 

(Hartmann, 2016). 

For East African region, the research conducted by Kevin (2009), found that for every 

1000-meter gain in elevation, temperatures decrease by 6oC. Minimum temperature for 

parasite development of Plasmodium falciparum and Plasmodium vivax approximates 18
o
C 

and 15
o
C, respectively, limiting the spread of malaria at higher altitudes. 

Increasing altitude also results in decreasing mosquito abundance in African highlands. 

Temperature, humidity and availability of clear water bodies (standing or slow moving) are 

keys to mosquito bionomics. They determine the spatial (North and South longitudes; 

altitude; desert areas) and temporal (seasonal) limits of the disease. 

Biological process models are an important component of the discussion. Biological 

models estimate the responsiveness and thresholds of parasites, pathogens, and vectors to 

temperature and precipitation (Rosenthal, 2009). Based largely on studies of vector and/or 

parasite development, warming and increases in humidity are predicted to open up new 

zones for malaria in Africa (Kazembe, 2007). 
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UKaid (2009) developed a new model applied on altitude for assessing the impact of 

climate change on malaria. The model used the product of incidence time’s population size 

to estimate an absolute amount of malaria in Rwanda. Taking the sum for all altitudes 

provides a measure for expected changes in malaria, taking into account the altitudinal 

distribution of the population in the country. 

Rwanda Environmental Management Authority (2010) in Figure 1 below shows the overall 

analysis and the malaria lapse rate (in green) against rural population (blue bars). The 

change from the 1980s (green) to present (blue line) can be compared against future 

projected increase in temperature (red line). 

In the 2050s, as a result of climate warming (2.2ºC, the central projection), the population 

at risk for malaria in rural areas over 1000 meter (99% of the population) is predicted to 

increase by 153%. Approximately half of this predicted increase in mean temperatures has 

already occurred since the 1980s, and is likely to have raised the national burden of malaria 

in recent decades. 

 

Figure 1: Malaria risk model in Rwanda  

(Source: Rwanda Environmental Management Authority, 2010). 
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Climate is one of several important factors influencing the incidence of infectious diseases 

(Olivier & Hidore, 2002). Other important considerations include socio demographic 

influences such as human migration and transportation, drug resistance and nutrition, as 

well as environmental influences such as deforestation, agricultural development, water 

projects, and urbanization. In this era of global development and land-use changes, it is 

highly unlikely that climatic changes exert an isolated effect on disease; rather the effect is 

likely dependent on the extent to which humans cope with or counter the trends of other 

disease modifying influences (Walsh et al., 1993).  Around 3.3% of the earth’s surface 

changed from one climate category to another between 1951 and 2000 (Lafferty, 2009). 

This gave occasion to adaptation of several vector borne diseases. 

Numerous, and in some cases conflicting, predictions have been developed regarding the 

frequency, severity, and duration of epidemics that may emerge. With respect to the 

biogeographical focus of this issue, the central question is whether pathogens and parasites 

that are currently restricted to lower latitudes where the world’s greatest biodiversity lies 

move toward poles (mostly north) and upward in altitude (Chapin III et al., 2012).  

1.1 Problem statement 

Before 2005, malaria was the leading cause of morbidity and mortality in Rwanda with 

periodic epidemic outbreaks in the high altitude areas (MINISANTE, 2011). Since 2000, 

close to 1 million cases of malaria have been recorded each year countrywide of these cases 

more than half are hospital visits and deaths occurring for children under age 5  (Thaxon, 

2009). Malaria is also a significant health risk for pregnant women and their unborn 

children, particularly first-time mothers and women with HIV (NISR et al., 2011). 

Rwanda had made a big achievement toward malaria eradication as it was among the pillars 

of MDG (UNICEF, 2015), but, recently WHO Global Malaria Program (2015) reported a 

tripling in confirmed malaria cases (from 483 000 to 1.6 million), and a doubling in 

admissions (from 5306 to 11 138) between 2012 and 2014 According to preliminary 

analysis conducted by the MOPDD, the vast majority of this increase is among persons 

over five years of age (RBC, 2017). This increase in malaria case numbers in Rwanda 
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(according to RBC) are most likely due to resistance increase to insecticides, anti-malarial 

drugs, substandard LLINs and climate variability (President's Malaria Initiative, 2014).  

While most of highlands of Rwanda are located in the fringes of endemic zones, where 

transmission is limited by rainfall or by lower temperatures, there are strong seasonal 

patterns and occasional major epidemics (Bizimana, 2015). In such regions, climate is a 

major determinant of year-to-year changes in malaria incidence. In some locations, 

warming trends in the past two decades might have contributed to changing the 

epidemiology of malaria (Paul & Dirk, 2004). But what effects will future changes in 

climate have on malaria in Rwandan highland?  

The Intergovernmental Panel on Climate Change (IPCC, 2007) predicted an average 

temperature rise of 1.5–5.8 °C across the globe during the 21st century, accompanied by 

increased extreme and anomalous weather events including heat-waves, floods and 

droughts. Currently there are few if any published data that provide information on malaria 

status and climate change in Rwandan highland regions, partly because the science of 

climate and health is not well developed. The relationship of changes in vector-borne 

diseases attributable to climate change is therefore still unknown, which is a serious 

obstacle to evidence-based health policy change. Although the impacts of climate 

variability on vector-borne diseases can be observed, the same cannot be said of climate 

change because of the slow rate of change.  

Regarding research priorities, there is a great need to better understand the current 

relationships between “multiple physical phenomenon” of weather and disease, while at the 

same time we must begin to consider future risk estimates required by policy makers.  New 

discoveries from field data are particularly essential in constructing credible simulation 

models.   
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1.2 Objectives 

a. General objective 

To evaluate the possible impacts of climate variability on malaria prevalence in Rwandan 

highlands 

b. Specific Objectives 

1. To determine the variation of temperature, rainfall and relative humidity in 

Rwandan highlands for the period of 11years. 

2. To determine malaria incidence in Rwandan highlands for the period of 11 years. 

3. To determine the relationship between meteorological parameters and malaria 

incidence in Rwandan Highlands.  

4. To model and predict changes in the incidence of malaria attributable to climate 

variation. 

1.3 Hypotheses 

Hx1: There is no relationship between meteorological parameters and malaria incidence in 

Rwandan highland. 

Hx2: Climate variability does not affects the future incidence of malaria in Rwandan 

highlands. 

1.4 Scope of study 

The study was limited to climate variables (temperature, rainfall and relative humidity) and 

malaria clinical data analysis and established the relationship between them. Data collected 

and used in this research cover the period 2004 - 2014. This period of study included scale-

up of anti-malarial interventions of 2005 and climate change awareness, as clearly indicated 

in MDG goal 6 and 7.  The study was based in Rwandan highlands; in Karongi, Muhanga 

and Rubavu districts, where malaria incidence is limited by low temperature and altitude.  

1.5 Justification of study 

Climate variation impact assessment refers to research and investigations designed to find 

out what effect future changes in climate could have on human health and the natural 

world. 
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Climate can affect infectious disease patterns because disease agents and their vectors are 

clearly sensitive to climatic conditions; this study aims at examining the relationship 

between intra-annual climate variability and malaria transmission in highland region of 

Rwanda. The relationships of variability in rainfall, relative humidity and temperature to 

malaria transmission was to be assessed based on vulnerability monitoring, seasonal 

climate variability data and epidemiologic surveillance.  

Scientific based knowledge on climate variations in Rwanda is limited, but it is fully 

recognized that the country is one of the most vulnerable nations in the world in regard to 

climate changes. Thus, climate change preparedness for Rwanda is essential both in a local, 

national and international context (Rwanda Environmental Management Authority, 2010). 

It was needed to conduct further analysis, however the MOPDD attributes the increase in 

cases to a number of factors including the increase of total number of patients seeking 

health care in health facilities, increased rainfall and agricultural environmental 

modification, significant drop in ITN coverage (43% coverage of one ITN for every two 

people), mosquitoes’ resistance to pyrethroid insecticide, increased number of health 

facilities reporting into the system, and increased availability of RDTs and ACTs among 

other causes (1st Rwanda Malaria Forum, 2012). It also important to note that malaria has 

been increasing in the eastern African region, thus it will be challenging for Rwanda to 

control malaria while trans-border exchanges are intense. 

The highlands of Rwanda were selected because in most of highlands areas people have 

little or no immunity against malaria parasite, so all categories of people are affected. This 

is different from lowland where immunity is high among most adults and malaria is mostly 

confined to young children and pregnant women. As consequence, low immunity in 

highlands communities makes malaria an epidemic disease characterised by mortality and 

morbidity among children and adults. Any changes to causing factors like climate variation, 

effect can be observed at community level.    
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Therefore, in lowlands all conditions for malaria transmission are fulfilled but in the 

highlands, where adaptation was impossible, it needs to find out if the current variation of 

climate is affecting malaria development as it highly depends on climate.  

1.6 Significance of study 

This study has a significant impact as it shows climate and malaria relationship, different 

preventive measures can be implemented based on climate predictions and therefore the 

substantial burden of disease associated to vector borne diseases like malaria in Rwanda 

can be reduced.  

The researcher has interest in establishing the association between climate and disease 

prevalence in new areas. Rwanda has high density of population what resulted to 

environmental degradation and declining of landholding, most of time goes hand in hand 

with informal settlements that increase vector borne diseases breeding sites. The study is 

addressing the phenomenon that is taking place in highlands where malaria is tends to 

increase.  

Recognized as early warning indicator of climate change, mountain ecosystem became an 

object of chapter 13 of agenda 21, the action endorsed by the Earth Summit in 1992 and the 

recent Rio + 20 outcome document, “The future we want” mountain issues need to be 

covered by SDGs, especially the goals concerning poverty, environmental sustainability, 

water, energy, climate change and natural disaster. As the nick name indicate “a country of 

thousand hills” Rwandan ecosystem is dominated by mountain, what makes this research 

unique since the changes that can be recorded in Rwanda should serve as indicator of 

climate change effect for other regions. As Rwanda was chosen as the centre for sustainable 

development goals, it will be necessary to consider all opportunities attached to its 

ecosystem in order create and improve adequate policies and frameworks particularly at the 

trans-boundary level and provide incentives for investments in sustainable development. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter presents a review of the impacts of climate or global change on human health. 

By presenting theory on malaria development and transmission, environmental factors 

influencing malaria development and transmission were presented with the case of 

Rwandan highland region.  

The chapter also examines Africa’s vulnerability to climate change; it reviewed studies that 

analysed the relationship between climate change and malaria prevalence, methodologies 

used in analysing, association between climate and malaria in Rwandan highlands. 

2.1 Theory relating to malaria development and transmission 

2.1.1 Climate influence on malaria life cycle 

Malaria transmission depends on the diverse factors that influence the vectors, parasites, 

human hosts, and the interactions among them (see malaria cycle indicate in appendix 3 

and 4. These factors may include, among others, meteorological and environmental 

conditions, the innate and adapted immunity of the human hosts, the resistance of the 

vector species to Plasmodium infection, public health system, housing standards, vector 

control, road construction, irrigation projects, population movements and war-like 

conditions (Lafferty, 2009). The most apparent determinants are the meteorological and 

environmental parameters, such as rainfall, temperature, humidity, and vegetation (Kiang, 

2009). When other parameters remain more or less constant, the meteorological and 

environmental conditions are indeed considered as the driving factors of malaria causes 

(Githeko, 2009). 

According to (Pascual et al., 2006) Historical analyses of climate patterns coupled with 

biological process models provide additional explanatory power. For example, observed 

altitudinal increases in falciparum malaria in the East African highlands during the past 30 
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years have been associated with increasing temperatures and are consistent with models of 

anopheline mosquito vector development. 

2.1.2 Malaria and environment 

The Greek physician Hippocrates was the first to make a connection between the proximity 

of stagnant bodies of water and the occurrence of fevers in the local population (McMichael 

& Woodruff, 2008). The Romans also associated marshes with fever and pioneered early 

efforts at swamp drainage. Appropriately, the role of standing bodies of water and marshes 

in causing fevers was described by the Italians as "aria cattiva" (spoiled air) or "malaria" 

(bad air) beginning in the mid-sixteenth century, and the latter term entered the English 

language as "malaria" some 200 years later. Malaria was used as additional platoon for 

attacking enemies in early human history. During the coldest years of the little ice age 

1560s – 1730s reports on malaria outbreak in the countries like England and Scotland were 

associating malaria with weather conditions (Lindsay & Martens, 1998).  

2.1.3 Climate change and human infectious diseases 

Climate changes include alternations in one or more climate variables including 

temperature, precipitation, wind, and sunshine (Metz, 2010). These changes may impact the 

survival, reproduction, or distribution of disease pathogens and hosts, as well as the 

availability and means of their transmission environment as Figure 2 indicates. The health 

effects of such impacts tend to reveal shifts in the geographic and seasonal patterns of 

human infectious diseases (Dziedzic, 2010). 
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Figure 2: Climate change, human infectious diseases, and human society  

(Source: Oaks et al., 1991). 

Impact of global climate change on human infectious diseases can be examined through its 

impacts on the three disease components: pathogen, host, and transmission environment. 

Human is important and active factor during this process; he may mitigate the impact of 

climate change through adaptation practices. 

2.1.4 Stratification of malaria zones 

The concept of stratification, developed by WHO in the mid-1980s, characterized 

epidemiologic zones of malaria in terms of their main determinants, including climate, the 

location of sources of water and of mountains, vector biology, anthropology, social and 

economic factors (World Health Organization, 2014). 

Using stratification, a country or continent could be broken down by geographic area 

and/or by population characteristics, and a number of epidemiologic, biologic, social, and 

economic factors could be identified that would govern the choice and intensity of 

antimalarial interventions. The scale of application of stratification varied considerably, 
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from the characterization of large homogeneous areas to that of very small epidemiologic 

units, such as a locality. With a few exceptions, however, stratification has not been widely 

adopted or implemented, in part because a large amount of detailed baseline information 

was required (Dziedzic, 2010). 

Malaria transmission is seasonal and correlates with relatively predictable patterns of 

rainfall, although transmission may continue at lower levels during the dry season. Because 

of the extremely high inoculation rates, virtually all of those living in these areas become 

infected early in life (Aron et al., 2001). 

2.1.5 Highland fringe malaria 

Although some malaria cases can be found at altitudes of 2,800 meters, the disease does not 

generally occur above 1,500 meters (Patz et al., 2008). Because of fluctuations in climate 

and global warming, vector anophelines may begin to flourish at higher altitudes. The 

altitudes subjected to this type of malaria problem may vary greatly according to the 

geographic location. In particular settled populations living at higher altitude, normally free 

of malaria may have little or no acquired immunity to malaria and may suffer from 

devastating epidemics (Brian, 2009). Such situation recently occurred in the highland 

plateaux of Madagascar, where malaria had previously been eradicated or nearly so 

(Githeko et al., 2000). Similar, less devastating epidemics have been seen in Papua New 

Guinea, in Ethiopia, and on the mountain slopes of Kenya. Even without an expansion in 

the range of vector anophelines, however, economic conditions many force nonimmune 

highland populations to search for work in lower highland fringe areas, where they may be 

exposed to intense malaria transmission (Tulu, 1996). 

2.1.6 Climatic factors and malaria transmission 

Climatic factors greatly influence the pattern and level of malaria transmission in Rwandan 

highlands region, in Africa and the world. The most important climatic factors that directly 

affect malaria transmission are temperature, rainfall and humidity (Chapin III et al., 2012). 

The ranges of minimum and maximum temperature greatly affect the development of the 

malaria parasite and its mosquito vector, which determines malaria transmission (Martens, 
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1999). The present geographical distribution of malaria is explained by a combination of 

environmental factors (especially climate) and social factors (such as disease control 

measures). Efforts last century to control malaria succeeded in eradicating the disease from 

temperate zones and much of the subtropics, but the world is now facing a resurgence of 

malaria, because of climate variation (Hales & Woodward, 2003). 

2.1.7 Temperature and parasite development 

Temperature affects the life cycle of the malaria parasite. The time required for the parasite 

to complete its development in the gut of the mosquito is about 10 days, but it can be 

shorter or longer than that depending on the temperature. As the temperature decreases, the 

number of days necessary to complete the development increases for a 

given Plasmodium species. P. vivax and P. falciparum have the shortest development 

cycles and are therefore more common than P. ovale and P. malariae (Feenstra et al,. 

1998). 

The time needed for the parasite to complete its development in the mosquito, decreases to 

less than 10 days as temperature increases from 21°C to 27°C, with 27°C being the 

optimum. The maximum temperature for parasite development is 40°C. Below 18°C, the 

life cycle of P. falciparum in the mosquito body is limited. The minimum temperatures are 

between 14–19°C, with P. vivax surviving at lower temperatures than P. falciparum. 

Malaria transmission in areas colder than 18°C can sometimes occur 

because Anopheles often live in houses, which tend to be warmer than the outside 

temperature (Loevinsohn, 1994), this may happen in highland area where transmission is 

limited by low temperature. 

2.1.8 Temperature and mosquito development 

Development of the mosquito larva also depends on temperature; it develops more quickly 

at higher temperatures. Higher temperatures also increase the number of blood meals taken 

and the number of eggs laid by the mosquitoes, which increases the number of mosquitoes 

in a given area. The minimum temperature for mosquito development is between 8–10°C; 
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the optimum temperature is 25–27°C, and the maximum temperature for is 40°C (Wilson, 

2001). 

2.1.9 Influence of altitude and temperature on malaria transmission 

According to (Bizimana, 2015), altitude (elevation above sea level) is one of the most 

important factors that determine the pattern of malaria transmission in Rwanda. Altitude in 

Rwandan highlands varies from 1800 metres above the sea level to more than 3,000 metres 

above the sea level. Altitude influences the distribution and transmission of malaria 

indirectly, through its effect on temperature. As altitude increases, temperature decreases, 

so highlands are colder and lowlands are warmer, (Chemonics International Inc, 2003). 

In the Rwandan highlands, the issue is to determine malaria transmission occurrence in 

relation to temperature, rainfall and relative humidity. The increased temperature allows the 

development of parasites to occur in the mosquitoes, and the mosquito population also 

increases as the temperature rises. Beyond 2,400 metres, the temperature does not go high 

enough to support malaria transmission and these areas were free of malaria (CHAI; E2Pi, 

2011). Long time ago Rwandan highlands was free of malaria, and most of Rwandan 

highlands above 1,500 metres had little or no locally transmitted malaria (World Health 

Organization, 2014).  

2.1.10 Rainfall and malaria transmission 

Anopheline mosquitoes breed in water. So the right amount of rainfall is often important for 

them to breed. Different anopheline mosquitoes prefer different types of water bodies in 

which to breed (Bettina, 2005). In Rwanda, water collections that support vector breeding 

appear mainly after the rains, and therefore malaria transmission is important after the rainy 

season (Bizimana et al., 2015). 

Note that the anopheline mosquitoes that transmit malaria do not breed in foul-smelling 

polluted water. Too much rainfall can flush away breeding habitats temporarily, but 

mosquitoes start breeding as soon as the rain stops. In most cases, flushing has a bigger 

impact on vector breeding habitats in the highlands and hilly areas than in the lowland 
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plains (Goosse et al., 2010). Not all water collections are suitable for the mosquito life 

cycle. In Rwanda, rain water collections are the most important breeding ground, as the 

anopheline mosquitoes prefer to breed in fresh water collections created after the rainy 

season (Gahutu et al., 2011).  

There are also places where less rainfall and drought can favour mosquito breeding and 

malaria transmission. Such places are usually covered by vegetation throughout the year 

streams and rivers often flow rapidly (Pierre-Louis et al., 2010). When the rains fail or are 

delayed, the flow of streams is interrupted and pooling occurs along the stream. Pooling 

creates a favourable environment for mosquito breeding. Malaria vectors mainly breed in 

stagnant water collections, rarely in slightly moving waters and never in rapidly flowing 

rivers and streams (Bettina, 2005). In drier areas, rainfall can also affect malaria 

transmission indirectly through its effect on humidity. Vegetation cover increases after 

rainfall, which in turn increases the relative humidity of the environment (IPCC, 2002). 

