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ABSTRACT 
 

The aerodynamics of airfoils at low Reynolds numbers (Re) has become 

increasingly important from both fundamental and industrial points of view, due 

to recent developments in small wind turbines, small unmanned aerial vehicles 

(UAVs), micro-air vehicles (MAVs), as well as researches on bird/insect flying 

aerodynamics. Researchers on airfoil aerodynamics have focused on 

conventional aircraft design with Re beyond 5×10
5
, where separation bubble 

forming on the leading edge has positive impact on aerodynamic performance of 

the airfoil, increasing the lift coefficient. Separation bubble however does not 

form at low Re (<1.0×10
4
), hence the value of lift coefficient is small. Source 

panel method is used to explore performances of several geometry characteristics 

of 2-D airfoil. It is made possible by varying the maximum thickness, maximum 

camber and position of maximum camber to obtain different airfoils and their lift 

and drag coefficient computed. Reynolds numbers considered here are 1000 

to10, 000.  It is from the study that a desired airfoil is found that has high lift 

coefficient and leading edge separation. In this study, it is now possible to design 

airfoil that can work well at low Reynolds number that is where velocity is low. 
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CHAPTER ONE 

INTRODUCTION 

1.1   Background of the study 

 

Rivers, tidal flows and wind are important in the search for alternative renewable 

energy source which when properly harnessed can have significant contribution 

towards meeting the increasing demand for clean energy. 

 As Reynolds numbers are proportional to free stream velocity, low free stream 

velocity corresponds to low Reynolds numbers. At low Reynolds numbers, the 

airfoils generate lesser lift and encounter higher drags, bringing down the 

performance of the airfoil. Thus the studies of drag and lift are subjects of 

importance in fluid dynamics for the engineering benefits. 

Drag and lift experienced by a solid object in a flowing fluid are the resultant 

resistance forces established by the components of the resultant aerodynamic 

force along and normal to the free stream velocity respectively. Aerodynamic 

drags are caused by dynamic interaction between a body surface and the fluid 

which flows over it. Two major terms which govern the aerodynamic drag and 

lift are the normal stress and wall shear stress. Pressure distribution usually 

dominates the normal stresses acting on the body surface, while surface 

roughness contributes the wall shear stress. The stresses normally vary in 

magnitude along the surface of the solid body. The product of local stress and the 

corresponding finite area is the local force which acts on that surface area; the 

net force in the direction of the upstream velocity of the fluid is the drag, which 
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poses as a resistance to the body motion. On the other hand, lift is the net force 

normal to the direction of the upstream velocity of the fluid.  

It is well known that the aerodynamic performance of airfoils that are optimal for  

high-speed therefore  high Reynolds number significantly degrades when used 

for low-Reynolds-number applications where the Reynolds numbers are smaller.  

Ever since the first observation by Jones, the leading separation bubbles (LSB) 

had been extensively investigated by numerous researchers, as reviewed by 

Young and Horton, (1966)  over a low Reynolds number airfoil. If the free 

stream turbulence intensity is low, the flow starts as laminar; before transition, 

the laminar boundary layer separates due to the adverse pressure gradient. The 

separated flow quickly undergoes transition and becomes turbulent. Depending 

on parameters such as the local Reynolds number, pressure gradient, surface 

roughness, and free stream turbulence intensity, the turbulent free shear layer 

may entrain to reattach as a turbulent boundary layer behind a laminar separation 

bubble.  

Flow around the leading edge of the oscillating airfoil play a key role in the 

development and shedding of a concentrated vortex known as the dynamic stall 

vortex (cause of leading edge vortex). The favorable effect of the vortex was to 

increase lift by Maxworthy.T (1979). 

Dickinson, M. H. and Götz, K. G. (1993). realized that steady-state 

aerodynamics does not accurately account for the forces produced by natural 

fliers, and this prompted several studies on the unsteady flow produced. 

Mechanisms such as rotational circulation, wake capture, and the unsteady 

leading edge vortex do account for the aerodynamics forces. Regarding forward 
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flight, the unsteady leading edge vortex was the only mechanism present to 

produce the necessary forces. The unsteady leading edge vortex involves leading 

edge flow separation that reattaches to the wing and forms a separation bubble. 

According to quasi-stead-state aerodynamic theory, slow-flying vertebrates are 

not able to generate enough lift to remain aloft. Therefore, unsteady aerodynamic 

mechanisms to enhance lift production was studied by Barfield .R et. al (2008) 

using digital particle image velocimetry and showed that small nectar-feeding 

bat is able to increase lift by as much as 40% using attached leading edge 

vortices (LEVS) during slow forward flight, resulting in a maximum lift 

coefficient of 4.8. 

The vortex increases the circulation around the wing and creates much higher lift 

than the steady-state case. Within nature the primary unsteady a recirculation 

produced during the wing’s downstroke. It acts to create a region of low pressure 

over the upper surface of the wing, although it can also be considered as 

augmenting the circulation around the wing, and thus increases lift. 

Aerodynamic phenomenon responsible for lift augmentation is the Leading Edge 

Vortex (LEV).The LEV is a region of highly three-dimensional  

There are  three different types of separation depending on the position there 

situated; firstly: Trailing-edge stall, it is a separation that occur at the trailing 

edge and moving towards the leading edge  as the incidence angle increases it 

occurs typically on thick airfoil. Secondly, Leading-edge stalls, caused by an 

abrupt separation of the flow near the leading edge without subsequent 

reattachment. The bubbles in this category are short; it also increases with angle 
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of attack. Lastly, thin-aerofoil stall which is the flow separation at the leading 

edge with reattachment at a point by  McCullough.G.B. (1957). 

