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ABSTRACT 

 

This thesis deals with the solution of the non-linear third order partial differential 

equation of a steady hydromagnetic laminar flow of a conducting viscous incompressible 

fluid through a channel with two parallel porous plates. The two plates are stationary and 

there is magnetic field moving at right angle to the electric field. Due to the porous nature 

of the plates, the fluid is withdrawn through both walls of the channel at the same rate. 

The specific equations governing the flow are discussed, transformed using 

dimensionless techniques into a third order partial differential equation, simplified using 

Taylor’s series expansion and solved by the method of regular perturbation. Expressions 

for the velocity components and temperature profiles are discussed and represented in 

form of tables and graphs plotted by use of MATLAB programming software. The 

velocity profiles parallel (axial) and normal (radial) to the plates as well as the 

temperature distribution on the fluid are investigated. The results indicate that the radial 

velocity decreases with increase in Reynolds number while the axial velocity is zero at 

the walls and increases to the maximum at the centre line depicting the normal free flow 

velocity of the stream when there is no magnetic field in the fluid flow. The velocity of 

the fluid decreases with increase in Hartmann number. The temperature of the fluid 

decreases when Prandtl number increases and Eckert number decreases. This means that 

when viscous forces increases in the flow the thermal conductivity becomes negligible 

and thus thermal energy surpasses the kinetic energy of the fluid. The study has its 

application in hydromagnetic devices where the interaction between velocities profiles, 

magnetic and electric fields are utilized in the design of various machines, for instance 

removal of pollutants from plant discharge stream by absorption. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the problem 

The magnetohydrodynamic as a word was first used by Hannes Alfven in 1942 for which 

he received a Nobel Prize in physics in 1970, Kimeu et al (2014). The term ‘magneto 

hydrodynamic’ usually abbreviated MHD and is derived from magneto meaning 

magnetic field, hydro meaning liquid and dynamic meaning movement. Hydrodynamics 

is therefore the study of fluid flow and the forces that causes the flow without the 

electromagnetic field while hydromagnetic involves the interaction of electrically 

conducting fluid and electromagnetic fields, for instance, Plasma, salt solution and 

mercury. When these fluids move past a magnetic field, there arises an interaction 

between the flow field and the magnetic field which exerts a force on the fluid due to the 

induced currents thus it affects the original magnetic field. The forces generated in this 

way are of the same order of magnitude as the hydrodynamic forces and are taken into 

account when considering the fluid flow. These forces are known as body forces and acts 

on the fluid. Examples of these forces are gravitational and electromagnetic forces. The 

dynamic effect of the fluid flow system can therefore be described in terms of flow 

variables such as velocity, density and pressure. For steady flow, these variables remains 

constant at all stages of the fluid flow. 

The hydromagnetic fluid flow between parallel porous plates is a classical problem in 

fluid dynamics and is known as Hartmann flow. The porous plate is one with pores (void 
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space) on the plate. The solution to this problem has many applications in MHD power 

generators in that it generates electricity from thermal or kinetic energy by the use of 

conducting fluid as the electrical conductor; in electrostatic precipitation for air 

purification; in oil reservoir engineering; in lubrication of porous bearings; in porous 

walled flow reactors and in polymer technology among others. Therefore, there is need to 

study the two dimensional hydromagnetic flow of a steady incompressible fluid between 

two parallel porous plates. 

1.2 Definitions of basic concepts 

1.2.1Two dimensional flow 

It is the fluid flow in which all flows occur in a set of parallel planes with no flow normal 

to them, and the flow is identical in each of these parallel planes. Mathematically, it is 

written as 

𝑢 = 𝑓1(𝑥, 𝑦) ,  𝑣 = 𝑓2(𝑥, 𝑦) where 𝑥 and 𝑦 are the coordinate axes and 𝑢 and 𝑣 are their 

corresponding velocities respectively. 

1.2.2 Steady flow 

It is a type of flow in which the fluid properties (velocity, pressure or density etc) can 

change from point to point in the control volume but remains the same at any fixed point 

during the whole process, which the fluid flow remains constant throughout the flow 

region even though time is varying. During a steady flow process the total amount of 

mass contained within a control volume does not change with time, hence obeys the 

conservation of mass principle which states that the total amount entering a control 

volume is equal to the total amount of mass leaving it. 
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1.2.3 Incompressible flow 

It is the flow where by each travelling fluid element changes its density negligibly or not 

at all. That is, a flow in which the material density is constant within a fluid parcel (an 

infinitesimal volume) that moves with the flow velocity. Mathematically,  𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

1.2.4 Laminar flow 

It is the movement of the fluid flow which does not suffer from disturbance. The fluid 

particles move along well defined paths or stream lines which are straight and parallel. 