2.1.11 Relative humidity and malaria transmission 

Expressed as a percentage; (0% humidity would mean the air is completely free of moisture 

and 100% humidity would mean the air is completely saturated with moisture). Relative 

humidity affects malaria transmission through its effect on the activity and survival of 

mosquitoes. Recall that mosquitoes need to live at least 8–10 days to be able to transmit 

malaria; this is the length of time required for the parasite to develop inside the mosquito 

host. If the mosquito dies before the parasite has developed, then transmission of the 

parasite cannot occur (Kazembe, 2007). 

Mosquitoes survive better under conditions of high humidity. They also become more 

active when humidity rises. This is why they are more active and prefer feeding during the 

night – the relative humidity of the environment is higher at night. If the average monthly 

relative humidity is below 60%, it is believed that the life of the mosquito is so short that 

very little or no malaria transmission is possible (Wilson, 2001). 
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2.1.12 Non-climatic factors of malaria transmission  

Factors that affect malaria transmission, but which are not related to the climate, are 

called non-climatic factors. The type of vector, the type of parasite, environmental 

development and urbanisation, population movement and migration, the level of immunity 

to malaria in the human hosts, insecticide resistance in mosquitoes, and drug resistance in 

parasites, all have a role in affecting the severity and incidence of malaria (HImeidan & 

Kweka, 2012).  

2.1.12.1 Malaria vectors 

Not all mosquitoes transmit malaria, only Anopheles mosquitoes can carry the malaria 

parasite. In Rwanda there are many species of Anopheles mosquitoes, but only four of them 

are known to transmit malaria parasites, and just one of them, Anopheles arabiensis, is 

responsible for more than 95% of malaria transmissions (Grasso et al., 2010). 

Different species of Anopheles mosquitoes differ in their capacity to transmit malaria. This 

depends on the biology and behavior of the mosquitoes. Mosquitoes in the Anopheles 

gambiae group (which includes A. arabiensis), are the most efficient malaria vectors in the 

world. These mosquitoes are found only in Africa. In fact, the higher incidence of malaria 

in Africa compared to other parts of the world is mainly due the efficiency of these 

mosquitoes in transmitting the parasites (Schlagenhauf-Lawlor, 2001). 

Mosquitoes need a blood meal to develop and reproduce. They can take their blood meal 

either from humans or animals. Mosquitoes that mainly feed on humans are more efficient 

to carry malaria than those that feed on animals (HImeidan & Kweka, 2012). One reason 

why mosquitoes in the A. gambiae group are very good vectors of malaria is that they 

prefer to bite humans more than animals. Mosquitoes that feed on humans and animals 

equally are much weaker vectors of malaria. Others feed exclusively on animals and are not 

malaria vectors. Therefore, the type of Anopheles mosquitoes and their feeding behavior 

influence the intensity of transmission in an area (Chua, 2011). 
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Mosquitoes adapted to breeding close to human settlements, and able to breed in a wide 

range of environments, are also better vectors of malaria than mosquitoes that breed away 

from human habitation. Some mosquitoes breed in small pools that are partially or 

completely exposed to the sun, while others prefer to breed in shaded stagnant pools. A. 

gambiae mosquitoes breed in a wide range of habitats, including small water collections 

such as hoof-prints, water-filled holes in rocks and trees, as well as dams, river beds and 

lake shores. Because A. gambiae vectors can breed in so many different habitats, they are 

responsible for much of the malaria transmission in Africa (Blanford et al., 2013). 

The main vector of malaria in Rwanda, A. arabiensis, can be found in a variety of water 

collections, mainly closer to human habitations. However, stagnant water collections in 

borrow pits, ponds, micro-dams, pools in small rivers, and streams created immediately 

after the rainy season, are the most important breeding habitats for this vector (DFID, 

2009). 

2.1.12.2 Water development projects and malaria transmission 

Agricultural development, particularly with the use of irrigation, creates breeding sites for 

malaria mosquitoes, leading to increased malaria transmission. For instance, the use of 

irrigation to flood agricultural land during rice cultivation has long been associated with an 

increase in the number of vectors and a corresponding increase in the burden of malaria 

(Malakooti et al.,1997). Irrigated farming and rice agriculture is becoming more common 

in the lowlands of Rwanda with less applicable in highlands (Muhanga, 2013). 

2.1.12.3 Malaria transmission, population movement and migration 

Population movements have significant implications for malaria transmission. The majority 

of the population movements in Rwanda involve people moving from the highlands to the 

malaria-endemic lowlands as seasonal labourers (in capital city of Kigali). These people are 

often employed as daily labourers in the crop fields during the planting and harvesting 

seasons, when malaria transmission is at its peak (Wandiga et al., 2006). 

Migration for the purpose of permanent settlement in a new area is also common in 

Rwanda and is a major factor associated with malaria transmission. Migration is often from 
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densely populated malaria-endemic lowlands to highlands, where the population density is 

low and the soil is more fertile. Major environmental transformations like deforestation, 

and new construction etc, take place during resettlement, enhancing the proliferation of 

mosquito breeding sites, and resulting in major malaria outbreaks (Brian, 2009). 

2.1.12.4 Human host factors 

Differences in human hosts also affect the pattern of malaria transmission and the severity 

of the disease. When it comes to malaria, people are either immune, or non-immune. 

Immune people often have a better chance of tolerating the effects of malaria and surviving 

the disease than non-immune people. In highly endemic areas, children under five years of 

age and pregnant women are the most at risk, because they have weak immunity to malaria 

infection. Immunity to malaria develops slowly after several infections and children need at 

least five years to develop their immunity. Pregnant women have less immunity to malaria 

due to their pregnancy (Karema et al., 2012). 

Certain population groups can be infected by some types of malaria parasites, but not by 

others. For example most Africans south of the Sahara can get infected 

by falciparum malaria, but not by vivax malaria. This is another reason why most of the 

disease and deaths due to malaria occur in Africa, because falciparum malaria is the 

deadliest form of malaria and is highly prevalent in the continent (Oaks et al, 1991);  

(Becker et al., 2010). 

2.1.12.5 Drug resistance in malaria parasites 

Drugs kill malaria parasite inside the human body. However, after repeated use of an anti-

malaria medicine, the parasite can develop resistance to that particular drug or to similar 

medicines. As a result, the parasites inside the human body can no longer be killed and 

patients cannot be cured unless new drugs are developed for treatments (CHAI; E2Pi, 

2011). If malaria parasites show resistance to drugs, these parasites are not cleared by 

treatment from infected individuals, they are easily picked up by vector mosquitoes, and 

transmitted to new susceptible individuals who then develop drug-resistant malaria. 
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Moreover, more people who are not getting cured by drug treatment means that more will 

die of malaria (Renate, 2009). 

2.1.12.6 Interruption of control and prevention measures 

Malaria is a curable disease if the parasites remain susceptible to available treatments, and 

it can be prevented by using several methods. However, long-term and sustained 

implementation of prevention and control measures is necessary to significantly reduce or 

eliminate the problem from a country or a specific geographic area. As a result of long-term 

successful interventions, a local population can lose their immunity to malaria in an area 

where it has been reduced to a low level for some time. Remember that repeated infections 

are necessary to develop immunity to malaria. Immunity gets lower or is lost if a person 

moves out of a malaria endemic area, or is protected from infection for several years. 

Therefore, if control and preventive measures are stopped before the disease is eliminated, 

malaria can surge back and affect more people, and affect them more severely than before 

(Kevin, 2009). This case was reported in Rwanda that after experiencing a large decline in 

malaria cases from 2005 to 2011, Rwanda is currently experiencing an increase in reported 

malaria cases, from a low of 200,000 malaria cases in 2011, to over 2.6 million cases 

reported in 2015 (President's Malaria Initiative, 2017). 

2.1.12.7 Human modification to the environment  

Can create larval development sites and ''man-made" malaria. For example, massive 

logging in Gishwati forest has resulted in a proliferation in certain areas of sunlit pools of 

water (Aron et al., 2001), an ideal habitat for An. gambiae. Road building and other types 

of infrastructure projects, as well as agriculture and irrigation, are among a number of 

human activities that can spread malaria and other vector-borne diseases. In some regions, 

human activities can have the opposite effect. For example, deforestation in Thailand has 

led to the disappearance of malaria in some areas (Oaks et al. 1991). 
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2.1.13 Methods for Climate Change Impact Assessment 

Theory of modelling: Scientists use mathematical formulae, combined with the modelling 

ability of computers and available data sources, to create an understanding of how climate 

and weather effects work in different parts of the atmosphere. The purpose of the models is 

not just to understand atmospheric interactions, however, but to predict how they will work 

in the future. Predicting the weather will be of great benefit in helping people prepare for 

adverse phenomena such as the longer-term effects of drought or floods (Goosse, et al., 

2010). 

2.1.13.1 Model in epidemiology 

Specific attention is drawn on the methodological aspects of each study, which is classified 

according to the specific problem in question, as well as the type of statistical model 

considered, as detailed by Grasso, et al. (2010).  

As far as the specific problem addressed by each study is concerned, it refers to: 

Primary studies, which analyze the direct effects of rising temperatures on the burden of 

diseases;  

Secondary studies, which consider socio-economic effects of temperatures growth 

including Integrated Assessment Models (IAMs), General Equilibrium Models (GEMs) and 

Global Trade Analysis Project Models (GTAP);  

Comparative Risk Assessments (CRA), which integrate climate models for projecting 

future climate changes and “primary studies” for estimating the effects on health.  

In terms of the type of statistical model which each of the surveyed study is based on, the 

following broad classes emerge:  

Stationary and non-stationary time series models, such as ARMAX (Auto 

Regressive Moving Average with exogenous variables) models, ECM (Error 

Correction Models), possibly with seasonal components;  

Non-parametric forecasting models, such as single and double exponential 

smoothing, Holt-Winters methods (additive, no seasonal, multiplicative);  
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Panel data and spatial models  

Many economic, socio-demographic, environmental and climatic variables are observed 

through time (t=1,...,T) and across “individuals” (i=1,...,N), where the notion of 

“individual” used in the present context is broad enough to embrace real individuals, 

households, countries, geographical areas, firms, economic sectors, etc. A variable 

observed through time and across individuals, Yit, is said to have a panel data structure 

(Kleinschmidt, 2001). 

Tools for monitoring climate change and human health 

Predicting modelling approaches are classified into several categories including (Kiang, 

2009):  

- Statistical based models - empirical models incorporating a range of meteorological 

variables have been developed to describe the climatic constraints (the bio climate 

envelope) for various vector-borne diseases (CLIMEX; DIMEX; GCMs);  

- Process-based (mathematical) models - process-based approach is important in climate 

change studies as some anticipated climate conditions have never occurred before and 

cannot be empirically based (i.e. MIASMA);  

- Landscape-based models - climate influences the habitat of pathogens and diseases 

vectors. There is a potential in combining climate-based models with the various 

environmental factors that can be measured by ground-based or remote sensing, including 

satellite data;  

Predictive models for early warning systems (EWS)  

Relevant measurements fall into the following broad classes (Paaijmans et al., 2009): 

- Meteorology: various meteorological factor influence heath processes. Temperature, 

relative humidity, rainfall and wind speed are the most important parameters;  

- Health markers: one way to address the complex causality of most health outcomes is to 

select indicators that are highly sensitive to climate changes, but relatively insensitive to 

other influences. The data requirements for attributing and measuring impacts may be quite 

different, depending on health issue and region; 
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- Other explanatory factors: monitoring will need to measure not just climate and health. 

The principal categories of modifying factors that must be considered are the following: 

age structure of population at risk; underlying rate of disease; level of socio economic 

development and existing infrastructures (water and sanitation); environmental conditions, 

quality of health care; specific disease control measures.  

The Linear Regression Model is one of the most frequently used statistical tools. Its 

purpose is to relate the values of a single variable Y to one or more other variables X1, X2,.. 

Xp, in an attempt to account for the variation in Y in terms of variation in the other 

variables. With only one other variable this is often referred to as simple linear regression. 

The usual situation is that the data available consist of n observations y1, y2, ..., yn for the 

dependent variable Y, with corresponding values for the X variables (Bryan & Manly, 

2000).  

Time series models have been used extensively for predicting the evolution pattern of 

diseases, and more specifically to assess the relationship between environmental exposure 

and mortality or morbidity over long time periods. These predictions are a necessary step 

for quantifying the potential impact of climate on health and the related costs. In the field of 

climate based Early Warning Systems (EWS), which are used to predict the occurrence of 

epidemics of infectious diseases,  Chaves and Pascual (2007) review and compare linear 

and non-linear models for forecasting seasonal time series of diseases. Using American 

coetaneous leishmaniasis, as an example, the models are evaluated based on the predictive 

R
2
 for forecasting the data “out-of-fit”. Seasonal autoregressive models that incorporate 

climatic covariates are found to provide the best forecasting performance. 

2.2 Review of studies related to climate variability and malaria prevalence  

2.2.1 Speculation on malaria ecology  

The present restriction of malaria to the tropics suggests a strong effect of climate on this 

disease. While climate does affect malaria transmission, other factors probably enforce the 

current distribution. Most notable is a strong increase in per-capita gross national product 

with latitude. This results in both greater surveillance and increased funds for control and 
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treatment in temperate areas. Today, malaria endemic countries have GDPs one fifth that of 

low malaria prevalence countries, researchers are suggesting that economic forces 

particularly environmental destruction, have pushed malaria out of temperate zones. 

Malaria is harder to control under the climatic conditions where it is holoendemic 

(transmitted year-round) and malaria might depress economic development in a positive 

feedback loop. In other words, tropical climate might increase infectious diseases such as 

malaria, which then depress economic growth required for disease control (Lafferty, 2009). 

The evidence of above statement is seen where malaria is a major vector-borne disease in 

sub-Saharan Africa and more generally, in the tropical zone (that include Rwanda) 

spreading from America, throughout tropical Africa up to the Asian continent. Its increase 

throughout the world has been attributed to the environmental changes, leading to an 

expansion of the geographical limits of the disease. The latter is the leading cause of 

morbidity and mortality, and is therefore a big threat to socioeconomic development to the 

poorest countries situated in that tropical zone (Blanford et al., 2013). However, most of all 

literatures are pointing out the importance of climate variables and ecological conditions on 

malaria/diseases development and transmission.  

Ayanleh (2010) in the research on “Analysis and Prediction of the Possible Impacts of 

Climate Change on the Future Distribution of the Vector-borne Disease, Malaria in 

Panama” stated that ecosystem was assumed to be constant in order to facilitate the 

analysis and comprehension of the roles of the three other factors. From the information 

that obtained from the prediction based on GIS work, the first relationship to be analysed 

was the link between ecosystem and the population density and the link between 

Topography and abiotic factors: temperature/rainfall. 

2.2.2 Climate and malaria  

Scientific evidence suggests that malaria varies seasonally in highly endemic areas. Malaria 

is probably the vector-borne disease most sensitive to long-term climate change. Malaria 

thus provides several illustrative examples (based on historical studies) of the link between 
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infectious disease and climate change (Beniston, 2002), (Blanford et al., 2013), (Wanjala et 

al., 2011), (Shakoor et al., 2006). 

Githeko et al. (2000) compared monthly climate and malaria data in highland Kakamega 

and found a close association between malaria transmission and monthly maximum 

temperature anomalies over three years of 1997–2000. 

Various time series studies explore the relationship between average temperatures, mid-

night temperatures, temperatures in conjunction with rainfall rates, as well as November 

and December temperatures on malaria. In particular, Freeman & Bradley (1996) found a 

significant impact of climate on malaria in Zimbabwe, the Debre Zeit sector of Ethiopia, 

Rwanda, and the Northwest Frontier Province in Pakistan, respectively. December 

temperatures coupled with humidity are used by Bouma & van der Kaay (1996) to predict 

incidence rates of malaria in Pakistan. Other studies consider temperature and deforestation 

to be associated with malaria transmission in Tanzania and Kenya (Matola et al., 1987), 

(Malakooti et al., 1997). According to the latter study forest clearing has been the cause for 

increases in malaria transmission. Patz et al. (2008), found out that soil moisture correlates 

with the human-biting rate of mosquito vectors with a two-week delay. Also soil moisture 

and entomological inoculation rate are related, with infective parasites taking a six-week 

time to develop. 

It has been hypothesized that increasing temperatures could be part of the reason why 

malaria can now survive at higher altitudes. Many other confounding factors, however, 

could be causing the increase in malaria in these areas (Patz & Lindsay, 1999). The 

dynamics of the geographical spread of malaria are analysed by Pascual et al. (2006). The 

authors focus on the most important malaria species for humans, Plasmodium falciparum 

and Plasmodium vivax, whose range is limited at high altitudes by low temperatures. They 

investigate whether global warming could drive the geographical spread of the disease and 

produce an increase in incidence at higher-altitude sites. They use data for four high-

altitude sites in East Africa from 1950 to 2006. A nonparametric analysis that decomposes 

the variability in the data into different components is performed and reveals that the 

dominant signal in three of the sites and the subdominant signal in the fourth one 
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correspond to a warming trend. To assess the biological significance of this trend, the 

authors drive a dynamical model for the population dynamics of the mosquito vector with 

the temperature time series and the corresponding detrended versions. This approach 

suggests that the observed temperature changes would be significantly amplified by the 

mosquito population dynamics with a difference in the biological response at least one 

order of magnitude larger than that in the environmental variable. By using parametric 

models they also find the existence of significant (linear) trends. 

2.2.3 Diurnal Temperature Range (DTR) and malaria transmission 

The standard relationships describing the effects of temperature on malaria parasite and 

mosquito life history derive largely from laboratory studies. These studies conducted under 

constant temperature conditions tend to use measures such as average monthly temperature 

to characterize environmental conditions. However, natural environments are highly 

dynamic; diurnal temperature ranges (DTRs, the difference between the minimum and 

maximum temperature) of 5 to >20 °C are common across many malaria transmission 

settings in Africa, including highland and lowland environments (Paaijmans et al., 2010). 

2.2.4 Rainfall and malaria  

Patz et al., (2008) studied the effect of soil moisture to determine the effects of weather on 

malaria transmission. Compared to raw weather data, hydrological modelling has several 

potential advantages for determining mosquito breeding sites. High soil moisture conditions 

and vector breeding habitats can remain long after rainfall events, depending on factors 

such as watershed, run-off and evapotranspiration. For An. gambiae, the soil moisture 

model predicted up to 45% and 56% of the variability of human biting rate and 

entomological inoculation rate, respectively. 

2.2.5 Malaria risk in the highlands 

In the research conducted by Githeko (2009) in the western region of Kenya on 

entomological perspective of malaria by comparing malaria risk in highland and lowland, it 

was found out that western Kenya is of particular interest. Since on a relatively small 
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spatial scale there is considerable variation in altitude, climatological conditions and land-

use patterns. As a consequence, the epidemiological situation of malaria varies as well. 

Result showed that malaria was transmitted throughout a two-year study period in a 

highland area of western Kenya (at 1600 m altitude and above). Malaria prevalence was 

relatively low, with a two year average of 10% among school children in the age of 5 - 10 

years (minimum 0% and maximum 17% prevalence). Larval habitats of An. gambiae s.l. 

were present in the highland area, although their number was rather limited compared to a 

lowland area 40 km to the northwest (at 1200 m altitude).  

Experimental studies showed that larvae of An. gambiae s.s. and An. arabiensis did not 

survive the cool environmental temperatures in the highland area, whereas adults of both 

species (placed in cages) survived inside local houses in the same area.  

The combined experimental and field observations suggested that the contribution of a 

locally breeding vector population to malaria transmission in the highland area was 

negligible. More likely, the few infections among school children were caused by infected 

mosquitoes that emigrated from areas where environmental conditions are more favourable. 