Studies have relied on mechanical wing flappers designed to mimic kinematics 

over a wide range of Reynolds numbers .Each of these studies has identified a 

leading-edge vortex (LEV) responsible for a significant portion of the lift 

generated. The strength and stability of this LEV depended on a number of 

variables, the Reynolds number, the wing shape, the translation, the rotation, and 

the angle of attack. The discovery of leading-edge vortices (LEVs) on the wings 

of insects in flight greatly advanced the knowledge of their dominant lift-

generating mechanisms. Sharp leading edges induce high lift production through 

flow separation with vortical flow attached to the upper surface of insect wings 

during flapping and gliding. 

The same studies were carried by Ellington (1996), and Van den Berg et al.  

(1997) on the insect wings, most of the lift was associated with a large, stable 

leading edge vortex which separates from the sharp leading edge of the wing. 

Also model of swift wings done by Videler (2004) and another model on bats 

done by Edmonds, (2005) and Muijres, (2008) indicated a leading edge vortex 

lift enhancement mechanism at low Reynolds number regime which 

characterizes insects. 

 After focusing on a fluid dynamic around an airfoil and expressing the shape of 

airfoils as a function of three parameters which control, the maximum thickness, 

maximum camber and maximum camber location of airfoil, a desired shape of 

airfoil that caused the formation of separation bubble at the leading edge at low 

Reynolds number can be found. 
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       1.2  Statement of the problem 

An airfoil that works well at low Reynolds number is required. The problem is to 

find a mechanism that can cause the formation of separation bubble at the 

leading edge of an airfoil and also determine lift and drag coefficient of various 

airfoils after varying their shapes. 

        1.3  Objectives 

The objectives of the study are: 

i. Calculate lift  and drag coefficients of airfoils having different shapes for 1000 ≤ 

Re≤ 10,000 

ii. Find flow control mechanism to form separation bubble at the leading edge of 

the airfoil and its effectiveness. 

1.4  Significance of the study 

We need to generate more energy so as to achievement the vision 2030 on the 

sector of energy. This can be done by generating wind energy even on places 

where wind is low. Thus the need to design a desirable airfoil (wind turbine). 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The aerodynamic design methods and principles developed over the past40 years 

have produced efficient airfoils for conventional, large-scale, high-speed aircraft 

whose Reynolds numbers is beyond 1.0×10
5
. There is considerable literature on 

biological flight mechanisms; but there is very little detailed aerodynamic 

research available. Most hovering animals, such as insects and hummingbirds, 

enhance lift by producing leading edge vortices (LEVs) and by using both the 

downstroke and upstroke for lift production by Mark, C.(2012). LEVs have been 

observed on butterfly wings in free flight (Thomas et al.  2002).Aerodynamics at 

the Reynolds numbers is considerably different from those of more conventional 

aircraft. The flow is laminar and viscously dominated. Boundary layers are quite 

thick, often reaching a significant fraction of the chord length.  

The dependency of separation bubble on Reynolds number was first found by 

Gaster (1969). The study was made of laminar separation bubbles formed over a 

wide range of Reynolds numbers and in a variety of pressure distributions. His 

final conclusion was that, the structure of the bubbles depended on the value of 

the Reynolds number of the separating boundary layer and a parameter based on 

the pressure rise over the region occupied by the bubbles. Conditions for the 

bursting of 'short' bubbles were determined by a unique relationship between 

these two parameters.  

The tail (caudal fin) is one of the most prominent characteristics of fishes. 

Vortex reattachment was seen at the leading of the fish tail by Mark,C (2013) 
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using 3-D high-resolution numerical of self-propelled virtual swimmers with 

different tail shapes. He showed that the evolution of the LEV drastically alters 

the pressure distribution on the tail and the force is generated. 

A prominent leading edge vortex (LEV), the hallmark of dynamic stall, has been 

observed on the leading edge of model Manduca wings at Re=5000 and model 

Drosophila wings at Re=150. In Drosophila, this enlarged area of vorticity is 

prominent at angles of attack above ~12°, at which flow separates from the 

leading edge (Dickinson et al. 1993). The importance of the LEV was noted by 

Maxworthy( 1979, 1981)in the context of Weis-Fogh’s ‘clap-and-fling’ 

mechanism. The formation of an LEV was examined on both tethered and model 

dragonfly wings by Luttges et al.  (1985). In a seminal study, Ellington  et al. ( 

1996) visualized an LEV on the wing of a live hawk moth in tethered flight 

(Re~4000).Efforts have been made to yield high lift flow mechanisms, Ellington 

(1996), Van den Berg et al.  (1997), studied insect wings, they found out that 

most of the lift is associated with a large, stable leading edge vortex which 

separates from the sharp leading edge of the wing. 

Usherwood et al.  (2002) showed that the leading edge vortex is stable on wings 

steadily rotating like a propeller. The resultant aerodynamic force is normal to 

the wing surface, reflecting the fact that the leading edge vortex essentially 

eliminates the leading edge suction. 

Mueller et.al (1984 and 1987) studied the laminar separation bubble formed by 

an airfoil with cylindrical leading edge, followed by a constant thickness section, 

followed tapered trailing edge which formed laminar separation bubbles near the 

leading edge with Re ranging from 1.5×10
5
 to 4.5×10

5
 . 
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Tain (1964 and 1974) investigated the incompressible and compressible flow 

around the leading edge; he found that the formation and location of separation 

bubbles depends on angle of attack and leading edge curvature. 

Jones (2000) was perhaps the first to study separation bubbles. He observed the 

existence of separation and reattachment of the boundary layer over cambered 

airfoil. 

A study by Sophia, E et.al (2013) showed that at the inner wing of flying 

hawkmoth there is a single attached LEV, while at mid wing there are multiple 

LEVs and that the strong and complex LEV suggests high flight power in 

hawkmoths 

2.2 Source panel method 

Cox A.  (2012) used panel method to solve inviscid flow. They used analytic 

function to express airfoils. 