The particles move in layers gliding smoothly over the adjacent layer. The fluids that 

exhibit this flow are irrotational and the streamlines never loops back on themselves thus 

there is no mixing between the different fluid layers as well as there is no slip condition 

at the boundary. These flows remain orderly in continuous motion along the plate until a 

critical distance is reached or the Reynolds number attain a critical value after which a 

small disturbance in the flow begin to be amplified which characterize the end of laminar 

boundary layer. 

1.2.5 Viscosity 

It is the property of the fluid which determines its resistance to shear stress between the 

layers of the fluid. It is a measure of internal fluid friction which causes resistance to the 

fluid flow. A fluid at rest cannot resist shearing forces and if such forces act on a fluid 

which is in contact with a solid boundary, the fluid will flow over the boundary in a such 

a way that the particles immediately in contact with the boundary have the same velocity 

as boundary while successive layers of the fluid parallel to the boundary move with 

increasing velocities. Shear stresses opposing the relative motion of these layers are set 

up, their magnitude depending on the velocity gradient from layer to layer. For fluid 
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obeying Newton’s law of viscosity and taking 𝑢 as the velocity of the fluid in the x-

direction at a distance 𝑦 from the boundary, shear stress in the x-direction is 

mathematically written as 

        𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
              (1.1) 

where   
𝑑𝑢

𝑑𝑦
 is the velocity gradient. All fluids which obey this relation are known as 

Newtonian fluids. These are the forces that relates to the internal friction in the fluid 

flow. The particles due to these forces are in continuous steady motion in a straight line 

parallel to the axis and at a fixed point the motion always remains constant. The types of 

fluid flow where these forces are involved are called viscous flow. They are thick or 

sticky flows in which the fluid particles are considered to be aggregates of molecules that 

move along streamlines so that at any point they are always constant, for instant honey. 

1.2.6 Inertia forces 

These are forces that cause the acceleration of the fluid particles in motion to be zero. 

They resist change in the velocity of an object and are in the opposite direction of an 

applied force. 

1.2.7 Reynolds number,𝑹𝒆 

It is a dimensionless number and is the ratio of inertia forces to viscous forces. 

Mathematically expressed as 

      𝑅𝑒 =
𝜌𝑢𝐿

𝜇
=

𝑢𝐿

𝜈
              (1.2) 

If for any flow, this number is small, the inertia forces are negligible and the flow is 

predominated by the viscous forces otherwise inertia forces predominate and the effect of 
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viscosity are negligible. The number is used to find the velocity, density, viscosity and 

length of the fluid 

1.2.8 Eckert number, 𝑬𝒄 

It is the ratio of kinetic energy to thermal energy usually written as 

𝐸𝑐 =
𝑢2

𝐶𝑃Δ𝑇
=

𝑢2

𝐶𝑝(𝑇2−𝑇1)
         (1.3) 

This dimensionless number is a measure of kinetic energy of the flow relative to the 

enthalpy difference across the boundary layer and used in continuum mechanics. 

1.2.9 Prandtl number, 𝑷𝒓 

It is the ratio of viscous forces to thermal conductivity written as 

  𝑃𝑟 =
𝜇𝐶𝑝

𝑘
=

𝜌𝜐𝐶𝑝

𝑘
            (1.4) 

It is a dimensionless number approximating the ratio of the momentum diffusion to 

thermal diffusivity. Prandtl number provides a measure of relative effectiveness of 

momentum and energy transport by diffusion in the velocity and thermal boundary layers 

respectively. 