Martens (1999) has investigated the possible changes in the distribution of malaria. 

Increases in temperature and rainfall would most probably allow malaria vectors to survive 

in areas immediately surrounding their current distribution limits. How far these areas will 

extend both in terms of altitude and latitude depends upon the extent of warming. The 

IPCC (2002) has published maps of increases in the incidence rate of malaria in Africa, for 

a modest warming scenario of +1°C. It is seen that the regions with the sharpest rise in the 

rate of infection are those which lie above 1,000 m. In these highland regions, even a 

modest rise in temperature may lead to a spread of the disease into hitherto disease-free 

regions. It is seen here that there is a quasi-exponential increase in the incidence of malaria, 

which is, at least in part, consecutive to changing climatic conditions for the period 1975-

1990 (Beniston, 2002). 

In the research conducted by Pascual et al., (2006) on “Malaria resurgence in the East 

African highlands: Temperature trends revisited”, it was found out that the incidence of 
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malaria in the East African highlands has increased since the end of the 1970s. The study 

used the same data obtained from the Climate Research Unit (CRU, Norwich, U.K.) global 

grid of 0.5° resolution (data set CRU TS 2.1) using the temperature data, now updated to 

the present from 1950 to 2002 for four high-altitude sites in East Africa; Kericho in western 

Kenya (latitude, 0.30 S; longitude, 35.37 E), Kabale in southwestern Uganda (1.25 S, 29.71 

E), Gikongoro in southern Rwanda (2.45 S, 29.85 E), and Muhanga in northern Burundi 

(3.02 S, 29.83 E) where malaria has become a serious public health problem. With both 

nonparametric and parametric statistical analyses, the research found evidence for a 

significant warming trend at all sites.  

Shanks et al., (2002) investigated whether the re-emergence of malaria in Western Kenya 

could be attributed to changes in meteorological conditions. The existence of trends in a 

continuous 30-year monthly malaria incidence dataset (1966–1995) was tested for Malaria, 

it was found out that malaria incidence increased significantly during the period of study 

(1966–1995). In contrast, climate did not indicate a significant change that could precipitate 

transmission of malaria. Therefore, the authors conclude that climate changes have not 

caused the highland malaria resurgence in Western Kenya. They suggest that two other 

factors may have influenced the increase in malaria hospitalizations: an increase in malaria 

severity indicated by an increased in fatality rate (from 1.3% in the 1960s to 6% in the 

1990s) that is most likely linked to chloroquine resistance. Secondly, travel to and from the 

Lake Victoria region by a minority of the tea estate workers also exerts an upward 

influence on malaria transmission in Kericho, Kenya, since such travel increases the 

numbers of workers asymptomatically carrying gametocytes, which mediate disease 

transmission. 

Lindsay & Martens (1998) consider the progressive rise in the incidence of malaria over the 

last decades in African highlands. The phenomenon is largely a consequence of agro 

forestry development, and is exacerbated by scarce health resources. Moreover, in these 

areas, where the pattern of malaria is unstable, the epidemic may be precipitated by relative 

subtle climate changes and therefore requires special monitoring. The authors used 

mathematical models to identify epidemic-prone regions in highlands of Africa, and to 
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quantify the difference expected to occur as a consequence of projected global climate 

change. To make estimates about the areas that are vulnerable to epidemic outbreaks of 

malaria, they use data and models from Geographic Information Systems (GIS) 

(computerized mapping systems) and Remotely Sensed (RS) imagery data from earth-

orbiting satellites. Correlations among variables were found. However, the authors observe 

that since correlation doesn’t imply causality these results are not conclusive and require 

further investigation. To model the dynamics in highlands malaria in relation to climate 

change they use an integrated system, scenario-based approach (Martens, 1999; Stern et al., 

2011). Evidence is found that the direct influence of climate may contribute to malaria risk. 

However, this effect cannot be claimed as the most important determinant of malaria 

transmission. The effects of temperature on mosquito development, feeding frequency, 

longevity and incubation period are estimated. The model is linked to baseline climatology 

data from 1931 to 1960 and uses integrated techniques to generate climate scenarios. Their 

findings suggest that it is not possible to prove that any single factor has caused the 

outbreaks in African highland. Projected climate changes are likely to modify the 

epidemics in the regions: 260–320 million more people are projected to be affected by 

malaria by 2080 as a consequence of new transmission zones. All of these researches were 

basing analysis on establishing the relationship of malaria and climate change in general 

while according to Hales & Woodward (2003), transmission rates vary within regions and 

within countries. It needs the research that focuses on Highlands region of Rwanda so that 

it can be differentiated from other African highland.  

2.2.6 Climate and ecosystem-based malaria epidemic prediction models 

According to the model developed by (Githeko, 2010), he classified the highland into three 

ecosystems; these being the flat bottomed valleys (U-shaped) the narrow bottomed valleys, 

(V) shaped and the plateau. Using the highland of western of Kenya it was concluded that 

“U” shaped ecosystems require mean rainfall of 150mm/month for mosquito populations to 

increase. 

 “V” shaped valleys require mean rainfall of 250-300mm/month for mosquito population to 

increase. The U shaped valleys have more than twice the size of breeding habitats 
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compared to the V shaped valley. The U shaped valley has 3 times more adult Anopheles 

gambiae females that the V shaped valley. 2.2-fold more people in the “U” shaped valley 

have an immune response to malaria compared to the “V” shaped valley ecosystem. This 

model was applied by Wanjala et al. (2011) and found that the V-shaped ecosystems have 

very low malaria prevalence and few individuals with an immune response to two major 

malaria antigens and they can be considered as epidemic hotspots. These populations are at 

higher risk of severe forms of malaria during hyper-transmission seasons. The plateau 

ecosystem has a similar infection and immune response to the V-shaped ecosystems. The 

U-shaped ecosystems are transmission hotspots. In this research time series analysis was 

not used for spatial malaria prediction.  

2.2.7 Malaria and climate change in Rwanda  

In the research conducted in the Eastern region of Rwanda on; Analysis of Anthropogenic 

and Regional Climate Change Impacts on Ecological and Malaria distribution in Eastern 

Rwanda for the period 1980-2009, (Habiyaremye (2011) reported that malaria incidence is 

linked to climate variability like temperature, Rainfall and relative humidity. Relationship 

with rainfall (r=0.672) but both humidity and temperature correlate strongly with malaria 

cases with r =-0.846 and r=0.988 respectively in season A. 

While in season B malaria had moderate correlation with rainfall, it was in weak 

relationship with humidity but correlates strongly with temperature. The correlations 

coefficients were 0.471, 0.123 and 0.896 for rainfall, humidity and temperature 

respectively. 

Lastly, season C rainfall moderately correlated again with malaria (r=-0.430) while both 

humidity and temperature were in strong relationship with malaria incidences (r=0.946 for 

humidity and r=0.896 for temperature).  

Bizimana (2015) highlighted Climate Variability and Malaria in Rwanda: Spatial 

Assessment of Social Vulnerability at Different Scale Levels. It was indicated that: Malaria 

outbreaks in Rwanda correspond to the periods of increasing temperature mainly associated 

with El Niño. Generally the number of malaria cases was higher before interventions 
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period. In Burera highlands, a moderate association between climate variability and malaria 

incidence was evidenced.  

The Study covered the whole country and identified qualitative social vulnerability to 

malaria. But quantitative analysis was not performed, despite a well done spatial analysis. It 

would be better to make such study relational, by integrating prediction of malaria and 

climate parameters over time (10 or 20 years), as well as spatial modelling so that decision 

makers could use the findings from this study for proper malaria control. 

Several models that included Rwanda covered large part; region or continent and did not 

take into account small-scale anomalies that might affect distribution of malaria, such as 

highlands and relative anthropogenic activities. To cover this large gap made in researches, 

localised monthly temperature rainfall and relative humidity were used to provide climate 

data and analysis for malaria incidence modelling and prediction.  

Most of studies on malaria prevalence in Rwanda, established direct association of climate 

variables with malaria without considering the life cycle and incubation period of the 

parasite, therefore the model established may have had errors, what was expected to be 

corrected in this study using e-views. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This Chapter presents the study area, data sources and describes the methodology applied 

in the study. This study uses spatio-temporal, correlation, and econometric approaches (unit 

root tests and SARMA). The spatial method examined the distribution of malaria at the 

health centers level within the District, while Pearson Correlation determined the direction 

and strength of the linear relationship between malaria and the meteorological variables. 

The econometric approach was applied to (1) validate and examine the intrinsic 

characteristics (stationarity) of malaria cases, rainfall, and temperature; (2) test seasonal 

variation; and (3) ascertain the short-term and long-term equilibrium relationship of the 

variables. The strength of econometric methods lies in their ability to distinctively separate 

seasonal variation of malaria and meteorological variables using SARMA.  

3.1 Study area 

3.1.1 Description of Rwanda 

Rwanda is a small (26,338 km
2
), land-locked country in the Great Lakes region of Eastern 

Africa, bordered by Uganda, Burundi, the Democratic Republic of the Congo, and 

Tanzania. It has a population of approximately 12 million people (projection from 2012 

census results), making it the most densely populated country in continental Africa. 

Administratively, the country is made up of 30 districts, which are divided into sectors, 

cells (cellules), and 14,953 umudugudus (villages of 50–100 households).  

Rwanda has a complex existing climate, with wide variations across the country and with 

very strong seasonality (DFID, 2009). It is primarily a mountainous country, with average 

altitude of 900 m in south-west, 1500 to 2000 m in the south and the centre of the country, 

1800 to 3000 m in the highlands of the north and the west and 3000 to 4500 m in the 

regions of Congo-Nile Crest and the chain of volcanoes (President's Malaria Initiative, 
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2014). The equatorial climate is modified by this widely varying altitude across the 

country. It leads to a more temperate climate than much of the rest of East Africa. Average 

annual temperature in Rwanda ranges between 16ºC and 20ºC though they are much lower 

than this in the higher mountains (MINIRENA, 2013). 

In 2014 the entire population was at risk for malaria as indicated on Figure 3; the entire 

country was divided into malaria slide positive rate. Highlands region on map is 

characterised by slide positive below 5%, and it is located in Northern and Western 

Provinces of Rwanda.  
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Figure 3: Topography of malaria risk according to the Districts of Rwanda  

(Source: President's Malaria Initiative, 2014)  
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As Figure 3 indicates, the colours differentiate the areas with high malaria prevalence and 

areas with low malaria prevalence. Clear yellow indicates low malaria prevalence and it is 

located in highlands, while grey colour indicates high prevalence it is based in the lowlands 

of Eastern and Southern part of the country. The black line indicates the limitation of 

selected study area.    

3.1.2 Highland region of study area 

Rwandan highland lies in West, North and Southern part which is one of the four categories 

of Rwandan relief. The study area covers 3 Districts; Karongi and Rubavu in Western 

province in the range of Congo-Nile divide and Muhanga district in Southern province. The 

study area lies in 1.505
o
 and 2.317

o
S and 29.244

o
 and 29.813

o
E at an altitude ranging from 

1,500 to 3000 m above the sea level. Note that the districts comprise lower land relief for 

instance foothills, but the altitude is dominated by highland parts with altitude of 1500 m 

above the sea level (Figure 4). 

Temperature is 16 – 21
o
C the lowest temperature is 6

o
C. The rainfall patterns are 

characterized by four seasons, a short rainy-season from September to November and a 

longer rain season between March to May. Between these seasons are two dry periods, a 

short dry period between December to February and a long dry period from June to August. 

Rainfall is around 1500 mm per annum in the north and northwest volcanic highland areas. 

Rubavu District: It is composed by 12 administrative sectors as presented on Figure 3; 

Rubavu District is located in the Western Province at 152 km from Kigali. It is bordered on 

the east by Nyabihu District, West and North by DR Congo and South by Rutsiro District. 

Rubavu District has an equatorial climate with temperatures ranging between 15°C – 20° C, 

but at night-time temperatures can drop to 6°C especially at the vertices, the average 

altitude is between 1300 to 3000 m above the sea level, with average annual rainfall of 

1200 to 1500 mm. The coordinates of the district are: 1.505o and 1.767oS and, 29.244o and 

29.437
o
 E (Rubavu, 2013).  

Muhanga District: It is one of the eight districts comprising the Southern Province. The 

District covers an area of 647.7 km
2
 and, it is neighbouring the Districts of Gakenke in the 
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North, Kamonyi in the East, Ruhango in the South and Ngororero in the West. The 

coordinates of the district are: 1.73o and 2.145o S and, 29.614o and 29.819oE. 

One part of Muhanga District is located in the "central plateau" of the country with 

topography of hills type. With high and low peaks, this part constitutes one of the best 

elements of the central "plateau" of the country. The other part of the District is on the high 

mountains of the Nil-Congo, in general the altitude has average of 1500 – 2300 m above 

the sea level. The District is located in an area well-watered, between 1100 mm and 1200 

mm of rainfall per year, with temperature of 15 to 22
o
C. This region enjoys a climate of 

four seasons of which two rainy seasons and two dry seasons: a short rainy season, which 

extends from October to December, a short dry season that runs from January to February, 

and a long rainy season from March to June and a long dry season from June to August or 

early September. (Muhanga, 2013). 

Karongi District is one of the seven Districts in the Western Province. It is bordered by 

Rutsiro to the north, Ngororero and Muhanga districts to the north-east, Nyamasheke and 

Nyamagabe districts to the south, Ruhango district to east and it borders with the 

Democratic Republic of Congo and Lake Kivu to the west. Karongi is among the districts 

of Rwanda which has a high density, with 334 persons per square kilometre and faces high 

demographic growth with average annual growth rate of 1.7 %. Karongi District is divided 

into 13 administrative sectors, (Imirenge). The District experiences tropical climate of high 

altitude. It is one of Rwanda regions which have high rainfall. The amount of rainfall in the 

district benefits the area and It is characterized by two dry seasons covering the period from 

December to January and from June to mid September, and It is also characterized by two 

rainy seasons the long rains start in mid-September and end in December and from 

February to June. Karongi district is characterized by highlands area with steep features and 

altitude varying between 1470 to 2200 m above the sea level, temperature varies between 

16 – 21oC with rainfall ranging from 1100 to 1500 mm. its coordinates are 1.73o and 

2.145
o
S and 29.614

o 
and 29.819

o
E. The Figure 4 summarizes the topography of study area.  
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Figure 4: Topographic map of the study area (Muhanga, Karongi and Rubavu)  

(Source: Author, 2015) 
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3.2 Research Design 

This study was intended to evaluate the possible impacts of climate variability on malaria 

prevalence in Rwandan highlands. The design of the research was developed from the 

theory which states that “in East African highlands every 1000 m increase in altitude is 

associated with a 6.5oC decrease in temperature”. From this theory, Rwandan highlands 

were used as shelter against malaria.  

The study design was descriptive survey using longitudinal data (2004-2014), collected 

from health centres and meteorological stations selected using multistage cluster sampling 

of districts in highlands area of Rwanda and from district to sectors making the catchment 

of health centres. Data analysis used regression, correlation and model development for 

future prediction.   

 

3.3 Study population  

The population covered in this study are from western region of Rwandan highland in the 

period of 2004 to 2014, the districts of study was selected based on their location in the 

range of Congo-Nile divide, where altitude is more regular with less valleys. The study 

included health centres and malaria cases identified in the period of study over a total 

population of 1,117,814 equivalents to 9.3% of national total population. According to 

(Ministry of Health, 2012), the total health centres in this area was 81 supervised by 8 

District Hospitals, distributed in five Districts of study area over total 30 Districts.  Since 

the entire area of western highland of Rwanda could not all be covered, it was necessary to 

sample a small number of population. 

3.4 Sampling procedure 

3.4.1 Multistage cluster sampling  

This sampling procedure was selected because it was not possible to compile a list of the 

element composing population (Cresswell, 2009), in a multistage cluster sampling 

researcher indentified first the groups. According to Hedt-Gauthier (2014), multistage 
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cluster sampling means that the sample increasingly smaller, embedded units. In this case 

selection of malaria cases in the period of 2004-2014, embedded in (or “clustered in”) 

Health centres, and health centre which are clustered in districts, as indicated on Figure 5. 

 

Figure 5: Rwanda health system organization indicating health centers and sectors  

(Source: President's Malaria Initiative, 2014) 

A multistage cluster sample of malaria identified selected districts in Rwandan highland, 

and randomly sampled few health centres, based on conditions that health centre was 

operating during the period of study (2004-2014), and record of malaria has remained 

uniform, with the same calibration and the same precision. Only 26 health centres had 

enough data for the desired study period as reports in HMIS were indicating. This was 

consisting of a two-stage cluster sample with District as stage one, and Health centres as 

stage two. Study found 145,159 cases out of 693,112 average populations from 26 

identified Sectors.  
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3.5 Data collection methods  

3.5.1 Research permit and authorization 

Prior to data collection, this study was examined by National Health Research Committee 

for approval, and then forwarded to the Ministry of Education in the Directorate of Science, 

Technology and research who recommended it to Rwanda National Ethic Committee for 

Ethical Clearance delivering. The Ethical Clearance certificate was used to sign a 

memorandum of understanding (MOU) with Malaria and Other Parasitic Disease Division 

of Rwanda Biomedical Centre (All issued documents are presented in Appendix 7). The 

importance of this MOU was to allow the research to be carried out in Rwanda with 

facilitation of different identified institutions.  

3.5.2 Preliminary visit and primary data collection 

The reconnaissance visit was made for locating specific health centers and meteorological 

stations in the study area. All health centers visited, geographical coordinate were recorded 

using GPS. From 2005 Rwanda reshuffled administrative entities that caused the names of 

health centers to change as well. Preliminary visit helped to identify the true names of 

health centers and their catchments which are Sectors (newly established local 

administrative entity). Since every sector was assigned a health center, the identification 

was made with reference to information given by Social Affairs officers in respective 

sectors.  

3.5.3 Malaria cases collection 

Epidemiological data used were monthly malaria cases, between October 2004 and 

December 2014, collected at health centre facility level in each district for routine reporting 

to the HMIS. Data included parasitological confirmed cases symptomatically diagnosed as 

malaria by trained health workers.  
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Data were aggregated at sector’s level for all health facilities in each area as template 

Table presents in appendix 5. Data for 11 years were available in the three districts of 

study area, giving 26 units (equivalent to 26 sectors and health centres). 

3.5.4 Climate data collection 

Time series daily meteorological data of the period 2004–2014 composed by daily 

temperature, rainfall and relative humidity, were obtained from Rwanda Meteorological 

Agency (RMA). The parameters collected were from 3 meteorological stations located in 

study area; Mubuga for Karongi District, Kivumu for Rubavu District and Karambi for 

Muhanga District. Data were computed as mean minimum monthly temperature, mean 

maximum monthly temperature, average of mean maximum and minimum temperature, 

average monthly rainfall and average of relative humidity as indicated on template Table 

in appendix 5. 

3.5.5 Population data generation.  

Population data needed were from 2004 to 2014 and they were interpolated and 

extrapolated using 2002 and 2012 census with growth rates computed using National 

Institute of Statistics census data.  

3.5.6 Spatial data collection and data analysis tools  

Shape file of vector data storage format for health centres (at a scale of 1:250,000) obtained 

from Rwanda Biomedical Centre (RBC).  

Topographic map showing different relief of Rwanda and other maps were obtained from 

Rwanda Natural Resource Authority (RNA),  

Hand held GPS, model Unistrong G3 was used to obtain spatial coordinates,  

Application Soft-wares: Microsoft Excel, STATA, E-views7 and ArcGIS 10.  
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3.5.7 Desk Top Study  

Study combined other sources of data and information, like published and unpublished 

documents, research report, conference proceeding books and government publications for 

discussion and interpretation of results. 