The normal analytic equation for airfoil is as follows    

        yt = 5t(0.2669 -0.1260x – 0.3516x
2 

+ 0.2843x
3 
 - 0.1015x

4 
)                                  (1) 

       Airfoil bending analytic equation is as follows 

       yc =m/p( 2px – x
2 

), (0 ≤ x ≤ p)                                                                                (2) 

       yc =m/(1-p)²[(1-2p) + 2px – x
2 
] ,  ( p ≤ x ≤ c )                                                       (3) 

where yt is coordinate in airfoil thickness direction ; x is coordinate in airfoil 

length direction, from 0 to c ; yc is airfoil bending coordinate; t is airfoil 

maximum thickness; m is airfoil maximum bending; p is maximum bending 

position. t,m, and p were all expressed as a percentage of the wing chord. 
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(xu, yu) were the airfoil upper surface coordinates, ( xl, yl) were lower surface 

coordinates, the airfoil was expressed as 

       xu = x – yt cosѲ                                                                                                 (4) 

       yu = yc + yt sinѲ                                                                                                 (5) 

       xl = x + yt cosѲ                                                                                                         (6) 

        yl = yc – yt sinѲ                                                                                                       (7)           

        Ѳ= arctan (dyc/dx)                                                                                                  (8)                    

Then (1), (2) and (3) substituted into equation  (4) to (8) , the following equation 

are obtained; 

        xu = x - 5t(0.2669x^.5-0.1260x – 0.3516x
2 

+ 0.2843x
3 
 -0.1015x

4 
) sinѲ               (9) 

        yu = (2px – x
2 

)+ 5t(0.2669-0.1260x – 0.3516x
2 

+ 0.2843x
3 
 -  0.1015x

4 
) cosѲ  (10) 

         xl = x + 5t(0.2669-0.1260x – 0.3516x
2 

+ 0.2843x
3 
 - 0.1015x

4 
) sinѲ                 (11)                     

        yl = ( 2px – x
2 
)– 5t(0.2669-0.1260x – 0.3516x

2 
+ 0.2843x

3 
 - 0.1015x

4 
) cos Ѳ  (12) 

        Ѳ = arctan (dyc/dx)   (0 ≤ x ≤ p)                                                                           (13) 

        xu = x - 5t(0.2669-0.1260x-0.3516x
2
 +0.2843x

3 
- 0.1015x

4 
) sinѲ                   (14) 

        yu =m/(1-p)² [( 1-2p) + 2px – x
2 
] + 5t(0.2669- 0.1260x –   0.3516x

2 
+      

         0.2843x
3 
 -  0.1015x

4 
) cos Ѳ                                                                               (15) 

        xl = x +5t(0.2669-0.1260x-0.3516x
2 
+ 0.2843x

3 
- 0.1015x

4 
)sin Ѳ                      (16)               

       yl =m/(1-p)²[ ( 1-2p) + 2px – x
2 
] - 5t(0.2669-0.1260x -0.3516x

2 
+ 0.2843x

3 
 -  
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       0.1015x
4 

) cos Ѳ                                                                                                   (17) 

      Ѳ = arctan (dyc/dx)    ( p ≤ x ≤ c )                                                                         (18) 

Panel methods  dealt with the computation of complex aerodynamic  layout. The 

vortex sheet was approximated by a series of straight panels and the vortex 

strength γ(s) per unit length was taken to be constant over panel to the next. That 

is, for the n panels, the vortex panel strengths   per unit length were γ1, 2,……..j, 

….n.  

These panel strengths were unknowns, the main purpose of the panel technique 

was to solve for γj, j= 1 to n, such that the Kutta condition was satisfied. The 

midpoint of each panel was a control point, at which the boundary condition was 

applied, such that at each control point, the normal component of the flow 

velocity is zero 

 

                Figure 1:     Panels’ configuration of the airfoil 

 

 The pressure coefficient at the i
th 

control point was obtained as 

                                                                                                                                       (19) 
Cp,i =1 –  

𝛾𝑖

𝑉∞
 2
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Through the integral of the pressure coefficient of upper and lower airfoil 

surfaces, they got airfoil normal force coefficient Cn, and tangential force 

coefficient Cα and then the lift and drag coefficients were calculated out by: 

  

                            Cl = CncosѲ – CαsinѲ                                                                  (20)                                                 

                            Cd = CnsinѲ – CαcosѲ                                                                 (21) 

Many experimental and numerical studies on insect flight mechanisms were 

done at Reynolds numbers of laminar flow and the leading edge vortex 

mechanism was applied indiscriminately to wind turbines. Most insects hover at 

a mean chord-based Reynolds number less than 5000; the largest insects 

approach 10000. 
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CHAPTER THREE 

METHODOLOGY 

3.1  Introduction 

 

Inviscid flow can be solved in several ways. A finite difference discretization of 

the steady Euler equation on a grid around the airfoil can be used, or a panel 

method, and Panda. In the present work, a panel method is used. A variety of 

such methods exists; they differ in the choice of the singularity used to represent 

the velocity potential on the airfoil (sources, doublets or vortices).  

The present work uses sources distribution, which gives good solution accuracy, 

even with only a few panels. The method will provide tangential velocity 

distribution on the airfoil’s surface (Us). The pressure coefficient is then 

computed using the Bernoulli equation. The lift and drag coefficients are 

calculated by integrating the pressure coefficients over the body surface. 