1.2.10 Hartmann number, 𝑴 

It is the ratio of electromagnetic forces to the viscous forces, expressed as 

𝑀 = 𝐵ℎ (
𝜎

𝜈𝜌
)

1

2
= 𝐵ℎ√

𝜎

𝜇
                 (1.5) 

1.3 Governing equations 

The general governing equations for hydromagnetic flow are: 
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1.3.1 Equation of continuity 

It is derived from the conservation of mass which states that the mass flow into the 

infinitesimal volume must be equal to the mass flow out of the volume. The conservation 

laws are Lagrangian in nature, which is they apply to fixed systems (particles) while 

Eulerian system, which is appropriate to fluid flow utilizes the particle derivative: 

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ (𝑉⃗ . ∇)         (1.6) 

Which is a formidable expression and is equivalent to 

𝐷𝑚

𝐷𝑡
=

𝐷(𝜌𝓋)

𝐷𝑡
= 0 = 𝜌

𝐷𝓋

𝐷𝑡
+𝓋

Dρ

Dt
       (1.7) 

The term  
𝐷𝓋

𝐷𝑡
 is related to fluid velocity by noticing that the total dilatation or normal-

strain rate is equal to the rate of volume (𝓋) increase of the particle of unit volume: 

𝜖𝑥𝑥 + 𝜖𝑦𝑦 =
1

𝑉

D𝓋

Dt
         (1.8) 

Further, it can be substituted for the strain rates from kinematic relations to get 

𝜖𝑥𝑥 + 𝜖𝑦𝑦 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= ∇. 𝑉⃗          (1.9) 

Combining (1.7) to (1.9) to eliminate V, the equation of continuity for fluids in its most 

common general form is obtained, that is 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
= 0        (1.10) 

Since a steady incompressible flow is considered, then  𝜌 is a constant and therefore 
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𝜕𝜌

𝜕𝑡
= 0, hence equation (1.10) reduces to  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= ∇. 𝑉⃗ = 0         (1.11) 

1.3.2 Momentum equation 

The equation of conservation of momentum states that the time rate of change of 

momentum of a body is equal to the external force applied to the body. This external 

force includes surface forces and body forces. It is derived from Newton’s second law of 

motion which requires that the sum of all forces acting on the control volume be equal to 

the rate of increase of the fluid momentum within the control volume. 

𝑭(𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) = 𝑚𝒂          (1.12) 

External forces acting on the control volume are twofold: 

1) Body forces-these are the forces proportional to the control volume, which apply to the 

entire mass of the fluid element e.g. gravitational, electric, magnetic and/ or centrifugal 

fields. 

2) Surface forces-these are proportional to the area of the control volume and results from 

the stresses on the sides of the element, such as static pressure and viscous stresses. They 

arise from the action of one body to another across the surface of the contact between 

them. 

Therefore,     𝑚𝒂 = 𝐵𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠 + 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠      (1.13) 

But           𝑚 = 𝜌𝑑𝑥𝑑𝑦        (1.14) 



8 
 

 
 

 

 

Thus from Navier-Stokes equations, the x- and y-momentum respectively is given as 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝐹𝑥 +

𝜕

𝜕𝑥
𝛿𝑥𝑥 +

𝜕

𝜕𝑦
𝜏𝑦𝑥        (1.15) 

and 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = 𝐹𝑦 +

𝜕

𝜕𝑦
𝛿𝑦𝑦 +

𝜕

𝜕𝑥
𝜏𝑥𝑦      (1.16) 

The stresses are related to the velocity components in the form (Mohanty, 2006) 

𝛿𝑥𝑥 = −𝑝 + 2𝜇
𝜕𝑢

𝜕𝑥
, 𝛿𝑦𝑦 = −𝑝 + 2𝜇

𝜕𝑣

𝜕𝑦
    and 𝜏𝑥𝑦 = 𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)   (1.17) 

Substituting (1.17) in (1.15) we have 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝐹𝑥 +

𝜕

𝜕𝑥
(−𝑝 + 2𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
))   (1.18a) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 2𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+ 𝜇

𝜕2𝑣

𝜕𝑦𝜕𝑥
    (1.18b) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+ 𝜇

𝜕

𝜕𝑥
(
𝜕𝑣

𝜕𝑦
)   (1.18c) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) + 𝜇

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)   (1.18d) 

Simplifying (1.18d) using (1.11), the x-momentum equation (1.15) becomes 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
)      (1.19) 
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Similarly the y-momentum equation (1.16) becomes 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = 𝐹𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)      (1.20) 

Dividing (1.19) by 𝜌 and taking into account the external body force for an Ohmic 

conductor which is due to electromagnetic force,𝐹 = 𝐽 × 𝐵⃗  and that the force of gravity 

along x-axis is zero, then the x-component of equation (1.20) becomes 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+
𝜇

𝜌
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) +

𝐽 ×𝐵⃗ 

𝜌
       (1.21) 

The current density 𝑗  is proportional to electric field 𝐸⃗  that is   𝐽 = 𝜎𝐸⃗ , and that 

  𝐸⃗ = 𝑢⃗ × 𝐵⃗  where 𝑢⃗  is fluid velocity along x-axis, the direction fluid flow. 