3.6 Data Analysis 

3.6.1 Malaria prevalence rate calculation  

Monthly malaria incidence was calculated for each health centre using total malaria case 

counts from health centres, over total annual population estimates from national census of 

2002 and 2012, times 1000, or 

1000x
periodgivenainPopulation

casesmalariaofNumber
 (2) 

According to (Kirck, 2008). 

The following is the formula used to estimate population from 2004 up to 2014.  

Nt=N0 e
rt
  (3) 

Where Nt =size of population at time t, N0 =size of population at time zero, e=base of 

natural logarithms =2.71828, r=rate of population growth, t=time elapsed.  

Percentage Change = ((Most recent number-Previous number)/Previous number)* 

Percentage. 

Table of population estimation in every sector of health centre’s catchment for the period 

2004-2014 and were presented on appendix1. 

3.6.2 Data cleaning 

Data collected from HMIS in RBC and Rwanda Meteorological Agency (RMA), were first 

cleaned in order to harmonize years, geographical area and data. STATA and EXCEL were 

used interchangeably to clean data.  

The following are the steps in data cleaning using STATA: 
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Removal of unnecessary records like removal of missing values that was represented by 

“0” since there was confusion on missing value and “0” value, Generation of variables, 

Making average of daily records (temperature: Minimum, Maximum and mean, rainfall and 

relative humidity  

Daily measurements were dropped to keep averages only, for better analysis months were 

given a numerical value (not text), month was dropped to keep months numerical only, 

Districts were given the names and values that match the malaria dataset, and excel was 

used to present data in Tables and Figures using pivot method. 

On the other hand, the simple average of meteorological data and malaria cases were used 

to present climate variability and malaria incidence in study area, graphs and tables were 

applied to analyze and interpret acquired data from study area.  

3.6.3 Descriptive statistics analysis 

Descriptive statistics were used for organizing, summarizing, and presenting data in an 

informative way using tables, figures and maps. Average was computed for all variables 

and median to fill missing data, standard deviation to present variability of climate and 

malaria prevalence. Descriptive statistic was used also to make a comparison between 

variables of study with seasons of the year; long rain season, short rain season, long dry 

season and short dry season. 

Data were normalised using mathematical transformations; for example, natural logarithm 

transformation was employed to obtain a more homogeneous variance of a series to be used 

in simple and multiple linear regressions and forecasting. Logarithmic transformation was 

used to avoid spurious prediction since data were not collected in the same units. E.g: 

Temperature in ‘degree centigrade’ and rainfall in ‘mm’.  
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3.6.4 Inferential statistics analysis 

Simple linear regression 

Simple Regression Analysis was applied to establish climate parameters and malaria 

incidence correlation with time (2004 to 2014), and to deduce coefficient of correlation and 

determinant coefficient R
2
. For further analysis, the study required the establishment of 

relationships between climate variability and malaria incidence in the highland of Rwanda. 

3.6.5 Multiple Linear Regression Model 

The aim is to model the dependence of malaria incidence on covariates including maximum 

temperature, minimum temperature, and average of minimum and maximum temperature, 

rainfall and relative humidity in Rwandan highlands. Assuming other factors hardly to 

control were held constant. Throughout this study adoption of the following notation for the 

variables: x1 is temperature, x2 is rainfall while x3 is relative humidity. 

The model is:  

y = ß0 + ß1X1 + ß2X2 + ß3X3+ε  (4) 

Where ε is a random error with a mean of zero and a constant standard deviation σ. The 

model was estimated by finding the coefficients of the x values that make the error sum of 

squares as small as possible. In other words, the estimated model equation was 

ŷ= b0 + b1x1 + b2x2 + b3x3+ε  (5) 

With y = estimation of malaria incidences 

bo was intercept 

b1, b2 and b3 were regression coefficients 

x1 was the independent variable temperature 

x2 was the independent variable rainfall 

x3 was the independent variable relative humidity. 

Significance level used was 5%:  which is the probability of rejecting null hypothesis when 

it is true.  
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The explanation power (squared correlation R
2
): The R

2
 measures the goodness of fit of the 

regression model and indicated the explanatory power of the model. The R2 was used to 

measure the proportion of variations in malaria incidence that is caused by variation in 

climate parameters. A high R2 represented a higher influence of climate parameter, while a 

low R
2
 signified a weak relationship between climate variation and malaria incidence.   

The following Figure 6 summarizes the strength and direction of the Pearson coefficient of 

correlation computed from linear regression analysis. 
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Figure 6: Measure of the strength of the linear relationship between variables  

(Source: Bryan & Manly, 2000) 

3.6.6 Global test: Test of multiple Regression Model validity 

The ability of the independent variables: X1. X2, X3 to explain behaviour of the dependent 

variable Y can be tested. To put this in question form: can the dependent variable estimated 

without relying on the independent variable? The test used is referred to as the global test. 

Basically, it investigated whether it is possible for all independent variables to have zero 

net regression coefficients. To put it in another way, could the amount of explained 

variation, R
2
, occur by chance? (Lind et al., 2001). 

In this study, there was three independent variables, b1, b2 and b3 are sample net regression 

coefficients, the corresponding coefficients in the population are given the symbols β1, β2 

and β3. Test was made to see whether the net regression coefficients in the population are 

zero. The null hypothesis was: 

Ho: β1 = β2 = β3 = 0 
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3.6.7 Seasonal time series forecasting using Seasonal Autoregressive Moving Average 

(SARMA)  

Time series model was used; to monitor malaria situation in the study area and forecast 

with modeling and detection of seasonal transmission patterns in the distribution of malaria 

in the study area. 

Forecasting methods was quantitative since the data collected on malaria incidence 

temperature, rainfall and relative humidity was available and could be quantified. It was 

assumed that the pattern of the past will continue into the future, therefore the growth rate 

of climatic parameters were added to the average of every month to yield future malaria 

predictors till 2019. In such case, forecast was developed using a time series method or a 

causal method. The analysis focused exclusively on quantitative forecasting method. 

The E-view package used dynamic Model: The data here was fitted as  

xt= f(xt-1 , xt-2 , xt-3 …). (6) 

Auto Regressive Moving Average model, where the autoregressive component is of order p 

and the moving average part is of order q, or ARMA (Autoregressive Integrated Moving 

Average) (p, q) was: 

0

1 1

p q

t i t i j t j t

i j

Y Yα α θ ε ε
− −

= =

= + + +∑ ∑  (7) 

The following command was used in e-views  

ls lnincidence c @trend @expand(@month, @dropfirst)  

The command @expand(@month) creates 12 dummy variables, one for each month of the 

year, which are seasonal factors. Because constant has been included, it needs to exclude 

one of the dummy variables in order not to fall in the dummy variable trap. January was 

excluded, by using option @dropfirst. 

Time Series Models and Forecasting used Multivariate analysis, where the observations are 

of multiple variables. 
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3.6.7.1 Validation of forecasting assumption   

Assumption of predictors values was validated based on what has been published by 

different scholars; According to the United Nations Intergovernmental Panel on Climate 

Change, the 20
th

 century has been warmed 0.8
o
C higher than the previous ones and only the 

last 3 decades get 0.6
o
C warmer than before. Average global temperatures will increase 

between 1.8oC and 4.0oC. Extremes of the hydrologic cycle (e.g, floods and droughts) are 

also expected to accompany global warming trends (Patz et al., 2008). Rwanda has 

experienced a temperature increase of 1.4
o
C since 1970, higher than previous global 

average, and can expect an increase in temperature of up to 2.5
o
C by the 2050s from 1970.  

Rainfall is highly variable in Rwanda but average annual rainfall may increase by up to 

20% by the 2050s and 30% by 2080 from 1970 (Republic of Rwanda, 2011). Recent work 

on creating and analyzing the first global humidity dataset has shown that RH is almost 

constant on large spatiotemporal scales, but considerable regional structure and temporal 

variability remains (e.g. diurnal RH variability may be around 25%) (Lieshout et al., 2004). 

3.6.7.2 Creation of Dummy variables 

Dummy variables were used to deal with categorical independent variables in a multiple 

regression model. Note that when a categorical variable has k levels, k -1 dummy variables 

are required, for this case it is 12-1=11 dummy variables. 

Using ŷ to denote the estimated or forecasted malaria prevalence, the general form of the 

estimated regression equation can be: 

ŷ = bo + b1t+ b2M2 +b3M3+ b4M4+ b5M5+ b6M6+ b7M7+b8M8+b9M9+b10M10+b11M11 

+b12M12  (8) 

Where:   

ŷ = estimated or forecast of malaria prevalence in a period t 

b1t = time period or trend coefficient and time period. 

b2M2 = 1 if time period t corresponds to the second month of the year; 0 otherwise 

b3M3 = 1 if time period t corresponds to the third month of the year; 0 otherwise 

b4M4 = 1 if time period t corresponds to the forth month of the year; 0 otherwise 

b5M5 = 1 if time period t corresponds to the fifth month of the year; 0 otherwise 
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b6M6 = 1 if time period t corresponds to the sixth month of the year; 0 otherwise 

b7M7 = 1 if time period t corresponds to the seventh month of the year; 0 otherwise 

b8M8 = 1 if time period t corresponds to the eighth month of the year; 0 otherwise 

b9M9 = 1 if time period t corresponds to the ninth month of the year; 0 otherwise 

b10M10 = 1 if time period t corresponds to the tenth month of the year; 0 otherwise 

b11M11 = 1 if time period t corresponds to the eleventh month of the year; 0 otherwise 

b12M12 = 1 if time period t corresponds to the twelfth month of the year; 0 otherwise 

3.6.7.3 Forecasting with Exogenous Variables 

Using forecasting with exogenous variables issued from future climate assumption, E-

Views has estimated the model over the period 2011January to 2014 December, for 

malaria incidence data available and used to calculate seasonal factors, trends and different 

coefficients in the model.  

When the forecast sample was set to the entire sample that includes actual historical data, it 

was possible to check for forecast accuracy. E-Views compare the forecasted (predicted) 

values from the model (over the period 2011January to 2014December) to the actual data 

and compute the forecast evaluation table. 

 

Deseasonalizing  

Seasonal patterns were removed from time-series data for easy use by public databases. 

Data that has been stripped of its seasonal patterns which is referred to as seasonally 

adjusted or deseasonalized data, using the formula;  

indexseasonalingCorrespond

y
d t

t =  (9) 

Thereafter excel was used to estimate the trend line and determinant coefficient.  

From malaria prevalence on the seasonal dummy variables with estimated function the 

equation was:  
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Yt = Constant + trendt + Seasonalt, after deseasonalizing the equation became Yt = 

Coefficient + trendt   (12) 

The equation of trend line on the curve y = bo +b1x was expressed as estimated time series 

equation that was adjusted as:  

Tt = bt +bo. It is forecast equation (10) 

The R-squared from this regression provides a better measure of fit when the time series 

exhibits considerable seasonality. 

3.6.7.4 Model validation 

Validation was done by directly comparing model results with malaria cases reported in the 

years not included in the model generation, for testing if model was accurate or greater than 

the tolerance (Committee on Mathematical Foundations of Verification, Validation, and 

Uncertainty Quantification, 2001).  

The results of the model were computed by replacing calculated values in the model 

equation for estimation of malaria incidence in a given time. Malaria cases were current 

data reported in the years 2015 and 2016.    

3.6.8 Spatial statistical analysis 

Quantitative spatial analysis helped to find meaning in spatial data. Quantitative analysis 

method was used to reduce large data sets to smaller amounts of more meaningful 

information, explore data to suggest hypotheses or examine the distribution of data. 

Exploratory data analysis (EDA) techniques were used for this. 

Quantitative methods for spatial data analysis was used in conjunction with seasonal auto 

regressive integrated moving average (SARMA) methods used for non-spatial data because 

of the distinguishing features of spatial data, in this case data were clustered; first according 

to the districts, second according to health centres in different sectors. Observations of 

spatial data are not independent, but it is assumed that features that are close together in 

geographical space are in some way related example: temperature, rainfall and relative 

humidity are interrelated. Different results could also be obtained when applying the same 

technique to the same distribution of data; simply by varying the spatial units used.  
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Quantitative spatial methods used were: 

Exploratory and descriptive statistics. These helped to describe the distribution of spatial 

phenomena. Histogram was created to show the distribution of malaria incidence and 

different climate parameters. 

For exploratory and descriptive statistical models, GIS tools provided attribute data; 

altitude, location of health centres, distances to nearest observations for input into nearest 

neighbour statistics or cluster analysis. 

 

Predictive statistics. These are used to look at relationships between spatial phenomena. 

For example, regression analysis was used to look at the relationship between altitude and 

temperature, rainfall and relative humidity. In this instance, geographical data sets of 

altitude and malaria prevalence were overlaid in the GIS to provide histograms of paired 

observations that show the relationship between the dependent variable (malaria 

prevalence) and the independent variable (temperature, rainfall and relative humidity). Here 

histogram was used for regression analysis and the subsequent model used to predict the 

malaria prevalence for areas in the future. 

Process models 

Process model attempted to describe interaction of the data objects that are modelled in the 

representation model. The relationships were modelled using quantitative spatial analysis 

tools. Since there were many different types of interactions between variables of study, 

ArcGIS was used to provide quantitative mapping analysis. Process modelling that was 

used is referred to as cartographic modelling. Process model was used to describe 

processes, in prediction it gave malaria incidence if temperature continues to raise 

exponentially or if rainfall decreases.  

3.7 Ethical considerations 

The study involved basically accession of health data recoded by health centres and stored 

as database and publicly available, such as malaria cases and meteorological data in the 

period of study 2004-2014. They were used for the purpose of this research only, once 
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publication is proposed authorisation from RBC will be important as signed in the 

memorandum of understanding in 2015.      

3.8 Limitations of study 

The study on impact of climate variability on malaria incidence in Rwandan highland for 

the period of 2004 – 2014 was first and foremost limited by data availability; it was 

intended to cover the whole region of highland, this was not possible due to irregularities in 

malaria cases reporting at health centre’s levels. Even the reported cases had some gaps that 

were filled using median calculation of data in the same months of the year. The period 

covered by this study should be extended even up to 30 years but it was not possible due to 

the shortage of climatic data to cover such long period.     

There were limitations in future projections of variations and its impacts especially spatial 

projection because of digital elevation model maps shortage. Other limitations aroused due 

to uncertainty on how mankind will alter the climate in the future for prediction. For 

instance, limitation in future climate variation depends on the future socio-economic which, 

in turn, depends on factors such as population, economic growth, technology development, 

energy demand, methods of supply, and land use. Projection was based on assumption by 

which, all parameters that we could not control remained stable.  
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CHAPTER FOUR 

RESULTS, ANALYSIS AND INTERPRETATION 

4.0 Introduction 

This research Analyzed and predicted possible impacts of climate variability on Malaria 

incidence in Rwandan highlands. This was to confirm whether malaria vectors for many 

years found in lowlands and not found in highlands, had shifted due to variation of climatic 

conditions.  

This chapter presents the results and interpretation of analysis. 

4.1 Variation of temperature, rainfall and relative humidity in Rwandan highlands for 

the period of 2004 - 2014. 

Climatic data presented were from three district: Muhanga (data from Karambi 

meteorological station), Rubavu (data from Kivumu meteorological station) and Karongi 

(Data from Mubuga meteorological station), where altitude varies between m1496 and 

m3000. These data are divided into minimum, maximum, average of both temperatures 

minimum and maximum, rainfall and relative humidity.  

Data collected indicated that, in the period of 2004 - 2014 minimum temperature varied 

between 8.03 and 14.56
o
C, maximum temperature varied between 23.31 and 25.28

o
C, 

average of mean temperature varied between 16.35 and 19.54oC. Rainfall varied between 

95.62 and 156.94 mm, while relative humidity varied between 66.10 and 72.24 % as the 

Table 1 gives summary of data while appendix 6, Figures 7-12 indicate variation of climate 

parameters. 
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Table 1: The values of Climatic variables over 11 years in three districts 

 

Year  AV_MAX_TEMP 

(in 
o
C)  

AV_MIN_TEMP 

(in 
o
C) 

AV_MEAN_TEMP 

(in 
o
C) 

RAINFALL 

in 

mm/Month 

AV_MEAN_HUM 

In % 

2004       24.44        8.25          16.35   107.44 72.24 

2005 25.28 8.03 16.66 98.92 69.72 

2006 24.52 11.73 18.11 120.14 69.75 

2007 23.31 13.02 18.19 98.62 71.03 

2008 23.59 14.54 19.07 95.62 73.68 

2009 24.09 14.34 19.19 96.48 70.35 

2010 24.05 13.60 19.54 113.38 68.29 

2011 23.94 12.60 18.17 124.28 70.72 

2012 24.35 13.55 18.99 109.13 68.86 

2013 24.40 14.56 19.49 104.49 66.10 

2014 24.28 13.06 18.45 156.94 66.67 

 

Total 

24.19 12.79 18.53 111.69 69.58 
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Figure 7: Standard deviation of annual temperature in 3 Districts. 
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Figure 8: standard deviation of annual precipitation in 3 Districts 
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Figure 9: Standard deviation of annual relative humidity in 3 Districts 
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 Figure 10: Variation of temperature for a period of 11 years in 3 Districts 
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Figure 11: Variation of rainfall for a period of 11 years in 3 Districts 
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y = 0.3148x + 5.7099

R² = 0.4572
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Figure 12: Variation of relative humidity for a period of 11 years in 3 Districts 

 

As Table 1 indicated, maximum temperature did not vary significantly in the period of 

2004-2014, it went from 23.31
o
C in 2007 to 25

 o
C in 2005, while minimum temperature 

varied between 8.02 oC in 2005 to 14.55 oC in 2013, average of minimum and maximum 

temperatures stood at 19.54
 o

C in 2010 and 16.34
 o

C in 2004. Rainfall had important 

variation because since 2011 the value was above 100mm; it was even 156.93mm in 2014. 

The lowest value of rainfall was in 2010 with 92.36mm. Relative humidity indicated 

reduction during the period of study; it went from 72.23% in 2004 to 68.29% in 2010.   
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4.2 Malaria incidence in Rwandan highlands for the period 2004 - 2014. 

The second objective of the study was to determine malaria incidence in Rwandan 

highlands for the period 2004-2014. To achieve this objective, data collected from 

respective health were analysed and presented on Table 2 

Table 2: Malaria incidence in study area for the period 2004 – 2014. 

 

Year Karongi growth 

rate% 

Muhanga growth 

rate % 

Rubavu  growth 

rate% 

Grand 

Total 

2004 8.62  28.02  3.43  14.15 

2005 9.37 8.7 20.29 -27 3.92 14 11.78 

2006 11.47 22 22.60 11 4.91 25 13.64 

2007 5.40 -52 6.64 -70 2.75 -44 5.10 

2008 3.53 -34 4.25 -35 1.96 -28 3.35 

2009 4.84 37 6.34 49 2.17 10 4.63 

2010 1.18 -75 3.80 -40 1.16 -46 2.12 

2011 0.07 -94 1.77 -53 0.05 -95 0.68 

2012 0.33 371.4 1.93 9 0.12 140 0.85 

2013 1.64 397 6.53 238 0.14 16.6 2.98 

2014 5.04 207 11.61 77 0.45 221 6.12 

Grand 

Total 

4.39  9.05  1.80  5.35 

 

The Table 2 indicated that Muhanga had the highest incidence 28/1000 in 2004 but later 

came to 1.77/1000 in 2011. The second in malaria incidence was Karongi where the highest 

incidence was in 2006 with value of 11.47/1000, which reduced to 0.07/1000 in 2011. 

Rubavu had the lowest incidence among the three districts since the highest value of 

incidence was observed in 2006 at 4.91/1000 and the lowest value of incidence was 

observed in 2011 and it was 0.05/1000. The growth rate indicated the presence of malaria 

in Rubavu but at the lowest level. 