3.2 Computation of surface coordinates 

 

The shape of an airfoil is expressed analytically as a function of three parameters 

which control, the maximum camber m, maximum camber location p, and 

maximum thickness t of the airfoil. 
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                             Figure 2:   Airfoil shape parameters 

 

 A wide variety of airfoils can be obtained by varying the three parameters. 

Wing section is obtained by combining the camber line and the thickness 

distribution as shown.  

 

                                     

Figure 3:   Wing section 

 

    xu=x - ythcosѲ      for x<p              

     xl=x + ythcosѲ                                                                                                       (22) 

     xu=x + ythcosѲ      for x>p 

     xl=x - ythcos Ѳ                                                                                                          (23) 

     yu =yc + ythcosѲ                                                                                                        (24) 

     yl =x - ythcosѲ                                                                                                          (25) 
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where (xu, yu) and (xl, yl) are points on the upper and lower surface respectively.  

The thickness distribution and the camber line are given by; 

       yth = 5tc (0.2969(x/c)
 1/2

-0.126(x/c)-0.3537(x/c)
 2
 + 0.2843(x/c)

 3
-+0.1015(x/c)

 4 
(26) 

       and yc =m/p² [(2((x/c)-(x/c)
 2

)          for (x/c)  ≤  p                                                (27) 

           =m/ (1-p) ²[1-2p-2p+(x/c) - (x/c)
 2
]   for (x/c) ≥ p                                             (28) 

In these expressions, c is the airfoil chord length, m is the maximum camber, p is 

the maximum camber location, and t is the maximum thickness. 

3.3 Computation of tangential velocity 

 

 The flow is simulated around the airfoil using MATLAB, the airfoil surface is 

divided into piecewise straight line segments called panel. Each panel is treated 

as a uniform source panel. Each panel is emitting a constant source of fluid along 

its length parallel to the normal vector of each panel. 

 

 

 

 

                                                     

 

Figure 4:  A source panel 

 

We define the normal vector to point outwards, towards the outside of the object 

as shown in figure 4 
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The velocity of the flow in the radial direction is given by 

                                                                                                                             (29) 

 Where m is the source strength and determines the magnitude of the velocity, 

and r is the radial distance from the source. Since the airfoil was made up of 

multiple panels, the flow from each panel affects the flow at each other panel. 

Panels on the bottom of the airfoil induce a flow upwards on the top panels, and 

the top panels induce a flow downwards on the bottom panels. 

 

 

 

 

 

                                

 

Figure 5:  Point source representation 

 

To simplify things, each panel is treated as a point source rather than a source 

panel, as shown in Figure 5. When a large number of panels are used, the size of 

each panel is small and they are represented as point sources without significant 

error. 

We place the point source at the control point of each panel, which is located at 

the centre. Finding the location of the control point equation (30) and (31) are 

used. 

Ur = 
𝑚

2𝜋
 

 

n 

 

 

 

 Panel i 
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                                                                                                                                   (30) 

                                                                                                                                       

                                                                                                                                   (31) 

 

 

 

 

 

 

Figure 6:   Normal vector definition 

 

 If the end points of panel i are xi yi  and xi+1 yi+1 as shown in Figure 6, then the 

center point is located at xcpi ,ycpi  where xcpi and  ycpi  are given    by Equations 

(30) and (31). 

The normal vector at each control point is computed using two steps: 1) Find the 

angle between the normal vector and the positive x-axis. 2) Use sine and cosine 

to decompose the angle into a unit vector. 

The angle 𝛾, measured between the panel and the positive x-axis, is easily 

measured 

Using arctangent 

                                         = arctan (
ii

ii

xx

yy









1

1
﴿                                                          (32)                        

Finding   simply required adding 
 

 
  to𝛾;    

xcpi =  
2

1 ii xx                               

ycpi = 
2

1 ii yy                                     

 
 

  xi+1,yi+1 

 

    𝛾 

 

           panel i 

                          xi,yi 
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  +    

 

 
  + arctan (

ii

ii

xx

yy









1

1
)                                        (33) 

The normal vector is then defined as:  

                     n= (cos  , sinαĵ﴿                                                                                   (34) 

        Similarly, the tangent vector, is defined as:   

                 t = [cos (  -  
 

 
 )ĩ  sin (  -  

 

 
 )ĵ]                                                               (35) 

Another value that is required is the length of the panel.  

That is found using the following equation:      

        li =  )2)(2)(( 11 iiii yyxx                                                                     (36) 

 

Where;          li →the length of the panel 

(xi, yi) and (xi+1, yi+1) → the end points of panel i 

The velocity from one panel acting on another panel is considered 

 

                                                     Vij 

 panel i 

 

                                         Lji   𝑖 

 

 

   

Panel j 

          

 

Figure 7:  Panel-to-panel induced velocity 



18 
 

As shown in Figure 7, panel j induced a velocity, Vij on panel i. The distance 

measured 

between the control points of panel j and panel i is represented by Lji. The angle 

between the ray connecting panel j's control point to panel i's control point made 

an angle βji with the positive x-axis.  Equations 37 and 38 are used to find the 

values the Lji and βji: 

                     Lji =            ﴿2            ﴿2
 ﴿                                      (37) 

                               = arctan ( 
         

         
                                                                    (38) 

 The vector Vij was decomposed two into components; one normal to panel i and 

one tangent to the panel. 

                    

  

           panel i Aij vij 

                                           

                          Tij 

                                   t α βij 

                       

 

                              

 

Figure 8:   Decomposing vij 

 

The vector Aij that represents the normal component of Vij, and Tij is the 

tangential component. Using equation 29, Vij is written as: 

                    Vij = 
  

     
  cos    ﴿ĩ, sin     ﴿  ﴿                                                (39) 

To get the normal component of Vij, we take the dot product of velocity with 

normal vector.     