Thus, 

𝐽 × 𝐵⃗ = 𝜎𝐸⃗ × 𝐵⃗ ,= 𝜎(𝑢⃗ × 𝐵⃗ × 𝐵⃗ ) = 𝜎 ((𝑢⃗ . 𝐵⃗ )𝐵⃗ − (𝐵⃗ . 𝐵⃗ )𝑢⃗ )    (1.22) 

Using vector analysis laws (Murray, 1981) 𝑢⃗  and 𝐵⃗  in (1.22) are perpendicular vectors 

then  𝑢⃗ . 𝐵⃗ = 0  hence the equation reduces to 

𝐽 × 𝐵⃗ = −𝜎𝐵2𝑢⃗              (1.23) 

Substituting (1.23) in (1.21) it becomes 

𝑢
𝜕𝑢

𝜕𝑥
+ `𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+
𝜇

𝜌
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) −

𝜎𝐵2𝑢

𝜌
      (1.24) 
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Since there is no component of body force in y-direction 𝐹𝑦 = 0 then equation (1.20) 

reduces to 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+
𝜇

𝜌
(
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)        (1.25) 

1.3.3 Equation of conservation of energy 

This law can be derived by applying the first law of thermodynamics to the differential 

control volume in the flow field and it states that energy can neither be created nor 

destroyed, but can be transformed from one form to another.  In thermodynamics, energy 

and work of a system are related in the first law which states that the rate of change of 

heat transferred into the system is equal to the total sum of the rate of internal energy and 

the work done on the system, that is 

𝑑𝑄

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
+
𝑑𝑊

𝑑𝑡
          (1.26) 

where 𝑄  is amount of heat, 𝐸 is internal energy and  𝑊 is the work done by the system. 

The total rate of heat 𝑑𝑄 within the system for an adiabatic (no heat is added nor 

removed from the system) process is the negative partial sum of heat along 𝑥 and 𝑦 co-

ordinates within the system and is given by 

𝑑𝑄

𝑑𝑡
= −(

𝜕𝑄𝑥

𝜕𝑥
𝑑𝑥 +

𝜕𝑄𝑦

𝜕𝑦
𝑑𝑦)        (1.27) 

The internal energy 𝐸 in the fluid consists of the kinetic and potential energy and is 

described by 

𝑑𝐸

𝑑𝑡
= 𝜌 [

𝐷𝑒

𝐷𝑡
+
1

2

𝐷

𝐷𝑡
(𝑢2 + 𝑣2)] 𝑑𝑥𝑑𝑦       (1.28) 
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Where 𝑒 is the internal energy per unit mass. The change in the internal energy of the 

system undergoing an adiabatic (no heat added or removed) change is equal to negative 

work done. This is so since internal energy is directly proportional to temperature of the 

system. The expression for work done on the system is 

𝑑𝑊

𝑑𝑡
=

−𝑑𝑊𝑓

𝑑𝑡
−
𝑑𝑊𝐵

𝑑𝑡
         (1.29) 

where 𝑤𝑓 is the work done by the frictional force within the system and 𝑤𝐵 is the work 

done by the body (system).Substituting equations (1.27), (1.28) and (1.29) into (1.26) and 

simplifying it becomes 

𝜌
𝐷𝑒

𝐷𝑡
= 𝐾 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) + 𝜇Φ         (1.30) 

where the viscous- energy dissipation term Φ is express in Cartesian co-ordinates as 

Φ = 2 [(
∂u

∂x
)
2

+ (
∂v

∂y
)
2

] + [(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

]      (1.31) 

1.3.4 Ohm’s Law 

Ohm’s law characterizes the ability of material to transport electric charge under the 

influence of an applied electric field and states that the current through a conductor 

between two points is proportional to the voltage across the two points. Mathematically 

expressed as 

𝑉 = 𝐼𝑅           (1.32) 
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If we consider an electrically conducting fluid having a velocity 𝑢⃗  and at right angles to a 

magnetic field 𝐵⃗  and that a steady flow conditions  are attained, then the interaction of 

these two fields induces an electric field 𝐸⃗  at right angles to both 𝑢⃗  and 𝐵⃗ , thus 

𝐸⃗ = 𝑢⃗ × 𝐵⃗ .            (1.33) 

By this law, the current density induced in the conducting fluid at stationary condition is 

given as 

𝐽 = 𝜎𝐸⃗                (1.33) 

where, 𝐽  is the current density, 𝜎 is the conductivity parameter and 𝐸⃗  is the electric field. 