4.2.1 Malaria variation in Study area 

In study area, malaria incidence indicated variation similar to national variation Figure 31, 

what has been observed in study area is that; the altitude is inversely proportional to 
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malaria incidence; this gives an opportunity to classify the districts of study area according 

to their malaria incidence as follow: Muhanga, Karongi, and then Rubavu. The Figure 13 

presented variation of malaria in different districts over the period 2004-2014. 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

M
a

la
ri

a
 i

n
ci

d
e

n
c
e

Years

Karongi

Muhanga

Rubavu 

 

 Figure 13: Variation of malaria incidence in study area 

 

4.3 Relationship between climate parameters and malaria prevalence in Rwandan 

highlands for the period 2004-2014.  

The third objective of this study was to establish the relationship between climate 

parameters (temperature, rainfall and relative humidity) and malaria prevalence. Data were 

collected in three districts and presented in Table 3.  
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Table 3: Average malaria incidence, temperature, rainfall and relative humidity for 2004-

2014 

Year 

Malaria 

incidence 

Max 

temp 

in 
o
C 

Min 

Temp in 
o
C 

Mean 

temp 

in 
o
C 

Av of 

Rainfall 

Rel 

Hum 

2004 14.44 24.44 8.24 16.34 107.44 72.23 

2005 12.46 25.27 8.02 16.65 98.91 69.72 

2006 14.31 24.51 11.72 18.10 120.13 69.74 

2007 5.03 23.31 13.02 18.18 98.62 71.02 

2008 2.88 23.58 14.54 19.07 95.61 73.67 

2009 4.22 24.08 14.34 19.19 96.47 70.35 

2010 1.65 24.05 13.60 19.54 113.38 68.29 

2011 0.08 23.94 12.60 18.16 124.60 70.71 

2012 0.26 24.35 13.55 18.99 109.12 68.86 

2013 2.47 24.40 14.55 19.48 104.49 66.09 

2014 5.73 24.28 13.05 18.44 156.93 66.66 

Grand 

Total 5.14 24.18 12.78 18.53 108.11 69.58 

 

Table 3 indicated that malaria incidence varied between 12/1000 and 14/1000 between 

2004 and 2006, after it reduced sensibly to 5/1000 in 2007, since then the lowest value 

stood in 2011 at 0.08/1000. There was a linear increase from 2011 and following years as 

Table 3 gives the detail on this variation. 

4.3.1 Seasonal variation of malaria incidence  

Rwanda annual weather is divided into four seasons; long dry season from June to mid-

September, Short rain season in mid-September, October, and November, Short dry season 

in December to February, Long rain season March, April and May (MAM). These seasons 

affect malaria distribution in the country. 

Malaria transmission occurs year-round with two peaks (May-June and November-

December) in Rwanda, following distinct rainy seasons (MINISANTE, 2011). Figure 14 

presented malaria prevalence according to different seasons of the year from 2004 to 2014.  
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Muhanga always presented high annual malaria prevalence than others, secondly comes 

Karongi and lastly Rubavu. But the growth rate was higher in Karongi.  
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Figure 14: Monthly malaria incidence in study area for 11 years. 

 

From the Figure 14, the month of March showed important peaks of transmission in 

Karongi and Muhanga, while in Rubavu additional peak was observed in February. In 

December, except Karongi other curves were different. Annual May/June’s peaks of 

transmission remained throughout the area of study.  
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4.3.2 Malaria trend variation according to the seasons of the year  

Long rain Season 

Long rain season is extended over March, April and May, expressed moderate malaria 

incidence, this season is among the wet seasons of Rwandan climate. In the period of study, 

2006 had the highest incidence in the three districts starting from Muhanga, Karongi then 

Rubavu. Growth rate indicated Karongi with 78.81%, Rubavu 21%, then Muhanga 15%. 

For malaria incidence Muhanga continued to lead the series but growth rate was less than 

Muhanga’s. The variation of malaria incidence in the long rain season for the period 2004-

2014 is presented on Figure 15.   
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Figure 15: Long rain season malaria incidence for the period 2004-2014 

 

Generally the average monthly rainfall in the area of study was around 150.22mm (with 

maximum of 289.96 mm in 2014 and minimum of 81.73 mm in 2009). For the districts; 

Muhanga had average of 198.34mm (with maximum of 685.77mm in 2014 and minimum 

of 75.33mm in 2009), Karongi had average of 123.85mm (with maximum of 197mm in 

2013 and minimum of 83.00mm in 2009), and Rubavu had average of 122.25mm with 

(with maximum of 194.67mm in 2012 and minimum of 70.5mm in 2014). Due to heavy 
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rain that is expected in this season, toward the end, malaria transmission became important. 

The average of seasonal malaria prevalence was 5.97/1000. 

In Rubavu, rainy seasons was not favourable for malaria transmission except in 2006 and 

2010 where temperature arrived at 17.05oC and 17.18oC respectively, these values 

corresponded to the increase in incidence as shown on the Figure 15. Otherwise during the 

rainy season in Rubavu malaria incidence was not very important as compared to other 

districts.  

Long dry Season 

It covers the month of June to mid-September; the average of malaria incidence was 

4.79/1000.  Muhanga in this season remained with highest malaria prevalence than other 

remaining two districts of study, as Figure 16 presents. 
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Figure 16: Long dry season malaria incidence for the period 2004-2014 

 

Generally the quantity of average rainfall was 67.02mm with maximum of 95.86mm in 

2011 and minimum of 43.68mm in 2009, values that are below the required quantity of rain 

for seasonal malaria transmission, but this period comes after long rain season that leaves 

behind breading sites for mosquitoes. The peak of malaria transmission on Figure 16, are 

on the month of June where transmission is high because this month comes after May of 
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the long rain season. Rubavu had the lowest malaria prevalence in this season but with 

highest quantity of rainfall.  

Long dry season had average temperature of 18.47
o
C with 20

o
C in Karongi, 19.19

o
C in 

Muhanga and 15.56oC in Rubavu. The temperature was in the threshold of malaria 

transmission. 

Relative humidity was 64.91% with 57.05% in Muhanga, 67.43% and 71.78% in Karongi 

and Rubavu, all of these values were in the range of malaria transmission.  

Short rain Season 

This season starts from mid-September to November. It was characterized by low malaria 

incidence and trended to increase at the end of season in November as Figure 17 presents. 

Muhanga came with the highest level of malaria transmission especially in 2004, 2006 and 

after 2012 where the incidence values were above 12/1000. For Karongi, in the short rain 

season 2005 showed special increase of incidences that was above Muhanga’s, and increase 

was higher after 2012 for Muhanga and Karongi.  

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

10 9 11 10 9 11 10 9 11 10 9 11 10 9 11 10

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

M
a

la
r
ia

 i
n

c
id

e
n

c
e

Years

Karongi

Muhanga

Rubavu 

 

Figure 17: Short rain season malaria incidence for the period 2004-2014 
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The month of November is in the triad of short rain season, the month that was reported by 

MINISANTE (2011) for having high peak of malaria incidence with June. November 

comes after September and October the months in which rain is less intense compared to 

long rain season. In the period of study, the average of rainfall in this season was 

128.73mm with maximum of 174.48mm in 2011 and minimum of 92.44mm in 2004. 

Average temperature was 19.91oC during this season with 19.73oC in Karongi, 20.61oC in 

Muhanga and 15.66
o
C in Rubavu, the latter had the lowest malaria incidence that was 

corresponding to low value of temperature. Relative humidity was very high, with 69.78% 

of average, 62.68% in Muhanga, 72.29% in Karongi and 75.67% in Rubavu. 

Short Dry Season 

The season covers the month of December, January and February, it is a short dry season 

but rain is very important. Average malaria incidence was 5.08/1000 and the highest 

incidence was in Muhanga 8.53/1000, Karongi had 4.19/1000 and Rubavu 1.77/1000 as the 

Figure 18 gives detail. 
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Figure 18: Short dry season malaria incidence for the period 2004-2014 

 

From the Figure 18 rainfall indicated high variability that was between 69.70mm in 2012 

and 149.56mm in 2009; Karongi had average rainfall of 129.69mm, while Muhanga and 

Rubavu had 119.4mm and 119.08mm respectively.    
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As compared to other seasons of the year, the short dry season showed important difference 

of malaria incidence and the peak of malaria incidence in February.  

Temperature during the short dry season was in the minimum requirement of malaria life 

cycle to be completed except Rubavu; Karongi had average of 19.65oC, Muhanga 19.76 oC 

and Rubavu 15.23
o
C.  

Relative humidity during the short dry season was at the average of 71.60%; with 73.87% 

in Karongi, 64.44% in Muhanga and 77.89% in Rubavu. 

4.3.3 Multiple linear regression analysis of malaria incidence on climate variables 

Multiple linear regression analysis was done using E-views7; results for respective districts 

are presented in Tables 4, 5 and 6. Note that temperature was presented in its 3 levels; 

Maximum temperature, Minimum temperature and mean temperature for each district. The 

tables were differentiated using letters a, b and c. 

 

 Table 4: Multiple linear regression analysis of malaria incidence on temperature, 

rainfall and relative humidity for Karongi District 

  

 Table 4 (a) Maximum temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 432   

Included observations: 430 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 148.1823 9.272569 15.98071 0.0000 

MAXIM TEMPER -50.35173 4.077830 -12.34768 0.0000 

RAINFALL 0.124108 0.024334 5.100125 0.0000 

RELAT 

HUMIDITY 2.747544 1.939688 1.416488 0.1574 

R(-1) 0.341178 0.045852 7.440885 0.0000 

     
     R-squared 0.472403     Mean dependent var -1.864316 

Adjusted R-squared 0.467437     S.D. dependent var 2.888298 

F-statistic 95.13461     Durbin-Watson stat 1.326191 

Prob(F-statistic) 0.000000    
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Regression equation for predicting malaria incidence on maximum temperature, rainfall 

and relative humidity was: 

Malaria incidence = 148.18 - 50.35*maximum temperature + 0.12*rainfall + 2.74* relative 

humidity + 0.34 

The final model after removing the relative humidity, whose significance was higher than 

5%, regression was: ŷ = 146.63 – 46.23x1 + 0.132x2+0.345 

 

Table 4(b) Minimum temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 432   

Included observations: 430 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 55.35760 15.15730 3.652206 0.0003 

MINIM TEMPER 1.125088 4.384307 0.256617 0.7976 

RAINFALL 0.183503 0.027870 6.584274 0.0000 

RELAT 

HUMIDITY -14.22760 1.636390 -8.694500 0.0000 

R(-1) 0.397211 0.053585 7.412717 0.0000 

     
     R-squared 0.283243     Mean dependent var -1.864316 

Adjusted R-squared 0.276497     S.D. dependent var 2.888298 

F-statistic 41.98704     Durbin-Watson stat 1.096756 

Prob(F-statistic) 0.000000    

     
     Regression equation for predicting malaria incidence on minimum temperature, rainfall and 

relative humidity was: 

Malaria incidence = 55.35 + 1.12*minimum temperature + 0.18*rainfall - 14.22*relative 

humidity + 0.39  

The final model after removing minimum temperature, whose significance was higher that 

5%, regression was: 

ŷ = 58.83 + 0.18x2 - 14.33x3 + 0.39. 
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Table 4(c) Mean temperature 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 432   

Included observations: 430 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 226.6965 15.99753 14.17072 0.0000 

AVERAGE 

TEMPER -73.43792 6.500737 -11.29686 0.0000 

RAINFALL 0.146310 0.024608 5.945658 0.0000 

RELAT 

HUMIDITY -2.167054 1.758357 -1.232431 0.2185 

R(-1) 0.416646 0.046653 8.930746 0.0000 

     
     R-squared 0.448682     Mean dependent var -1.864316 

Adjusted R-squared 0.443493     S.D. dependent var 2.888298 

F-statistic 86.46983     Durbin-Watson stat 1.228338 

Prob(F-statistic) 0.000000    

     
      

Regression equation for predicting malaria incidence on mean temperature, rainfall and 

relative humidity was: 

Malaria incidence = 226.69 - 73.43*mean temperature + 0.14*rainfall - 2.16*relative 

humidity + 0.41 

The final model after removing relative humidity, whose significance was higher that 5%, 

regression was: 

ŷ = 232.69 – 78.34x1 + 0.14x2+0.41. 
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Table 5: Multiple linear regression analysis of malaria incidence on temperature, 

rainfall and relative humidity for Muhanga District 

 

Table 5(a) Maximum temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 432   

Included observations: 430 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 3.187325 4.222494 0.754844 0.4508 

MAXIM TEMPER -1.606847 2.032223 -0.790685 0.4296 

RAINFALL -0.008309 0.032484 -0.255781 0.7982 

RELAT 

HUMIDITY 0.362632 1.056112 0.343365 0.7315 

R(-1) 0.774762 0.031416 24.66108 0.0000 

     
     R-squared 0.594019     Mean dependent var -0.563948 

Adjusted R-squared 0.590198     S.D. dependent var 3.040058 

F-statistic 155.4621     Durbin-Watson stat 1.432114 

Prob(F-statistic) 0.000000    

     
     Regression equation for predicting malaria incidence on maximum temperature, rainfall 

and relative humidity was: 

Malaria incidence = 3.18 - 1.6 maximum temperature - 0.0083 rainfall + 0.36 relative 

humidity + 0.77. 

From the Table 7 (a), model was not possible at 5%. 
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Table 5(b) Minimum temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 432   

Included observations: 430 after adjustments  

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
C -13.44862 6.409638 -2.098187 0.0365 

MINIM TEMPER 4.109401 1.706971 2.407424 0.0165 

RAINFALL -0.038849 0.032724 -1.187153 0.2358 

RELAT 

HUMIDITY 0.502929 0.735419 0.683868 0.4944 

R(-1) 0.767722 0.031377 24.46768 0.0000 

     
     R-squared 0.598892     Mean dependent var -0.563948 

Adjusted R-squared 0.595117     S.D. dependent var 3.040058 

F-statistic 158.6414     Durbin-Watson stat 1.429760 

Prob(F-statistic) 0.000000    

     
     Regression equation for predicting malaria incidence on minimum temperature, rainfall and 

relative humidity was: 

Malaria incidence = -13.44 + 4.10 minimum temperature - 0.038 rainfall + 0.5 relative 

humidity + 0.76.  

Final model after removing rainfall and relative humidity whose significances were higher 

that 5%   regression was:  

ŷ = – 8.33 + 2.91x1+0.76 
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Table 5(c) Mean temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 432   

Included observations: 430 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.326030 2.854176 0.114229 0.9091 

AVERAGE 

TEMPER 0.490824 1.812029 0.270870 0.7866 

RAINFALL 0.010272 0.031689 0.324135 0.7460 

RELAT 

HUMIDITY -0.583810 1.277080 -0.457144 0.6478 

R(-1) 0.776168 0.031400 24.71840 0.0000 

     
     R-squared 0.593492     Mean dependent var -0.563948 

Adjusted R-squared 0.589667     S.D. dependent var 3.040058 

F-statistic 155.1228     Durbin-Watson stat 1.439832 

Prob(F-statistic) 0.000000    

     
     Regression equation for predicting malaria incidence on mean temperature, rainfall and 

relative humidity was: 

Malaria incidence = 0.32 + 0.49 mean temperature + 0.01 rainfall - 0.58 relative humidity+ 

0.77 

Model was not possible at 5% 

The observation was the same as observed for maximum temperature in Muhanga. 
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Table 6: Multiple linear regression analysis of malaria incidence on temperature, 

rainfall and relative humidity for Rubavu District 

 

Table 6(a) Maximum temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 336   

Included observations: 334 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob. 

     
     C -50.60351 9.945617 -5.088021 0.0000 

MAXIM TEMPER 10.13012 1.242413 8.153586 0.0000 

RAINFALL 0.056552 0.058770 0.962268 0.3366 

RELAT 

HUMIDITY 3.741345 1.973696 1.895604 0.0589 

R(-1) 0.208647 0.054232 3.847286 0.0001 

     
     R-squared 0.203098 Mean dependent var -2.976366 

Adjusted R-squared 0.193409 S.D. dependent var 2.092225 

F-statistic 20.96214 Durbin-Watson stat 1.558641 

Prob(F-statistic) 0.000000    

     
     Regression equation for predicting malaria incidence on maximum temperature, rainfall 

and relative humidity was: 

Malaria incidence = -50.60 + 10.13 maximum temperature - 0.056 rainfall + 3.74 relative 

humidity + 0.20.  

Final model after removing rainfall whose significance was higher that 5% regression was:  

ŷ = -52.31 + 9.99 x1 + 4.3x3+0.20. 
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Table 6(b) Minimum temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 336   

Included observations: 334 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -8.659321 9.256434 -0.935492 0.3502 

MINIM TEMPER 0.550255 0.365113 1.507081 0.1327 

RAINFALL -0.007121 0.064065 -0.111151 0.9116 

RELAT 

HUMIDITY 1.033770 2.132006 0.484881 0.6281 

R(-1) 0.222571 0.059226 3.758017 0.0002 

     
     R-squared 0.048636     Mean dependent var -2.976366 

Adjusted R-squared 0.037069     S.D. dependent var 2.092225 

F-statistic 4.204781     Durbin-Watson stat 1.269019 

Prob(F-statistic) 0.002468    

     
     Regression equation for predicting malaria incidence with minimum temperature, rainfall 

and relative humidity was: 

Malaria incidence = -8.65 + 0.55 minimum temperature - 0.007 rainfall + 1.03 relative 

humidity + 0.22 

Model equation was not possible at 5% level of significance. 
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Table 6(c) Mean temperature 

 

Dependent Variable: MALARIA INCIDENCE  

Sample (adjusted): 3 336   

Included observations: 334 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -31.73941 9.758652 -3.252438 0.0013 

AVERAGE 

TEMPER 3.757880 0.791362 4.748623 0.0000 

RAINFALL -0.003972 0.001697 -2.341219 0.0198 

RELAT 

HUMIDITY 4.357348 2.136332 2.039640 0.0422 

R(-1) 0.208062 0.057198 3.637574 0.0003 

     
     R-squared 0.117838     Mean dependent var -2.976366 

Adjusted R-squared 0.107113     S.D. dependent var 2.092225 

F-statistic 10.98685 

    Durbin-Watson stat or 

DW 1.407632 

Prob(F-statistic) 0.000000    

     
     Regression equation for predicting malaria incidence with mean temperature, rainfall and 

relative humidity was: 

Malaria incidence = -31.73 + 3.75mean temperature - 0.004rainfall + 4.35 relative humidity 

+ 0.21 

Final regression model at 5% was:  

ŷ= -31.73 + 3.75x1 – 0.004x2 + 4.35x3+ 0.21  
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Table 7: Summary of multiple linear regressions and test of hypothesis  

 

Temperature Regression equation R-square

Corelation 

coefficient 

Valid parameters at 

5% Model equation

Max Temp ŷ=148.18-50.35x1+0.12x2+2.74x3+0.34 0.47 0.68 Max Temp, Prec ŷ=146.63-46.23x1+0.132x2+0.345

Mini Temp ŷ=55.35+1.12x1+0.18x2-14.22x3+0.39 0.28 0.5 Prec, Relat hum ŷ=58.83+0.18x2-14.33x3+0.39

Aver Temp ŷ=226.69-73.43x1+0.14x2-2.16x3+0.41 0.44 0.66 Av temp, prec ŷ=232.69-78.34x1+0.14x2+0.41

Max Temp ŷ=3.18-1.6x1-0.0083x2+0.36x3+0.77 0.59 0.76 None Absent

Mini Temp ŷ=-13.44+4.10x1-0.038x2+0.5x3+0.76 0.59 0.76 Minimum temp ŷ=-8.33+2.91x1+0.76

Aver Temp ŷ=0.32+0.49x1+0.01x2-0.58x3+0.77 0.59 0.76 none Absent

Max Temp ŷ=-50.60+10.13x1+0.050x2+3.74x3+0.20 0.2 0.44 Max Temp, Rel Hum ŷ=-52.31+9.99x1+4.3x3+0.20

Mini Temp ŷ=-50.60+10.13x1+0.050x2+3.74x3+0.20 0.04 0.2 None Absent

Aver Temp ŷ=-50.60+10.13x1+0.050x2+3.74x3+0.20 0.11 0.33 Av temp, prec, hum ŷ=-31+3.75x1-0.004x2+4.35x3+0.21
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Verification of hypothesis  

Ho: b1 = b2 = b3 = 0 

The alternative hypothesis is  

H1: b1 ≠ b2 ≠ b3 ≠ 0, not all the bs are zero and excluding mutually. (There is an influence of 

temperature, rainfall, relative humidity on malaria incidence in Rwandan highland.) Regression 

coefficients are b1, b2, b3 (ŷ= b0 + b1x1 + b2x2 + b3x3 are valid). 