19 
 

 Vijn = Vij.ni= 
  

     
       𝑖﴿ĩ        𝑖﴿  ﴿. (cos  , sinαĵ﴿     

                                      =
  

     
 cos    cos   + sin    sin )                                  (40) 

the normal influence Coefficient, Aij is obtained by dividing normal component 

by mj           

       Aij= 
    

  
  = 

 

     
  cos    cos   + sin    sin )                                              (41) 

Applying a trigonometric identity, Equation is rewritten as:        

                Aij = 
 

     
           ﴿                                                                       (42) 

Similarly, the tangential influence coefficient is written as the dot product of Vij 

and t, divided by mj :   

           vij.t=
  

     
  cos   𝑖﴿ĩ, sin    𝑖﴿  ﴿. [cos (  -  

 

 
 )ĩ  sin (  -  

 

 
 )ĵ]                

          Tij = 
     

  
 = 

 

     
 [cos  𝑖      𝑖  

 

 
 ﴿+ sin  𝑖sin   𝑖  

 

 
 ﴿] 

                  =
 

     
 cos      -     

 

 
﴿                                                                     (43) 

After finding the velocity induced on one panel by another, we sum up all of the 

velocities induced on each panel. The normal components of the velocity 

induced on panel i is written as:        

          Uni =        
     + U∞ni                                                                           (44) 

where U∞ni is the free stream velocity dotted with the normal vector of the panel 

which yielded the portion of the free stream velocity that is normal to the panel. 

Having the boundary conditions for a solid airfoil; that there cannot be any flow 

through a panel. Then equation 44 is equated to zero. 

                         𝑚  𝑖  
     + U∞ni =0 
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                         = -                                                      (45) 

          For the entire system (all the panels), more rows are added to the A matrix: 

              

 

                    
  
 

  
  
         
   

         
  = - 

   
 

   
                                                     (46) 

 

 

For simplicity's sake, Equation (35) is written as 

                                   

                                               |m| [A] = -|bn|                                                                 (47) 

To find the source strengths for each panel, Equation 48 is solved. 

                                              |m| =[A]
-1

|-bn|                                                                 (48)                                                             

Although the velocities normal to each panel sum to zero, the tangential 

velocities do not. The total tangential velocity at panel i is given by:       

                             Usi =        
     +   U.ti                                                              (49)                          

The Equation is also written as a matrix equation:                                  

                           |Us|= [T] |m|+|bt|                                                                              (50)                                                      

All three matrices on the right side of Equation are known, then Us is calculated 

using basic multiplication matrix. 

 3.4 Computation of lift and drag coefficient 

 

 Finally, the coefficients of pressure at each panel’s control point are calculated 

using Bernoulli’s equation. 

                              Cpi = 1- 








u

usi 2                                                                                                                           
(51) 
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Looking for the lift coefficient Cl and drag coefficient Cd, dimensionless 

coefficients are obtained by integrating Cp ( Cox. et.al) 

                               Cl=           
 

 

 

 
                                                               (52)                              

                               Cd=           
 

 

 

 

 
 

 

                                                            (53) 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

        4.1Tables showing Surface coordinates, pressure coefficients, lift and drag   

        coefficient. 

 

 Surface coordinates of four different airfoils are obtained by using equation 22 

to 28 and MATLAB was used to run the program.  

Airfoil 1 is an airfoil with the following three parameters: maximum camber 

0.09, maximum camber location 0.1 and maximum thickness 0.09. 

Airfoil 2   is an airfoil with the following three parameters: maximum camber 

0.7, maximum camber location 0.1 and maximum thickness 0.09 

Airfoil 3 is an airfoil with the following three parameters: maximum camber 

0.09, maximum camber location 0.5 and maximum thickness as 0.09 

Airfoil 4 is an airfoil with the following three parameters: maximum camber 

0.09, maximum camber location 0.1 and maximum thickness 0.3 
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Table 1          A table showing upper surface coordinate of four different    

                 airfoils. 

 

 

Airfoil 1 Airfoil 2 Airfoil 3 Airfoil 4 

xu yu xu yu xu yu xu yu 
0 0 0 0 0 0 0 0 

0.1112 0.1264 0.1118 0.7363 0.1013 0.0707 0.1114 0.2115 

0.2234 0.1322 0.2313 0.7300 0.2136 0.1052 0.2262 0.2345 

0.3357 0.1287 0.3501 0.6945 0.3280 0.1245 0.3411 0.2331 

0.4477 0.1187 0.4659 0.6336 0.4428 0.1309 0.4551 0.2165 

0.5593 0.1035 0.5783 0.5495 0.5570 0.1256 0.5679 0.1888 

0.6704 0.0838 0.6874 0.4437 0.6702 0.1095 0.6790 0.1524 

0.7809 0.0599 0.7939 0.3167 0.7819 0.0830 0.7883 0.1087 

0.8908 0.0320 0.8980 0.1689 0.8919 0.0464 0.8954 0.0579 

 

 

Table 2:          A table showing lower surface coordinate of four different airfoils. 

 

Airfoil 1 Airfoil 2 Airfoil 3 Airfoil 4 

xl yl xl yl xl yl xl yl 

1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

0.8869 0.0097 0.8798 0.1555 0.8858 0.0247 0.8824 -0.0162 

0.7746 0.0180 0.7617 0.2893 0.7736 0.0415 0.7673 -0.0308 

0.6630 0.0249 0.6459 0.4013 0.6631 0.0505 0.6543 -0.0438 

0.5519 0.0304 0.5328 0.4918 0.5541 0.0522 0.5432 -0.0549 

0.4412 0.0349 0.4229 0.5614 0.4461 0.0469 0.4338 -0.0629 

0.3310 0.0392 0.3166 0.6114 0.3387 0.0355 0.3256 -0.0652 

0.2210 0.0445 0.2132 0.6442 0.2308 0.0192 0.2183 -0.0578 

0.1110 0.0535 0.1104 0.6634 0.1209 0.0005 0.1108 -0.0315 
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After obtaining the surface coordinates value, the values are run in a MATLAB to 

obtain pressure coefficients using equation 51.  