From the Table 7, regression equation indicated the values of bs different from 0, what validate 

alternative hypothesis and rejection of null hypothesis at 5%.  

4.4 Time series analysis and forecasting changes in the incidence of malaria attributable to 

climate variation 

E-Views offers a powerful and easy-to-use forecasting tool that allowed obtaining forecasts from 

estimated models.  

The accuracy of the forecasts depends on the model used to produce the forecasts: E-Views 

simply handle the mechanics of producing the forecasts. 

The forecast involved the level of malaria prevalence for the period from 2011January (the 

period malaria had linear increase) to 2019December. 

To accomplish this task, first it needs to specify and estimate a model. Malaria incidence was 

modelled as a linear function of a time trend and seasonal factors. 

The results were presented in Tables 8, 9. 10. 

 

4.4.1 Forecast analysis of malaria incidence 

A forecast for malaria incidence based on the model produced was performed as shown in 

Figures 19 up to 27, for respective locations indicated. 

Note that, E-Views show the series of equation over the forecast sample, together with 2 standard 

error bands. 

Tables and Figures indicating the values of estimated coefficients, seasonal factors and trend or 

slope with forecasted output till 2019 are presented. On figures time is on the horizontal axis and 

the series values are shown on the vertical axis. 
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Table 8: Estimation output of equation forecasted with exogenous variables for Karongi 

 

Dependent Variable: LNINCIDENCE  

Sample (adjusted): 2011M01 2014M12  

Included observations: 48 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -2.734554 0.310615 -8.803676 0.0000 

@TREND 0.122549 0.006232 19.66356 0.0000 

@MONTH=2 -0.402290 0.409674 -0.981976 0.3329 

@MONTH=3 -0.722418 0.409817 -1.762785 0.0867 

@MONTH=4 -1.479973 0.410053 -3.609219 0.0010 

@MONTH=5 -0.719702 0.410385 -1.753724 0.0882 

@MONTH=6 -0.357940 0.410811 -0.871303 0.3895 

@MONTH=7 -1.140800 0.411330 -2.773441 0.0088 

@MONTH=8 -0.988319 0.411944 -2.399162 0.0219 

@MONTH=9 -1.072737 0.412650 -2.599628 0.0136 

@MONTH=10 -1.299761 0.413449 -3.143700 0.0034 

@MONTH=11 -0.515080 0.414341 -1.243132 0.2221 

@MONTH=12 -0.488837 0.415324 -1.177001 0.2471 

     
     R-squared 0.923546     Mean dependent var -0.620314 

Adjusted R-squared 0.897334     S.D. dependent var 1.807962 

F-statistic 35.23275     Durbin-Watson stat 1.082692 

Prob(F-statistic) 0.000000    
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Included observations: 48

Root Mean Squared Error 0.494672

Mean Absolute Error      0.399956

Mean Abs. Percent Error 76.99903

Theil Inequality Coefficient  0.132930

     Bias Proportion         0.000000

     Variance Proportion  0.019881

     Covariance Proportion  0.980119

 

Figure 19: Forecast Output with Forecast Evaluation table for Karongi 

 

 

Figure 20: Annual seasonal trend of malaria incidence in Karongi 

 

Figures 19 and 20 are presenting the results of time series analysis and forecast; generally in 

Karongi malaria prediction keeps malaria peaks in June and November as well as additional peak 

in January. 

Using the formula, estimation of incidence for month four of 2015 can be:  
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ŷ = -2.73+ b1t + b20 + b30 + b41+ b50+ b60+ b70+b80+b90+b100+b110+b120  

 ŷ = -2.73 + 0.122t + b4*M4 

  For example forecasting of April 2015 

  ŷ = -2.734+0.122*51 – 1.4799*1 

  ŷ = 2.035 

Table 9: Estimation output of equation forecasted with exogenous variables for Muhanga 

 

Dependent Variable: LNINCIDENCE  

Sample (adjusted): 2011M01 2014M12  

Included observations: 48 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.248568 0.198501 1.252225 0.2188 

@TREND 0.053985 0.003983 13.55467 0.0000 

@MONTH=2 -0.016241 0.261806 -0.062036 0.9509 

@MONTH=3 -0.111481 0.261897 -0.425670 0.6730 

@MONTH=4 -0.166526 0.262048 -0.635481 0.5292 

@MONTH=5 -0.105430 0.262260 -0.402006 0.6901 

@MONTH=6 -0.129081 0.262532 -0.491677 0.6260 

@MONTH=7 -0.630689 0.262864 -2.399298 0.0219 

@MONTH=8 -0.554493 0.263256 -2.106291 0.0424 

@MONTH=9 -0.446659 0.263707 -1.693770 0.0992 

@MONTH=10 -0.210008 0.264218 -0.794827 0.4321 

@MONTH=11 0.091435 0.264788 0.345314 0.7319 

@MONTH=12 -0.048811 0.265416 -0.183904 0.8552 

     
     R-squared 0.855481     Mean dependent var 1.323224 

Adjusted R-squared 0.805931     S.D. dependent var 0.840362 

F-statistic 17.26521     Durbin-Watson stat 0.460573 

Prob(F-statistic) 0.000000    
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Figure 21: Forecast Output with Forecast Evaluation table for Muhanga 

 

 

Figure 22: Seasonal trend of malaria incidence in Muhanga 

 

Figures 21 and 22 are presenting the results of time series analysis and forecast; generally in 

Muhanga malaria prediction keeps malaria peaks in June and November and small increase in 

February. 

Using the formula, estimation of incidence for month two of 2015 can be:  
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ŷ = 0.25+ b1t + b21 + b30+ b40+ b50+ b60+0+b80+b90+b100+b110+b120  

ŷ = 0.25 + 0.054x1 + b2*M2 

  For example forecasting of February 2015 

  ŷ = 0.25+0.054*49 – 0.016*1 

  ŷ = 2.88 

Table 10: Estimation output of equation forecasted with exogenous variables for Rubavu 

 

Dependent Variable: LNINCIDENCE  

Sample (adjusted): 2011M01 2014M12  

Included observations: 48 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -2.909484 0.357693 -8.134018 0.0000 

@TREND 0.057954 0.007177 8.075062 0.0000 

@MONTH=2 -0.198354 0.471767 -0.420450 0.6767 

@MONTH=3 -0.697521 0.471930 -1.478016 0.1483 

@MONTH=4 -1.196515 0.472203 -2.533900 0.0159 

@MONTH=5 -0.677244 0.472585 -1.433064 0.1607 

@MONTH=6 -0.359719 0.473075 -0.760385 0.4521 

@MONTH=7 -0.959759 0.473673 -2.026203 0.0504 

@MONTH=8 -1.199507 0.474380 -2.528580 0.0161 

@MONTH=9 -0.834707 0.475193 -1.756563 0.0877 

@MONTH=10 -1.208581 0.476114 -2.538428 0.0157 

@MONTH=11 -0.278682 0.477140 -0.584067 0.5629 

@MONTH=12 -0.011652 0.478273 -0.024362 0.9807 

     
     R-squared 0.714742     Mean dependent var -2.182760 

Adjusted R-squared 0.616940     S.D. dependent var 1.077850 

F-statistic 7.308011     Durbin-Watson stat 1.442486 

Prob(F-statistic) 0.000002    
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Forecast: INCIDENCEF

Actual: LNINCIDENCE

Forecast sample: 2011M01 2019M12

Included observations: 48

Root Mean Squared Error 0.569646

Mean Absolute Error      0.479235

Mean Abs. Percent Error 44.83722

Theil Inequality Coefficient  0.118897

     Bias Proportion         0.000000

     Variance Proportion  0.083762

     Covariance Proportion  0.916238

 

Figure 23: Forecast Output with Forecast Evaluation table for Rubavu 

 

 

Figure 24: Seasonal trend of malaria incidence in Rubavu 

 

Figures 22 and 24 are presenting the results of time series analysis and forecast; generally in 

Rubavu malaria prediction keeps malaria peaks in January, June and December.  

For example third month of 2015  

ŷ = -2.909+ b1t + b20 + b31+ b40+ b50+ b60+0+b80+b90+b100+b110+b120  
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 ŷ = -2.909 + 0.057x1 + b3*M3 

  For example forecasted of March 2015 

  ŷ = -2.909+0.057*50 – 0.697*1 

  ŷ = - 0.707 

4.4.2 Use of deseasonalized Time Series to Identify Trend 

Using least square and seasonal trend, regression was a straight line as Figures 25, 26 and 27 

indicate, pattern in the historical data or time series and then extrapolate the pattern into the 

future using linear trend regression. To identify this trend, linear trend equation was fitted to the 

deseasonalized time series using excel sheet. The only difference is that the deseasonalized data 

were fitted instead of the original data. 

Deseasonalised time series are presented in the following figures according to the districts: 

 

Karongi 

 

Figure 25: Least square presentation with seasonal trend of malaria incidence in Karongi 

 

The Figure 25 indicates the least squared values plot of malaria over the year, with estimate 

equation; ŷ = 0.1221x – 3.5994 with R2 =0.988 or 98% of time dependence. Adjusted equation is; 

Tt = 0.1221t – 3.5994.       
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Muhanga  

 

 

Figure 26: Least square presentation with seasonal trend of malaria incidence in Muhanga 

 

The Figure 26 indicates the least squared values plot of malaria over the year, with estimate 

equation; ŷ = 0.0538x + 0.0088 with R
2
 =0.9832 or 98.3% of time dependence. Adjusted 

equation is; Tt = 0.0538t + 0.0088. 
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Rubavu 

 

Figure 27:  Least square presentation with seasonal trend of malaria incidence in Rubavu 

 

The Figure 27 indicates the least squared values plot of malaria over the year, with estimate 

equation; ŷ = ŷ = 0.0577x – 3.591 with R
2
 =0.906, or 90.6% of time dependence. Adjusted 

equation is; Tt = 0.0577t – 3.591. 

4.4.3 Validation of the model (results) 

Reported malaria cases data were published by the Ministry of Health, Rwanda Biomedical 

Centre (2017) and President’s Malaria Initiatives (2017), they indicated that between 2012 and 

2016, Rwanda had over an 8-fold increase in reported malaria cases.  

A triple in confirmed malaria cases (from 483 000 to 1.6 million), and a doubling in admissions 

(from 5306 to 11 138) between 2012 and 2014, were reported. The number of malaria cases 

increased from 2,473,387 in 2015 to 4,669,687 in 2016, with an annual incidence of 203.44 per 

1,000 in 2015 and 404.88 per 1,000 in 2016. The summary of these data after calculation as 

Anderson, Sweeney, & Williams, (2008) indicated, were presented in Table 11.  
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Table 11: Comparison of physical and modeled data  

 

Y
ea

rs
 

Physical measurement data Modelled data 

Cases incidence ln Growth 

fold 

Incidenc

e  

Ln Growth 

fold 

2012 483,000 45.83750822 3.8251  0.85 -0.1625  

2013     2.98 1.0919  

2014 1,600,000 145.4545455 4.9798 1.30189 6.12 1.8115 1.6590 

2015 2,473,387 203 5.3132 1.066938  1.9 1.0488 

2016 4,669,687 404.88 6.0035 1.129938  2.8333 1.4912 

 

For harmonisation of data, malaria incidence was calculated for this available data, and 

normalised using natural logarithm then compared to data obtained by model as the Table 11 

indicates.   

The results indicated error of 1.6 % of data modelled as compared to reported data. Modelled 

data were 98.4% (ration of physical measurement/modelled data) in 2015. For the results of 2016 

difference was a bit high, modelled data was more than reported data, 31.9% higher.  

4.4.4 Spatial prediction of malaria incidence in study area  

Figure 28 presents the results of quantitative spatial analysis; map indicated that the distributions 

of malaria incidence were inversely proportional to the altitude. 
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Figure 28: Spatial quantitative prediction of malaria incidence in different period 2004, 2010, 2015, 

2019.  
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Data presented on the map were malaria incidence at the sector levels. In general, the map 

indicated linear progression of malaria since 2011; projection indicated unusual incidence of 

malaria with predicted climatic conditions in highland zones of Rwanda. Generally low altitude 

will continue to have high incidence, example: Kabacuzi, Murundi, Ruganda and high altitude 

will have low malaria incidence, example: Busasamana, Rwankuba, Nyabinoni. 

4.4.5 Spatial and temporal of malaria transmission 

The study area was represented by three districts that were formerly considered as malaria free 

zones. With climate variation, data have indicated that malaria has started to invade this new area 

as epidemic. Analysis used rainfall, temperature and relative humidity for prediction. With time, 

malaria may be common in the highland areas as breeding sites will be available.  Figure 28 

presents the analysed cases of possible malaria transmission in study area.  

Table 12: Time series model summary  

 

District Model equation Correlat 

coef (ρ) 

R-

square 

Durbin 

Watson 

Time series equation 

Karongi ŷ=-

2.73+0.122x1+bx*M 

0.95 0.92 1.08<2 T=0.122t-3.6; R
2
=0.98 

Muhanga ŷ=0.25+0.054x1+bx*

M 

0.89 0.80 0.46<2 T=0.54t+0.008; 

R
2
=0.98 

Rubavu ŷ= -2.909+0.057x1+ 

bx*M 

0.94 0.71 1.4<2 T=0.057t-3.59; R
2
=0.90 

 

Hypothesis was tested against null and alternative hypotheses where by: 

Ho= ρ=0 Climate variability does not affect the future incidence of malaria in Rwandan 

highlands. 

H1= ρ≠0 Climate variability affect the future incidence of malaria in Rwandan highlands. 
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Table 12 has shown the value of ρ higher than 0, what indicates strong influence of climate 

variability on future malaria incidence in Rwandan highlands. Null hypothesis was rejected for 

three districts, while alternative one was valid. 
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CHAPTER FIVE 

DISCUSSION OF RESULTS 

5.0 Introduction 

The first objective of this study was to determine the variation of temperature, rainfall and 

relative humidity in Rwandan highlands for the period of 11years. Data collected indicated high 

spatial and time variation of climate parameters; generally, maximum temperature ranged 

between 23 and 25oC with lower variations, while minimum temperature ranged between 8.02 

and 14.55
o
C with considerable variations, average of minimum (16.34

o
C) and maximum 

(19.54
o
C) indicated linear growth. 

Rwandan climate reflect important increase of temperature, which is linear as expressed on 

Figure 29, where temperature indicated long term variation, the basis from which climate change 

is confirmed in Rwanda. Even though Rwanda is entirely situated within the equatorial zone, it 

enjoys a moderate tropical climate due to its high altitude, and temperatures average of 20°C 

(REMA, 2001).  

 

Figure 29: Long term average annual temperatures Rwanda (1971 – 2007)  

(SOURCE: REMA, 2012). 
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In high altitude regions of Rwanda, temperature varies between 15°C and 17°C which is on an 

increase (REMA, 2012). The volcanic region has lower temperatures which can plunge to as low 

as 0°C in some areas. In the intermediary altitude zones, temperatures vary between 19°C to 

29°C with an average rainfall of about 1 000 mm per year. Rainfall here is however less regular, 

leading to frequent dry spells (DFID, 2009). 

The study has shown the difference in temperature values as compared to national temperature, in 

Karongi the average temperature ranged between 16.75 to 20.86oC, for Muhanga, ranged 

between 18.25 to 20.02
o
C and Rubavu ranged between 12.75 to 18.55

o
C. Compared to the 

temperature provided by REMA, there is an increase of temperature in the study area, except in 

Rubavu, but the trend was positive. 

The study showed the increase of rainfall, the monthly average ranged between 95.62 to 156 mm. 

In Karongi it varied between 87.00 to 122 mm, Muhanga varied between 80.63 to 235 mm and 

Rubavu varied between 81.33 to 136 mm. Rainfall in Rubavu was high, it is an area where during 

long period of rainfall floods become challenge for crops production, communication by roads 

and sometimes loss of life and properties was recorded(Chemonics International Inc, 2003) see 

Plate 1. Muhanga had the highest quantity of rainfall in 2014 with 235.22 mm. Compared to the 

national rainfall trend of Figure 30; the peak of rain was in 2011 while in the study areas the peak 

was in 2013. 

 

Figure 30: National rainfall trend in 2008-2013 
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(Source:  REMA, 2015) 

 

The figure 30 indicates positive variation of rainfall at national level. In 2009, low rainfall was 

recorded as compared to normal annual mean rainfall of 1200 mm per year. In 2011, extremely 

high rainfall was recorded which indicated high variation of rainfall. The same variation was 

observed in the study area as indicated on the Figure 11, but significant increase was in 2013 

onward. This increase was indicated in IPCC report where indicated that Burundi and Rwanda 

could experience increased rainfall intensity during both rainy seasons by the 2050s, Rwanda’s 

average annual rainfall may increase by up to 20 % level from 1970. Severe extreme weathers are 

some example of this rainfall increase, as seen on Plate 1 with flash floods in Rubavu in 2011 

where the rainfall was 140 mm (see appendix 6). 

 

Plate 1: Flash flood in Rubavu in 2011 

(Source: Chemonics International Inc, 2003) 
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Relative humidity was also significant, its variation was not too high since the highest value of 

relative humidity was 72.24% and the lowest was 66.10%. Generally relative humidity was 

decreasing with time. Relative humidity with temperature and rainfall are major component of 

climate. Under enhanced greenhouse gases there is increase of temperature and wind which 

reduce humidity during the day if global warming persists (Philander, 2008). The reduction of 

relative humidity was correlating with the reduction of forest cover as Mavrakis & Papavasileiou 

(2013) indicated; shift in land use, in many cases occurring arbitrarily with no previous planning 

affect relative humidity in negative way. Changes resulting from human activities were observed 

in highland of Rwanda, what was one of the causes of relative humidity reduction. Plate 2 gave 

the example of the whole forest cleared for charcoal burning in Karongi. 

  

 Plate 2: Charcoal burning in Karongi 

(Source: REMA, 2012) 
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In all districts of the study area, relative humidity was reducing; Karongi varied between 68.01-

74.96%, Muhanga varied between 56.99-69.09% while Rubavu varied between 73.19 – 76.21% 

Generally the fluctuation of climate variables were quite different from what was normally 

expected, according to Chemonics International Inc, (2003) average temperature should not go 

beyond 16-17
o
C while annual rainfall should be 1300-2000 mm or 108-166 mm per month, 

relative humidity 70% 95%. Table 1 indicated that temperature and rainfall rose while relative 

humidity reduced significantly. 