 

Table 3:    Tables showing upper pressure coefficients and Lower pressure  

               coefficients of airfoil 1 at Different reynolds number.  

 

 

Re=1000 Re= 2000        Re=3000 Re=4000  

-147.3087 0.8787  -36.0772 0.9697 -15.4787 0.9865  -8.2693  0.9924 

    0.8833   0.9645     0.9708 0.9911     0.9870  0.9961     0.9927     0.9978 

    0.9333   0.6226     0.9833 0.9056     0.9926  0.9581     0.9958     0.9764 

    0.9219   0.6447     0.9805 0.9112     0.9913  0.9605     0.9951     0.9778 

    0.9299   0.6328     0.9825 0.9082     0.9922  0.9592     0.9956     0.9770 

    0.9468   0.5882     0.9867 0.8971     0.9941  0.9542     0.9967     0.9743 

    0.9710   0.5373     0.9927 0.8843     0.9968  0.9486     0.9982     0.9711 

    0.6561   0.9454     0.9140 0.9863     0.9618  0.9939     0.9785     0.9966 

    0.8518  -45.6183     0.9630 -10.6546     0.9835 -4.1798     0.9907    -1.9136 
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Cont’ 

Re=5000 Re= 6000 Re=7000 Re8000  

cpu cpl cpu Cpl cpu cpl cpu 

 

cpl 

-4.9323  0.9951   -3.1197  0.9966   -2.0267  0.9975 -1.3173     0.9981 

   0.9953     0.9986     0.9968     0.9990     0.9976     0.9993     0.9982     0.9994 

   0.9973     0.9849     0.9981     0.9895     0.9986     0.9923     0.9990     0.9941 

   0.9969     0.9858     0.9978     0.9901     0.9984     0.9927     0.9988     0.9944 

   0.9972     0.9853     0.9981     0.9898     0.9986     0.9925     0.9989     0.9943 

   0.9979     0.9835     0.9985     0.9886     0.9989     0.9916     0.9992     0.9936 

   0.9988     0.9815     0.9992     0.9871     0.9994     0.9906     0.9995     0.9928 

   0.9862     0.9978     0.9904 0.9924     0.9930     0.9989     0.9946     0.9991 

   0.9941    -0.8647     0.9959 0.9960     0.9970     0.0486     0.9977     0.2716 

 

              Cont’ 

Re=9000 Re= 10000 Re=100000  

cpu cpl Cpu cpl cpu cpl 

-0.8310  0.9985 -0.4831  0.9988 0.9852  1.0000 

    0.9986     0.9996     0.9988     0.9996     1.0000    1.0000 

    0.9992     0.9953     0.9993     0.9962     1.0000   1.0000 

    0.9990     0.9956     0.9992     0.9964     1.0000    1.0000 

    0.9991     0.9955     0.9993     0.9963     1.0000    1.0000 

    0.9993     0.9949     0.9995     0.9959     1.0000    1.0000 

    0.9996     0.9943     0.9997     0.9954     1.0000    1.0000 

    0.9958     0.9993     0.9966     0.9995     1.0000    1.0000 

    0.9982     0.4245     0.9985     0.5338     1.0000    0.9953 
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Table 4     Tables showing upper pressure coefficients and lower pressure  

          coefficients of airfoil 2, airfoil 3 and airfoil 4 at Reynolds number    

          4000.  

 

 

Airfoil 2 Airfoil  3 Airfoil 4 

cpu cpl cpu cpl cpu cpl 
-14.9455 0.9971 0.8894  0.9934  0.9886 -1.6144 

    0.9852     0.9983     0.9958     0.9951     0.9685     0.9996 

    0.9887     1.0000     0.9926     0.9897     0.9715     0.9991 

    0.9931     0.9845     0.9914     0.9902     0.9737     0.9976 

    0.9970     0.9818     0.9914     0.9902     0.9750     0.9961 

    0.9990     0.9800     0.9924     0.9896     0.9752     0.9948 

    0.9704     0.9814     0.9941     0.9880     0.9738     0.9940 

    0.9934     0.9901     0.9885     0.9836     0.9751     0.9947 

    0.9968   -15.0872     0.9926     0.9872    -1.4273     0.9960 

 

The values obtained of pressure coefficient from MATLAB are used to 

determine lift coefficient and drag coefficient. Equation52and 53 are used to 

compute. The efficiency of an airfoil is based on ratio of lift to drag or lift 

coefficient to drag coefficient. The ratios are obtained as shown below. 
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Table 5          Table showing lift coefficient, drag coefficient and ratio of lift  

coefficient   to drag coefficient of  airfoil 1. 

 

 

 Re=1000 Re=2000 Re=3000 Re=40

00 

Re=50

00 

Re=60

00 

Re=70

00 

Re=800

0 

Re=90

00 

Re=100

00 

Re=10

0000 

Cl 100.4105 25.1026 11.1567 6.2758 4.0164 2.7891 2.0492 1.5688 1.2397 1.0041 0.0101 

Cd 10.3139 3.6585 2.4260 1.9946 1.7949 1.6865 1.6211 1.5787 1.5496 1.5287 1.4409 

Ratio   
  

  
 9.7355 6.8614 4.5988 3.1464 2.2377 1.6538 1.2641 0.9937 0.8000 0.6568 0.0070 

 

 

Table 6          Table showing lift coefficient, drag coefficient and ratio of lift  

                    coefficient to drag coefficient of airfoil 1, airfoil 2 and airfoil 3 

. 