The second objective was to determine malaria incidence in Rwandan highlands for the period of 

11 years. Malaria incidence indicated high variation that divided data into two categories; since 

2004 significant reduction of malaria incidence was observed that arrived at almost null in 2011; 

(14.44/1000 in 2004 to 0.08/1000 in 2011). From 2011 there was increase of malaria cases till 

2014 (0.008/1000 to 5.73/1000) and onward as reported by (President's Malaria Initiative, 2017)   

The reduction of malaria incidence in 2004-2011, was due to the fully alignment with the United 

State Government’s vision of ending preventable child and maternal deaths and ending extreme 

poverty. The program started in 2005 with the goal of working with PMI-supported countries and 

partners to decrease malaria morbidity toward the long-term goal of elimination (1st Rwanda 

Malaria Forum, 2012). It was reported by World Health Organization (2014) that between 2000 

and 2013, malaria admission rates decreased by more than 75% in Eritrea, Rwanda and in 

Zanzibar, in the United Republic of Tanzania (McMichael & Woodruff, 2008). Comparing 

national prevalence of malaria presented on Figure 31 and study area data on Figure 13, there was 

some similarities in variation but differences in reported cases.  
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Figure 31 : Rwanda Out-Patient Department Malaria Cases (presumed and confirmed), 2006–2012  

(Source:  MINISANTE, 2013) 

The same pattern was observed on Figure 13 where before 2006 there was still a high level of 

out-patients and reduction after 2006 till 2009. In late 2009 and early 2010, there was a slight 

increase of malaria which was due to lack of LLIN durability and subsequent loss of impact 

according to President's Malaria Initiative (2014) that reduced again in the late of 2010. The year 

2013 was characterised by high increase of malaria incidence and onward.  

In Rwanda, Malaria had two distinct periods as data indicated, the first period was 2006 – 2010 

where malaria was being controlled, in some areas zero case could be recorded except 2009 

where control had a problem of LLIN delay, and the second period 2011 - 2014, where malaria 

increased exponentially, the reason for this increase was many, as Minister of health confirmed, 

but climate change was among them (Gahima, 2015). Ministry of Health (2013), reported 

significant increase of uncomplicated malaria cases from 478,162 in 2012 to 938,384 cases in 

2013 what put malaria on the second position of morbidity in 2013, while WHO Global Malaria 

Program (2015) reported tripling of malaria cases till 2015. 
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5.1 Relationship of climate variables and malaria prevalence in Rwandan highlands. 

Data analysis and interpretation revealed that incidences of malaria was influenced by the 

seasons. According to Greek physician Hippocrates (about 400 BC) epidemics are related to 

seasonal weather changes, he wrote that physicians should have “due regard to the seasons of the 

year, and the diseases which they produce, and to the states of the wind peculiar to each country 

and the qualities of its waters” (McMichael et al., 2003) 

Malaria transmission occurs year-round with two distinct peaks (May-June, November-

December) in the endemic zones following distinct rainy seasons (MINISANTE, 2011). In 

addition to climate and altitude as determined in this study, other factors that influence malaria in 

the country were discussed by (Biziman, et al., 2015), included high human concentration (e.g., 

boarding schools in proximity to marshlands) for example in Muhanga and Karongi; population 

movement (especially from areas of low to high malaria transmission) for example in Rubavu; 

irrigation schemes (especially in the eastern and southern parts of the country) for example in 

Muhanga; and cross-border movement of people (especially in the western, eastern and 

southeastern parts of the country) for example in Rubavu, a busy town near Goma-Congo. 

 

Although the country’s figure shows malaria transmission peaks in May/June and 

November/December each year, Figure 14, indicated slight difference where March shows 

another important peak of transmission in Karongi and Muhanga, while in Rubavu another peak 

was observed in February. December shows a decrease instead of showing a peak. May/June’s 

transmission peak remains throughout the area of study.  

Since geographical and seasonal distributions of many infectious diseases are linked to climate, 

the possibility of using climate parameters as predictive indicators in disease EWS has long been 

a focus of interest (Kuhn et al., 2005). The geographical distribution and population dynamics of 

insect vectors are closely related to patterns of temperature, rainfall and humidity.   
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5.2 Seasonal variation of Malaria 

Seasonal analysis of malaria incidence indicated how climate variation influenced the variation of 

malaria prevalence in Rwandan highlands. It was confirmed that rainfall plays an important role 

in the creation of breeding sites for vectors as it can flush away the mosquitoes’ breeding sites 

(Wilson, 2001). Though relative humidity and temperature play an important role in the survival 

and longevity of the mosquito vector, it is rainfall that regulates the development rate of both 

mosquito and parasite to complete lifecycle (The different variation of climate parameters are on 

appendix 6). When relative humidity drops below 50% to 60%, it is believed that malaria 

transmission cannot occur because of the reduced lifespan of mosquitoes (Mohammed et al., 

2012, Eldridge, 2009). The mean relative humidity throughout the year was between 63.28% and 

73.87%, which means relative humidity is not a limiting factor for malaria transmission in the 

highlands of Rwanda.  

The findings of this study support the result of (Craig et al., 1999) and (McMichael et al., 2003), 

that transmission of malaria varies with weather, which affect the ability of the main carrier of 

malaria parasite, Anopheline mosquitoes to survive. Tropical temperate areas including Rwanda 

have the best combination of adequate rainfall, temperature and humidity allowing breeding and 

survival of Anopheline mosquitoes.  

 

Also, the results of this study are in conformity with the findings of IPCC (2001) that malaria 

transmission is associated with changes in temperature, rainfall, humidity as well as the level of 

immunity of community in highland area. Very high temperatures are lethal for the parasite as it 

is for lower temperature. In areas where the annual mean temperature, is close to tolerance limit 

of the parasite, a small temperature increase would be lethal for the parasite. IPCC noted that at 

low temperature, a small increase in temperature can greatly increase the risk of malaria; this was 

observed in Rubavu where temperature slightly increased in the period of study. 
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5.3 Discussion of multiple linear regression analysis of malaria incidence against climate 

variables 

A multiple linear regression was done to predict malaria incidence based on temperature 

(maximum, minimum and average of temperature), rainfall and relative humidity. The model was 

produced for future prediction.  

Karongi 

Regression analysis of malaria incidence and maximum temperature, rainfall and relative 

humidity showed a significant result with F-statistic = 95.134, p < 0.001, and Adjusted R squared 

= 0.47 or 47%.  As shown in Table 4 (a), except relative humidity, other predictors had 

significant zero-order correlation with malaria incidence at 5% significance level.  Relative 

humidity did not have a significant partial effect in the full model but maximum temperature and 

rainfall had significant partial effects.  Relative humidity functioned as a suppressor variable.  

When other predictors were ignored, maximum temperature was negatively correlating with 

malaria incidence. 

Climatic values showed that maximum temperature provided suitable conditions for malaria 

development; the maximum temperature ranged between 24.26
o
C and 26.76

o
C, which are the 

optimum conditions for malaria development. Rainfall was above the minimum requirement for 

malaria development; 80mm except in 2011 that was 67.7mm. Relative humidity showed gradual 

decrease but remained in the range of favourable conditions for malaria development above 60% 

and below 100%.  

The regression coefficient of maximum temperature was negative, which means high temperature 

value became a limiting factor for malaria transmission (Anderson et al., 2008). As temperature 

approaches 31
o
C transmission becomes impossible. Hence we would expect an inverse 

relationship with high temperature. With the range of malaria development, for each increase of a 

degree on maximum temperature, it is expected that malaria prevalence will decrease by 46.23 

when rainfall is held constant, while for rainfall each additional mm of rainfall increases malaria 

transmission by 0.132 factor when maximum temperature remain constant.    
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Regression analysis using minimum temperature, rainfall and relative humidity yielded a 

significant equation with F-statistic = 41.98, p < 0.001, adjusted R squared = 0.27 or 27%.  As 

shown in Table 4 (b) except minimum temperature, other predictors had significant zero-order 

correlation with malaria incidence at 5% significance level.  Minimum temperature did not have a 

significant partial effect in the full model but rainfall and relative humidity had significant partial 

effects. When other predictors were ignored, relative humidity was negatively correlating with 

malaria incidence. 

 

Climatic values showed that minimum temperature was below the requirement range for malaria 

development; its value was 14oC and 15oC, because minimum temperature for malaria 

development is 16
o
C and 17

o
C. Minimum temperature was not a good malaria development 

predictor. Rainfall and relative humidity remain suitable for malaria prediction.  

The intercept value was 58.83 which is the prevalence of malaria when predictors, relative 

humidity and rainfall are absent. This value represents other factors, except those mentioned 

predictors, that can increase malaria prevalence. Regression coefficient for rainfall is positive, 

which shows that in Karongi rainfall is still at low level to be limiting factor for malaria 

development since it varied between 111.5mm and 122.4mm. Observation showed the values 

above 80 mm of 4 preceding months of malaria peak and the trend of rainfall was positive with 

time. It means for each mm of the rainfall increases, is expected to increase malaria prevalence 

by 0.18 factors, if relative humidity remains constant. Hence it is expect a positive relationship of 

malaria prevalence with rainfall.  

The variable relative humidity shows inverse relationship: the more is the relative humidity the 

less is the prevalence of malaria. Since malaria development is limited by the values below 50% 

and near 100%, the values of rainfall in Karongi varied between 68 and 75%. So far the negative 

sign for this coefficient is justified. For each additional percent of relative humidity it is expected 

to decline malaria by 14.33 factors when rainfall is held constant. Observation showed a decline 

of relative humidity which means that the area is at the risk of malaria transmission. Despite the 

omission of minimum temperature from the model according to  Githeko & Ndegwa (2001), it 
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was found that in western Kenya (the area similar to Rwandan highlands), nighttimes 

temperatures inside village houses, where mosquitoes spend most of the time resting, are 

generally two to three degrees warmer than outdoor ambient temperatures. This temperature can 

approach favourable conditions for malaria development once indoor temperature is considered.     

Regression analysis using mean temperature, rainfall and relative humidity showed a significant 

equation with F-statistic = 86.46, p < 0.001, adjusted R
2
= 0.44 or 44%.  As shown in Table 4.c, 

except relative humidity, other predictors had significant zero-order correlation with malaria 

incidence at 5% significance level.  Relative humidity did not have a significant partial effect in 

the full model, but mean temperature and rainfall had significant partial effects. Relative 

humidity functioned as a suppressor variable. When other predictors were ignored, mean 

temperature was negatively correlating with malaria incidence. 

Mean temperature which resulted from average between maximum and minimum temperature, 

provided suitable conditions for malaria development; its value varied between 19.5
o
C and 

20.26oC, the range of minimum conditions for malaria vector and parasite development. Rainfall 

remained in the prediction system while relative humidity was concealed by average of minimum 

temperature and maximum temperature from the prediction. 

The intercept value of 232.69 is the response of malaria prevalence when other predictors (mean 

temperature and rainfall) are equal to zero. It is the point where regression equation crosses the 

Y-axis. The regression coefficient for mean temperature is negative. Hence it is expected to have 

inverse relationship for each degree the mean temperature increases; it is expected that malaria 

prevalence will decrease by a factor of 78.34. Minimum temperature could not predict malaria 

prevalence in Karongi. The combination of minimum and maximum temperature was 

contributing negatively to malaria prevalence if relative humidity was deleted from the model. 

This simply means temperature values showed favourable conditions for malaria transmission, 

between 19.5 and 20.2
o
C.  

Rainfall showed positive relationship with malaria development. Each additional mm of rain fall 

was expected to increase prevalence of malaria by factor of 0.14 factors, if mean temperature was 

held constant. 
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Muhanga 

Regression analysis using maximum temperature, rainfall and relative humidity yielded a 

significant result with F-statistic = 155.46, p < .001, and adjusted R squared = 0.59 or 59%.  As 

shown in Table 5 (a), all predictors did not have significant effect in the full model at 5% 

significance level.  When the other predictors were ignored, maximum temperature and rainfall 

were negatively correlated with malaria incidence. 

 

Maximum temperature between 25.6oC and 27.26oC in Muhanga provided optimum conditions 

for malaria development. Rainfall was unstable; Muhanga is on the border of malaria endemic 

zone where intense activities for malaria control take place (Hakizimana et al., 2014). Muhanga 

indicated the highest value of rainfall among other Districts of study in 2014 when it was 

235.21mm. Given that a large part of Muhanga is located in the plateau, according to Philander 

(2008) the amount of rainfall decreases with altitude as well as moisture content. This can be seen 

by comparing rainfall within the plains and within the central parts of the vast plateau. In other 

years rainfall average was above 80mm while relative humidity was between 58.53% and 61.8%, 

relatively low but was still in the range of malaria development.  

Muhanga is in the moderate-high malaria transmission regions, the highest risk of death from 

malaria is observed in infants and young children, whilst semi-immune adults remain susceptible 

to asymptomatic parasitaemia, but protected against clinical disease (Maestre & Carmona-

Fonseca, 2014). Here data used was a combination of all possible cases in Muhanga as applied by 

(Yu et al., 2013).  

Analysis of data indicated extreme weather in 2014 where rainfall stood at 235.22 mm with total 

average of 143.72mm, which swept away breeding mosquitoes. Malaria in that period was not 

significant (Anaxos, 2008). But in Muhanga and other districts of southern and western 

provinces, malaria incidence remained relatively high during malaria post intervention period 

(Karema et al., 2012), but negatively correlating with heavy rainfall.   

Regression analysis results using minimum temperature, rainfall and relative humidity yielded a 

significant equation with F-statistic = 158.64, p < 0.001, and adjusted R squared = 0.58 or 58%.  
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It was observed that only prediction with minimum temperature was possible at 5% significant 

level. As shown in Table 5 (b), other predictors did not have significant effect on the full model 

at 5% significance level.  When other predictors were ignored, rainfall was negatively correlating 

with malaria incidence. 

Significant reduction of minimum temperature remained above the threshold for Anopheles 

gambiae mosquito vector (the main mosquito species found in the East African highlands) whose 

biological activity is between 8oC to 10oC (Dekens et al., 2013), This value of minimum 

temperature stood between 14.6.6
o
C and 15.2

o
C. While the minimum temperature threshold for 

transmission of the Plasmodium falciparum parasite (the main parasite species found in the East 

African highlands) is 16oC to 19oC, temperature is lower at night than day time. According to 

Githeko (2010), due to the influence of diurnal maximum temperature (27
o
C), maturity of malaria 

parasite may take almost 8 days only which is less than its lifespan of 23-days average of 

Anopheles gambiae mosquitoes.  

The intercept was -8.33 the value of malaria prevalence when minimum temperature was absent. 

This value represents other factors, except the stated predictors, that can decrease malaria 

prevalence. Regression coefficient with minimum temperature was positive, which shows that in 

Muhanga minimum temperature was still at a low level to be a limiting factor for malaria 

development since it varied between 14.15
o
C and 15.04

o
C, compared to the minimum 

temperature for malaria parasite development which ranged between 14o and 19oC (Deressa et 

al., 2005). This range gives limited conditions for malaria transmission. It means that each 

additional degree of minimum temperature is expected to increase malaria prevalence by factor of 

2.91. Hence we would expect a positive relationship of malaria prevalence with minimum 

temperature in Muhanga.   

Regression analysis using mean temperature, rainfall and relative humidity yielded, a significant 

equation with F-statistic = 155.12, p < .001. R
2
 = 0.59 or 59%.  As shown in Table 5(c) all 

predictors did not have a significant effect on a full model at 5% significance level.  When other 

predictors were ignored, relative humidity was negatively correlating with malaria incidence. 
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The mean temperature fell within the minimum conditions of malaria transmission (19.2
o
C and 

20
o
C) but again malaria transmission depended on season and altitude. Githeko & Ndegwa 

(2001) argued that “if the mean annual temperature is superior, or equal, to 18
o
C; anomalies 

superior or equal to 3
o
C would be expected to precipitate malaria outbreaks as long as the mean 

monthly rainfall is greater than 150 mm.” Here mean temperature was higher than 18
o
C, long 

term anomalies was higher than 3
o
C but rainfall was below 150 mm, so malaria outbreak was 

expected despite the absence of significant effect in the full model at 5% significance level.  

Rubavu 

Regression analysis using maximum temperature, rainfall and relative humidity showed a 

significant result with F-statistic = 20.96, p < 0.001, adjusted R squared = 0.19 or 19%.  As 

shown in Table 8(a), except rainfall, other predictors had significant zero-order correlation with 

malaria incidence at 5% significance level.  Rainfall did not have a significant partial effect in the 

full model but maximum temperature and relative humidity did have significant partial effects.  

The increase of maximum temperature in Rubavu between 2011- 2014 with 4 units, exposed this 

area to high risk of malaria. Compared with malaria parasite and parasite survivorship, maximum 

temperature was higher than 18
o
C, this implied that parasite development was too fast despite the 

low prevalence of malaria on Figure 13. The model showed that rainfall was a limiting factor for 

malaria prediction since it showed no significance level; but remained in the range of malaria 

transmission because it was between 81.33 mm in 2013 and 140.33 mm in 2011. Relative 

humidity was also in the range of malaria transmission; 78.65% and 73.19%, simply there was 

reduction of relative humidity that expected to increase transmission rate. Rubavu is in highest 

altitudes of the country; but according to Lindsay & Martens (1998) the highlands area are 

unstable for malaria pattern, because of the low and flucturating levels of transmission 

experienced by local community. Many of these community have no or less immunity.   

The intercept was -52.31 which the prevalence of malaria is when predictors; maximum 

temperature and relative humidity are absent, this value represents other factors, except those 

predictors mentioned, and that can have impact on malaria prevalence. 
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Each additional degree on the maximum temperature in Rubavu, was expected to increase 

malaria prevalence about 9.99 factors, holding other variables constant. The same is the increase 

of each percentage of relative humidity that causes the prevalence of malaria to increase by factor 

of 4.3 while holding maximum temperature constant.  

Minimum temperature was too low to facilitate malaria transmission as Table 6 (b) indicated. No 

temperature reached the threshold of either parasite or vector development. The range was 

between 7.56oC in 2011 and 13.94oC in 2013. With the value, malaria transmission was not 

possible. The same was observed for combination with rainfall and relative humidity. Model 

equation was not possible at 5% significance level.  

Minimum temperature gave unfavourable conditions for malaria development in Rubavu, when 

combined with rainfall and relative humidity. Spatial variation of malaria incidences was 

observed in Rubavu; as altitude increases, malaria prevalence decreases.  

Regression analyisis using mean temperature, rainfall and relative humidity gave significant 

equation with F-statistic = 10.98, p <0 .001, and adjusted R squared = 0.10 or 10%.  As shown in 

Table 8(c), all predictor had a significant zero-order correlation with malaria incidence at 5% 

significance level and had significant partial effect in the full model, but rainfall was negatively 

correlating with malaria incidence, while other predictors were positively correlating with 

malaria incidence. 

Mean temperature gave a good result for malaria incidence prediction in Rubavu. Combination of 

temperature (minimum 13.16oC and maximum 18.13oC) created minimum conditions for malaria 

and parasite development, as R
2
 value indicated. Malaria in Rubavu was not high but trend was 

showing that it was at high risk of malaria in the future.  

This is the only case where the model showed inclusion of all predictors. Rubavu is the indicator 

of climate variability and malaria adaptation in Rwandan highland. The predictive model 

indicated that while holding all predictors as equal to zero, the value of malaria prevalence would 

be -31.73/1000 it meant other factors, except temperature, rainfall and relative humidity, reduced 

malaria prevalence.  
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The influence of temperature, rainfall and relative humidity on malaria incidence in Rwandan 

highland was tested using regression analysis according to the following hypothesis:  

Ho: b1 = b2 = b3 = 0 (There was no influence of temperature, rainfall and relative humidity on 

malaria incidence in Rwandan highland.) regression coefficients are 0 (ŷ = bo). 

The alternative hypothesis was: 

H1: b1 ≠ b2 ≠ b3 ≠ 0, not all the bs are zero. (There is an influence of temperature, rainfall, relative 

humidity on malaria incidence in Rwandan highland.) Regression coefficients are b1, b2, b3 (ŷ= b0 

+ b1x1 + b2x2 + b3x3 are valid). 

From the Table 7, observation of regression equation indicated the values of bs different from 0, 

so null hypothesis is rejected and alternative hypothesis is retained at 5% significance level. 

5.4 Predicting malaria epidemics 

Like in Kenya as predicted by Githeko and Ndekwa (2001), epidemic malaria in the Rwandan 

highlands is caused by Plasmodium falciparum species and transmitted by Anopheles gambiae 

s.s. and Anopheles funestus mosquitoes as confirmed by Ministry of Health (2013). 