 

 Airfoil 2 Airfoil 3 Airfoil 4 

 

Cl -0.1521 0.0788 -0.0166 

Cd 1.4126 1.4361 0.8679 

Ratio   
  

  
 -0.1077 0.0549 -0.0191 

 

 

The results obtained on table 5 shows that lift coefficient increases with decrease 

in Reynolds number. Drag coefficient increases also with decrease in Reynolds. 

The performance of airfoil is based on the ratios of the two coefficients. Looking 

on the ratios we can say that performance of Airfoil 1 is good at low Reynolds 

number. On the same we can see that when the Reynolds number is raised to 
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100,000 the ratio reduces, justifying that it can only work well at low Reynolds 

number. 

The results at table 6 show performances of the other airfoils. Since the results 

were obtained at Reynolds number of 4000, we will compare the results obtained 

with those on table 5 where the Reynolds number is 4000. The ratio of Airfoil 1 

is 3.1464, Airfoil 2 is -0.1077, Airfoil 3 is 0.0549 and that Airfoil 4 is -0.0191. it 

is from the results that we can say that it’s only Airfoil 1 that can perform well. 
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4.2 Graphs showing the four shapes of  airfoils. 

 

Graphs of pressure coefficient against chord length (x) are plotted from 

MATLAB. Also the shape of the airfoil is plotted corresponding to the 

parameters used. (Maximum camber, maximum camber location, and maximum 

thickness). 

 

                                              Figure 9          Shape of airfoil 1 
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Figure 10        Shape of airfoil 2 

 

                                            Figure 10        Shape of airfoil 3 

 

0 0.5 1 
-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

x 

   

C p 

C P   
  
Top 

C P  
  
 Bottom 

RE=4000 
M=0.09 
P=0.5 
T=0.09 

0 0.5 1 
-1 

-0.8 

-0.6 

-0.4 

1 

x 

C P   
  
Top 

C P  
  
 Bottom 

 



31 
 

 

                 

                                         Figure 11          Shape of airfoil 4      

           

Looking at the shapes of the airfoil from the graphs we notice that they are 

different. From literature review we know that leading edge vortex causes 

separation bubbles at the leading edge. In the four airfoils it’s Airfoil 1 that has a 

depression on the leading edge, so we expect the flow at that point to be vortical.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

  

From the discussion on the lift coefficient on table 5, we see that it is only one of 

the airfoils that is Airfoil 1 that has good performance in terms of lift coefficient 

(which is directly proportional to lift). On the same table we see the same airfoil 

operating with a different Reynolds number of 100000, and the lift coefficient at 

that point is seen to have dropped, implying that the airfoil can only work well at 

low Reynolds number. 

We know that to get actual performance of the airfoil we need to check at the 

efficiency ( the ratio of lift coefficient to drag coefficient or the ratio of lift to 

drag ). Looking at the ratios, we see the same airfoil performing well at Reynolds 

number less than 10000 and beyond that its performance decreases. Also using a 

different airfoil the performance becomes poor. 

Checking at the shape produced by Airfoil 1, it has a depression on the upper 

side on the leading edge. We expect the flow at the point to be vortical flow. It is 

from the vortical flow that we get the vortex, thus leading edge vortex (LEV). 

Therefore causing higher lift coefficient. The other airfoils lack the depression at 

the leading edge thus lacks the formation of the vortex, hence low lift generation.  

5.2 Recommendations  

 

The research conducted so far has produced a desired airfoil that works well with 

low Reynolds number. I recommend this airfoil (turbine) be used to extract wind 

energy on areas where wind velocity is low, that is urban areas where obstruction 
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from building, also in pacific Island countries where they have low speed of 

wind geographically.  

5.3 Suggestions for further research 

  

This research has focus in changing the shape of the airfoil to find an airfoil that 

can cause leading edge separation. It is suggested that further study be conducted 

to investigate how surface roughness, varying of the angle of attack can also 

cause the formation of leading edge separation at low Reynolds number of less 

than 10,000. 
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APPENDIX 

 

A program to compute surface coordinates and pressure coefficient of an airfoil using 

MATLAB. 

clear; 

clc; 

 close all; 

%General variables 

 c = 1.000; %chord length 

 N = 5; %Positive integer number of points to use on one side 

  uinf = 1; %Strenght of the free stream velocity 

 aoa = 0*pi/180; %Angle between u inf and +x�axis in radians 

%Converting to useful airfoil measurements 

 m =60/100; %Maximum camber, in percent of chord 

p = 8/10; %Position of max camber, in tenths of chord 

 t = 70/100; %Maximum thickness 

 %% Find the panel end points 

% Define a vector of x coordinates 

x = linspace(0, c, N); %Varied distances from 0 to chord along the airfoil 

 x = transpose(x); 

 %Calculate the height above mean chord line 

 yt = 5*t *c*(.2969*sqrt(x/c) - .126*(x/c) - .3516*(x/c).^2 + ... 