Malaria epidemic in western Rwanda generally occurs in areas at altitudes of between 1500-2500 

meters above sea level, where the annual mean daily temperature varies between 16-21°C as 

Figure 32 indicates. Topographically, these areas consist of river valleys, hills, and plateaus. The 

epidemics normally occur in June and November following the long rains and a short outbreak in 

March following the irregularity of rainfall occurred in January and February. 
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Figure 32: Elevation and climate elements 

 

5.5 Time series analysis and forecasting changes in the incidence of malaria attributable to 

climate variation 

The last objective of this study was to develop a model that predicts changes in the incidence of 

malaria attributable to climate variation. Malaria exhibits seasonal variation, and peaks are 

expected after periods of rainfall. The life cycle of a mosquito last maximum 30 day 

corresponding to one month, in the model this month is a lag period, because malaria does not 

come immediately after the rain, it requires time to complete the cycle. Time series analysis was 

based on data recorded over time, seasonal indices were calculated for every month as equation 

(8) indicate. The model generated is susceptible to indicate how much the people from highland 

areas are at the risk of having malaria.   
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Time series plot on Figures 19 and 20 indicated malaria seasonal incidence which is higher in the 

months of January, June and November-December of each year and decrease in the months of 

April, July and October in Karongi. For Muhanga, the Figures 21 and 22 indicated malaria 

seasonal incidence which is higher in the months of, June and November of each year and 

decrease in the months of April and July, while in Rubavu Figures 23 and 24 indicated malaria 

seasonal incidence which is higher in the months of January, May-June, August-September and 

November-December of each year and decrease in the months of March-April, and September-

October. Thus, a seasonal pattern exists for malaria transmission. But the time series also had an 

upward linear trend that was accounted for in order to develop accurate forecasts of monthly 

malaria transmission as Tables 8, 9 and 10 indicated.  

The usefulness of forecasting method in predicting the number of disease incidence is important. 

It explains the development of a system that can predict the future number of disease 

occurrences. Fluctuation analysis of forecasting result can be used to support the making of 

policy by the stakeholder. This study analysed and presented the use of Seasonal Autoregressive 

Moving Average (SARMA) method for developing a forecasting model that is able to support 

and provide prediction number of malaria incidence in community. 

The model generated was validated using published data for it accuracy. Modelled results in 2016 

have some uncertainties because as RBC (2017) indicated, there was a campaign all over the 

country for malaria control; distribution of LLIN was enhanced with IRS in malaria endemic 

districts, so malaria cases started reducing. The results of modelling on Figures 19, 21 and 23 

indicated seasonal variation similar to what has been published by  MINISANTE (2013), Karema 

et al., (2012) and  Bizimana, Twarabamenye, & Kienberger, (2015), model also indicated two 

annual malaria peaks; in June and November. Based on these evidences the model was validated.     
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

6.0 Introduction 

This study involved the analysis of the impacts of climate variability on malaria prevalence in 

Rwandan highlands. Data collected from 3 selected districts of highlands were used  

• to determine the variation of temperature, rainfall and relative humidity in Rwandan 

highlands for the period of 11years,  

• to determine malaria incidence in Rwandan highlands for the period of 11 years,  

• determine the relationship between meteorological parameters and malaria incidence in 

Rwandan highlands and  

• to model and predict changes in the incidence of malaria attributable to climate variation. 

Secondary data collected from the health centres (malaria cases) and meteorological data 

(temperature, rainfall and relative humidity), in the districts of Karongi, Muhanga and Rubavu, 

were analysed using correlation coefficient, multiple linear regression analysis, finally the model 

was generated and validated using published data in the predicted years. Finally the conclusion 

and recommendation were drawn from the results of the study: 

Maximum temperature did not have high variation; it was in the range of 23 and 25
o
C, while 

minimum temperature varied considerably with a range of 8.02 and 14.55, average of minimum 

and maximum indicated linear growth as it combines the values of maximum and minimum 

temperature (16.34 and 19.54
o
C). 

Rainfall was increasing throughout the period of study with high variation and extreme weathers; 

the monthly average was between 95.62 to 156 mm. In Karongi it varied between 87.00 to 122 

mm, Muhanga varied between 80.63 to 235 mm and Rubavu varied between 81.33 to 136 mm. 

Relative humidity was also important, its variation was not too high since the highest value of 

relative humidity was 72.24% and the lowest was 66.10%. Generally relative humidity was 

decreasing with time.  

Malaria incidence indicated high variation data collected were indicating two different periods; 

from 2004 important reduction of malaria incidence was observed that arrived at almost null in 
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2011; (14.44/1000 in 2004 to 0.08/1000 in 2011). From 2011 there was increase of malaria cases 

till 2014 (0.008/1000 to 5.73/1000) and onward. 

Literature review and theories indicated different thresholds for malaria development and 

transmission, which allowed quantifying the risk of highland areas of Rwanda to malaria 

incidences. It was showed that minimum temperature remained above the threshold for 

Anopheles gambiae mosquito vector (the main mosquito species found in the East African 

highlands) for its biological activity (8oC to 10oC). The minimum temperature in study area was 

between 8.03
o
C to 14.55

o
C. While the threshold of minimum temperature for transmission of the 

Plasmodium falciparum parasite (the main parasite species found in the East African highlands) 

was 16oC to 19oC. 

Regression analysis using malaria prevalence as dependent variable, with lag period of 1 month, 

and climate parameters as independent variable (maximum, minimum and average temperature, 

rainfall and relative humidity), showed that all predictors had different impacts at 5% of 

significance level. All the selected climate parameters were not correlating with malaria 

transmission at the same level; in Karongi malaria prevalence had a strong positive correlation 

with: maximum temperature and rainfall, r=0.68, a moderate positive correlation with rainfall and 

relative humidity, r=0.5 and a strong positive correlation with average temperature and rainfall, 

r=0.66.  In Muhanga malaria prevalence had a positive strong correlation with minimum 

temperature r=0.76, while in Rubavu malaria prevalence had a weak positive correlation with 

maximum temperature and relative humidity, r=0.44 and a weak positive correlation with average 

temperature, rainfall and relative humidity r=0.33. Regression equation indicated the values of 

coefficient bs different from 0, what validate alternative hypothesis and rejection of null 

hypothesis at 5%. 

Results of prediction indicated the value of ρ higher than 0, what means climate variability has 

influence on future malaria incidence in Rwandan highlands. Null hypothesis was rejected for 

three districts, while alternative one is valid. 
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Analysis of results indicated that Karongi is expected to have high malaria incidence in the future 

due to climate variability followed by Muhanga, and Rubavu as confirmed by the results of 

analysis.  

6.1 Recommendations  

After carrying out this study some recommendations were formulated, specifically for the 

benefits to the government of Rwanda and population at large. 

Temperature, important factor of climate has varied in highlands of Rwanda in the period of 

study; with important variation of minimum temperature and less for maximum.  Monitoring and 

investigation on the causes are needed for proper mitigation measures as this variation may 

change many climatic conditions.  

 

Highlands of Rwanda were the regions with moderate rainfall, but it has become unstable with 

high variability. In some periods rainfall is rare in others rainfall is high and causes disasters like 

floods. Therefore, climatic data should be used for the benefits of local population like in 

prediction of rain or dry seasons for better preparation.  

 

Relative humidity is decreasing in the highland areas of Rwanda; it is expected to reduce 

productivity and increase of adaptation of new species including diseases.  

 

Meteorological variables are among the factors that precipitate malaria epidemic; rainfall 

provides the breeding sites for mosquitoes, and higher temperature and relative humidity increase 

mosquito survival and parasite development.  

 

Malaria is invading new areas including highlands that used to be shelters against malaria, but the 

altitude above 2600 m above the sea level, Malaria is still rare and its adaptation is still 

impossible. 
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The Rwandan highlands are fragile ecosystems under pressure from rising population, 

deforestation, and increase farming. The upland communities do not access easily to health 

services and the services they benefit are patchy, control of malaria may be difficult. It needs a 

distinct initiative to define epidemic-prone area and use the finding from this research to develop 

solutions to protect vulnerable communities of highlands of Rwanda from this growing problem.     

 

In prediction using climate variability, it is highly commendable to use seasonal input so that 

effort can put where it is needed: Example preparation of medication and other malaria control 

measures just after rain season because it is the time when malaria can be on high rise        

 

Facilitation and motivation of more research on communicable diseases in relation to climate 

change especially in the highlands of Rwanda is needed, as climate change is shifting diseases’ 

ecology. 

It is recommended to include the region of highlands in the program of malaria control like LLIN 

and IRS in the next malaria control program, because malaria with temperature resistant vectors 

are expected in this region.  

For the entire country of Rwanda, people should sleep each night under an insecticide-treated bed 

net for self protection of mosquito bites. 

Malaria resurgence in Rwanda is at the unusual speed in endemic areas, as it is invading new 

areas of Rwanda. It is recommended to combine control with environmental cleaning like 

reducing the possible water retaining area (breeding sites), reduction of poorly planned 

exploitation of natural resources of highland (illegal logging, mining activities,…), reduction of 

bush, living together for proper infrastructure (proper physical plan), good housing especially 

eliminating mosquitoes in house during the night. 

6.2 Future research 

Research similar to this one is needed, focusing on other predictors not covered in this research 

like; land use change and land cover, socio-economic development of people living in the 
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highlands of Rwanda in combination with effort made to reduce malaria in the period 2005-2011 

and what is needed to fully control malaria. 

Comparative study that cover the entire country to compare malaria prevalence and global 

climate change in lower-land and highland of Rwanda  

Research on the linkages between climate and infectious diseases must be strengthened. In most 

cases, these linkages are poorly understood and research to understand the causal relationship is 

not well understood. This can best be accomplished with investigations that utilize a variety of 

analytical methods (including analysis of observational data, experimental manipulation studies, 

and computational modelling), that examine the consistency of climate/disease relationships in 

different societal contexts and across a variety of temporal and spatial scales. 

Research on climate and infectious disease linkages inherently requires interdisciplinary 

collaboration. Studies that consider the disease host, the disease agent, the environment, and 

society as an interactive system will require more interdisciplinary collaboration among climate 

modellers, meteorologists, ecologists, social scientists, and a wide array of medical and public 

health professionals. 

There is a need for a better understanding of the global forces such as global heating and extreme 

weather events with diseases (e,g Eli Niño) and their impact on increase and/or transmission of 

malaria.  
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APPENDICES 

Appendix I: Population estimation of health centre’s catchment in study area.   

 

 

Sector District Health_center Year_2004 Year_2005 Year_2006 Year_2007 Year_2008 Year_2009 Year_2010 Year_2011 Year_2012 Year_2013 Year_2014

CYEZA Muhanga Kivumu 28653.00 28823.00 28993.00 29163.00 29333.00 29503.00 29673.00 29843.00 30161.00 30330.88 30500.76

KABACUZI Muhanga Buramba 24423.61 24568.41 24713.22 24858.02 25002.82 25147.63 25292.43 25437.24 25496.00 25640.80 25785.61

KIBANGU Muhanga Gitega 19491.70 19569.04 19646.39 19723.74 19801.09 19878.44 19955.78 20033.13 20164.00 20241.35 20318.70

KIYUMBA Muhanga Nyabikenke 24900.58 24462.37 24024.16 23585.96 23147.75 22709.54 22271.33 21833.12 21733.00 21294.79 20856.58

MUSHISHIRO Muhanga Mushishiro 20246.41 20266.62 20286.82 20307.03 20327.24 20347.44 20367.65 20387.85 20421.00 20441.21 20461.41

NYABINONI Muhanga Nyabinini 17546.76 17458.14 17369.52 17280.90 17192.28 17103.66 17015.04 16926.42 16894.00 16805.38 16716.76

NYAMABUYE Muhanga Kabgayi 35940.96 36893.94 37846.92 38799.90 39752.88 40705.86 41658.84 42611.82 44831.00 45783.98 46736.96

NYARUSANGE Muhanga Nyarusange 23474.18 23749.26 24024.35 24299.44 24574.53 24849.62 25124.70 25399.79 25795.00 26070.09 26345.18

RONGI Muhanga Birehe+Rutake 20615.37 21253.56 21891.75 22529.94 23168.12 23806.31 24444.50 25082.68 26802.00 27440.19 28078.37

SHYOGWE Muhanga Gitarama+shyo 36552.47 37356.21 38159.94 38963.68 39767.41 40571.15 41374.88 42178.62 43786.00 44589.74 45393.47

GITESI Karongi Kirambo 20940.55 21381.83 21823.10 22264.38 22705.66 23146.93 23588.21 24029.48 24833.00 25274.28 25715.55

GISHARI Karongi Birambo 21231.77 21059.15 20886.54 20713.92 20541.30 20368.69 20196.07 20023.46 19915.00 19742.38 19569.77

MUBUGA Karongi Mubuga+Karor 16828.42 17025.62 17222.83 17420.04 17617.25 17814.46 18011.66 18208.87 18520.00 18717.21 18914.42

MURUNDI Karongi Munzanga 21791.32 22270.48 22749.64 23228.80 23707.95 24187.11 24666.27 25145.43 26114.00 26593.16 27072.32

MUTUNTU Karongi Mukungu 21054.22 21280.83 21507.44 21734.06 21960.67 22187.28 22413.89 22640.50 23054.00 23280.61 23507.22

RUBENGERA Karongi Rubengera 23428.28 24355.92 25283.56 26211.20 27138.83 28066.47 28994.11 29921.75 33005.00 33932.64 34860.28

RUGANDA Karongi Bihugu 15048.92 15324.39 15599.85 15875.31 16150.77 16426.23 16701.70 16977.16 17539.00 17814.46 18089.92

RWANKUBA Karongi Kiziba Camp 34870.64 35245.96 35621.28 35996.60 36371.92 36747.24 37122.56 37497.88 37905.00 38280.32 38655.64

TWUMBA Karongi Gisovu 22491.14 22754.70 23018.27 23281.84 23545.41 23808.98 24072.54 24336.11 24718.00 24981.57 25245.14

BUSASAMANA Rubavu Busasamana 22420.47 23308.21 24195.94 25083.68 25971.41 26859.15 27746.88 28634.62 31404.00 32291.74 33179.47

GISENYI Rubavu Gacuba II 24354.49 26451.23 28547.98 30644.72 32741.46 34838.21 36934.95 39031.70 41128.00 43224.74 45321.49

KANAMA Rubavu Karambo 20922.28 21732.93 22543.57 23354.21 24164.85 24975.49 25786.14 26596.78 29224.00 30034.64 30845.28

MUDENDE Rubavu Mudende 17483.40 18278.10 19072.80 19867.50 20662.20 21456.90 22251.60 23046.30 26000.00 26794.70 27589.40

NYAMYUMBA Rubavu Kigufi 29301.14 30208.21 31115.28 32022.36 32929.43 33836.50 34743.57 35650.64 37917.00 38824.07 39731.14

NYUNDO Rubavu Nyundo 20005.33 20963.99 21922.66 22881.32 23839.98 24798.65 25757.31 26715.98 30438.00 31396.66 32355.33

RUBAVU Rubavu Murara 49299.64 48218.96 47138.28 46057.60 44976.91 43896.23 42815.55 41734.87 41681.00 40600.32 39519.64  
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Appendix II: Topographic map of Rwanda 
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Appendix III: Mosquito vector cycle 
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Appendix IV: Parasite life cycle 
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Appendix V: Template of data presentation 

Template of data collected from health centers 

 

Year 

 

Months 

Health Centres  

Hc1 Hc2 Hc3 …… Hc26 

2004 Month1 cases cases Cases Cases cases 

Month2      

….      

Month1

2 

     

2005 Month1      

Month2      

….      

Month1

2 

     

2006 Month1      

Month2      

….      

Month1

2 

     

2007 Month1      

Month2      

….      

Month1

2 

     

…       

      

2014 Month1      

Month2      

….      

Month1

2 
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Template of climate data collected from meteorological stations 

 

 

 

 

 

Years 

 

Months 

Climate parameters 

MaxTemper MinimTemper MeanTemper Rainfall RelativeHum 

2004 January a
o
C b

o
C c

o
C Xmm y% 

….      

Decemb      

2005 January      

….      

Decemb      

…. January      

….      

Decemb      

… January      

….      

Decemb      

2014 January      

….      

Decemb      
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Appendix VI: Data used in analysis, malaria incidence, temperature, rainfall and 

relative humidity in different district of study area 

Karongi District 

year Averag

e of 

Inciden

ce 

Average of 

AV_MAX_TE

MP 

Average of 

AV_MIN_TE

MP 

Average of 

AV_MEAN_TE

MP 

Avera

ge of 

Rainfa

ll 

Average of 

AV_MEAN_H

UM 

2004 8.62 26.13 7.38 16.75 95.00 70.36 

2005 9.37 26.76 8.49 17.63 87.00 71.36 

2006 11.47 25.82 13.96 19.89 123.67 69.78 

2007 5.40 25.52 14.43 19.91 114.50 72.09 

2008 3.53 25.35 16.37 20.86 103.00 74.96 

2009 4.84 25.73 15.58 20.64 102.08 74.58 

2010 1.18 25.42 15.19 20.24 118.21 71.01 

2011 0.07 25.91 14.61 20.21 111.25 75.06 

2012 0.33 25.63 14.90 20.26 102.50 74.25 

2013 1.64 24.33 15.03 19.67 111.58 68.01 

2014 5.04 24.26 14.82 19.54 122.42 69.47 

Gran

d 

Total 

4.39 25.49 14.17 19.81 109.26 72.02 

 

Muhanga District 

year Averag

e of 

Inciden

ce 

Average of 

AV_MAX_TE

MP 

Average of 

AV_MIN_TE

MP 

Average of 

AV_MEAN_TE

MP 

Avera

ge of 

Rainfa

ll 

Average of 

AV_MEAN_H

UM 

2004 28.82 26.71 10.77 18.74 97.67 69.09 

2005 22.19 27.56 8.93 18.25 98.00 63.71 

2006 24.49 25.74 10.97 18.32 113.79 64.70 

2007 6.44 24.98 13.66 19.30 80.63 65.09 

2008 2.97 25.21 13.98 19.93 83.92 68.09 

2009 5.21 25.40 14.23 19.76 86.19 63.21 

2010 2.51 25.62 14.19 21.98 102.17 61.68 

2011 0.13 25.18 14.45 19.68 124.83 61.82 

2012 0.31 25.67 14.15 19.95 99.42 58.54 

2013 5.14 25.62 14.43 20.02 115.42 58.67 

2014 10.54 24.64 15.04 19.22 235.22 56.99 

Gran

d 

Total 

8.50 25.59 13.34 19.62 113.56 62.42 

 



127 

 

Rubavu District 

year Averag

e of 

Inciden

ce 

Average of 

AV_MAX_TE

MP 

Average of 

AV_MIN_TE

MP 

Average of 

AV_MEAN_TE

MP 

Average of 

PRECIPITATI

ON 

Average of 

AV_MEAN_H

UM 

2004 3.43 19.37 6.13 12.75 136.00 78.70 

2005 3.92 20.43 6.28 13.37 115.42 75.34 

2006 4.91 21.27 9.83 15.55 123.75 76.19 

2007 2.75 18.32 10.39 14.53 101.33 77.30 

2008 1.96 19.24 12.91 15.68 101.17 79.21 

2009 2.17 20.29 12.90 16.59 102.50 74.10 

2010 1.16 20.26 10.81 15.52 121.58 73.30 

2011 0.05 19.82 7.64 13.59 140.33 76.58 

2012 0.12 21.01 11.05 16.13 130.13 75.20 

2013 0.14 22.94 14.11 18.55 81.33 73.19 

2014 0.45 23.85 8.25 16.05 100.67 75.51 

Gran

d 

Total 

1.80 20.71 10.31 15.49 112.41 75.67 
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Appendix VII: Administrative documents 
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