 .2843*(x/c).^3 - .1036*(x/c).^4); 

%Calculate the mean camber line 

yc = zeros(length(x), 1); 

ycPrime = zeros(length(x), 1);  

theta = zeros(length(x), 1); 

for i = 1:length(x) 

if(x(i)/c < p) 

yc(i) = m *((2*p*x(i)./c)-(x(i)/c).^2)./p.^2; 

ycPrime(i)= m *((2*p./c)-(2*x(i)./c.^2))./p.^2; 

theta(i) = atan(m *((2*p./c)-(2*x(i)./c.^2))./p.^2); 

else 

yc(i) = m *(1-2*p+2*p*(x(i)/c)-(x(i)/c).^2)/(1-p).^2; 

 ycPrime(i) = m*(2*p./c-2*x(i)./c.^2)./(1-p).^2; 

theta(i) = atan(m*(2*p./c-2*x(i)./c.^2)./(1-p).^2); 

end 

end 

lowerPts = [x + yt.*sin(theta), yc - yt.*cos(theta)]; 

upperPts = [x - yt.*sin(theta), yc + yt.*cos(theta)]; 

 

%Make sure there is only one TE point and only one LE point 

upperPts = upperPts(1:end-1, :); %delete the TE point 
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lowerPts = lowerPts(2:end, :); %delete the LE point 

%Create a combination of all points in order moving CW around the airfoil 

%starting at the LE 

allPts = vertcat(upperPts, flipud(lowerPts)); 

%% Calculate various lenghts, angles, and vectors 

%Find the length of each panel 

sideLen = zeros(length(allPts(:,1)),1);  

for i = 1:length(allPts(:,1)); 

if(i + 1 > length(allPts)) 

sideLen(i) = sqrt((allPts(i, 1) - allPts(1, 1)).^2 + ... 

(allPts(i, 2) - allPts(1, 2)).^2 ); 

else 

sideLen(i) = sqrt((allPts(i, 1) - allPts(i + 1, 1)).^2 + ... 

(allPts(i, 2) - allPts(i + 1, 2)).^2 ); 

end 

end 

%Find all control point locations and alpha values 

CP = zeros(length(allPts(:,1)), 2); 

alpha = zeros(length(allPts(:,1)), 1); 

 for i = 1:length(allPts(:,1)) 

 if(i + 1 > length(allPts)) %connect the last point to the first point 

 alpha(i) = pi/2 + atan2(allPts(1, 2) - allPts(i, 2),... 

 allPts(1, 1) - allPts(i, 1)); 

 CP(i,:) = allPts(i, :) + (allPts(1, :) - allPts(i, :))/2; 

 else 

 alpha(i) = pi/2 + atan2(allPts(i + 1, 2) - allPts(i, 2),... 

 allPts(i + 1, 1) - allPts(i, 1)); 

CP(i,:) = allPts(i, :) + (allPts(i + 1, :) - allPts(i, :))/2; 

 end 

 end 

%Find the normal and tangent vectors for each panel 

nVec = [cos(alpha), sin(alpha)]; 

 tVec = [cos(alpha - pi/2), sin(alpha - pi/2)]; 

 

% Find distance between control points and the angle between each ray and 

  the free stream velocity. 

 L = zeros(length(CP(:,1)), length(CP(:,1))); 

 beta = zeros(length(CP(:,1)), length(CP(:,1))); 

for i = 1:length(CP(:,1)) 

 for j = 1:length(CP(:,1)) 

 if(i == j) 

 L(i,j) = 0; 

 beta(i,j) = alpha(i); 

 else 
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 L(i, j) = sqrt((CP(j, 1) - CP(i, 1)).^2 + (CP(j, 2) - CP(i, 2)).^2); 

 beta(i, j) = atan2(CP(j, 2) - CP(i, 2), CP(j, 1) - CP(i, 1)); 

 end 

end 

 end 

 %convert u to a vector 

 uvector = zeros(length(allPts(:,1)),2); 

 uvector(:,1) = cos(aoa); 

 uvector(:,2) = sin(aoa); 

 % Find the normal and tangential components of u wrt each panel 

 bn = zeros(size(nVec(:,1))); 

 bt = zeros(size(tVec(:,1))); 

 for i = 1:length(allPts(:,1)) 

 bn(i) = -1*dot( uvector(i,:), nVec(i,:)); 

 bt(i) = dot( uvector(i,:), tVec(i,:)); 

 end 

% Find the normal influence components and the tangential influence ... 

normCoeff = zeros(length(CP(:,1)), length(CP(:,1))); 

 tanCoeff = zeros(length(CP(:,1)), length(CP(:,1))); 

 for i = 1:length(CP(:,1)); 

 for j = 1:length(CP(:,1)); 

 if(i == j) 

 normCoeff(i, j) = 1/(2*sideLen(i)); 

 tanCoeff(i, j) = 0; 

 else 

 normCoeff(i, j) = cos(beta(j,i) - alpha(i))/(2*pi*L(j,i)); 

  

tanCoeff(i, j) = cos(beta(j,i) - alpha(i) + pi/2)/(2*pi*L(j,i)); 

end 

 end 

 end 

 

% Use linear algebra to solve for the source strength of each panel 

 m = normCoeff\bn; 

%Use the tangential influence coefficients to find the tangential 

 %velocities at each panel 

 vSi = tanCoeff*m + bt; 

 %Compute the coefficient of pressure 

 CPressure = 1 - (vSi/uinf).^2; 

 

%Plot the points 

plot(allPts(:, 1), allPts(:,2), '  *'); 

% Plot the airfoil and the coefficient of pressure 
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figure(); 

hold on; 

plot(allPts(1:N, 1), CPressure(1:N), 'g'); 

plot(allPts(N+1:end, 1), CPressure(N+1:end), 'r'); 

plot(allPts(:, 1),  -1*allPts(:,2)); 

%connect the last point to the first point 

plot([allPts(end,1), allPts(1,1)],  -1*[allPts(end,2), allPts(1,2)]); 

axis([ -0.25, 1.25,  -1, 1]); %Set the xMin, xMax, yMin, yMax respectively 

set(gca,'DataAspectRatio', [1 1 1]); 

legend('C P  _ Top', 'C P _  Bottom', 'Location', 'SE'); 

xlabel('x'); 

ylabel('C_ P'); 

set(gca, 'YDir', 'reverse'); 

 

 

 

 

 

 

 

 

 

 

 