The generalized Ohm’s law is given by 

𝐽 = 𝜎(𝐸⃗ + 𝑢⃗ × 𝐵⃗ ) + 𝜌𝐶𝑢⃗                                                                                           (1.34)  

Where 𝜌𝑐𝑢⃗  represents the displacement current which is usually negligible at the fluid 

velocity 𝑢⃗ , then the law reduces to Lorentz force which is the force associated with 

motion across a magnetic field and is given as 

𝐽 = 𝜎(𝐸⃗ + 𝑢⃗ × 𝐵⃗ )                (1.35) 

1.3.5 Maxwell’s equations 

It’s a set of four differential equations that describes the relationship between the electric 

and magnetic fields and their sources independent of the properties of matter. 

Electric currents and charges in electric fields are proportional to the magnetic fields 

circulating about the areas they accumulate, that is 
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∇⃗⃗ × 𝐵⃗ = 𝜇𝐽 + 𝜇𝜀0
𝜕𝐸⃗ 

𝜕𝑡
    (Ampere law)          (1.36) 

 

 

In the absence of magnetic monopoles, the magnetic field lines neither converge nor 

diverge thus 

∇⃗⃗ . 𝐵⃗ = 0 (Gauss’ law for magnetism)       (1.37) 

The voltage accumulated around a closed circuit is proportional to the time rate of change 

of the magnetic flux it encloses, thus 

−
𝜕𝐵⃗ 

𝜕𝑡
= ∇⃗⃗ × 𝐸⃗   (Faraday’s law of induction)      (1.38) 

The electric field leaving a control volume is proportional to the charge inside, that is 

∇⃗⃗ . 𝜀0𝐸⃗ = 𝜌𝑒  (Gauss’ law for electricity)      (1.39) 

1.4 Statement of the problem 

The steady hydromagnetic flow through a channel with two stationary parallel porous 

plates in the presence of magnetic field and an investigation of the effects of the porous 

plates when an electrically conducting fluid is placed in a magnetic field on the velocity 

and temperature distribution is considered. This investigation is used in finding an 

approximate solution for velocity profiles parallel and normal to the plates as well as the 

temperature distribution in the fluid. 
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1.5 Objectives of the study 

1. To investigate the effect of porous plates of the hydromagnetic flow on fluid 

velocity parallel and normal to the plates. 

2. To investigate the effect of Reynolds number and Hartmann number on the fluid 

flow. 

3. To investigate the effect of Temperature distribution in the fluid flow 

1.6 Significance of the study 

The phenomenon of fluid flow between porous plates is of great theoretical as well as 

practical interest. Some of the practical interest includes problems dealing with gaseous 

diffusion, transpiration-cooling, lubrication of porous bearings and walled flow reactors. 

It’s also encountered in a wide range of engineering and industrial applications such as in 

recovery or extraction of crude oil, geothermal systems, and thermal insulation and in 

boundary layer control in the field of aerodynamics. This study is important in the study 

of constant leakage of oil from the piston cylinder hydraulic system where we assume the 

piston is stationary and the gap width is small, hence the flow between fixed parallel 

plates. Therefore there is need to study hydromagnetic flow of steady incompressible 

fluid between parallel porous plates. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

 

The steady hydromagnetic fluid flow of a Newtonian electrically conducting viscous 

incompressible and radiating fluid between two parallel porous plates has been studied by 

many engineers and scientists. The study of magnetohydrodynamic (MHD) is largely 

perceived to have been studied by Michael Faraday (26
th

  July 2016,Tuesday at 1900 hrs) 

when he tried to examine the ebbing salty water flowing past London’s waterloo bridge. 

He later did another experiment with mercury as conducting fluid where he studied the 

behavior of current in a circuit placed in time varying magnetic fields and observed that a 

voltage was induced in the direction perpendicular to both the direction of the flow and 

magnetic field. He further showed that when an electric field is applied to a conducting 

fluid in the direction which is perpendicular to magnetic field, a force is exerted on the 

fluid in the direction perpendicular to both electric field and magnetic field. Since then a 

lot has been done on MHD and its related fields. 

2.2 Literature review 

Govinda and Jain (1966) studied hydromagnetic laminar flow through conducting parallel 

porous plates where they took the porosity of the walls into account. In their study they 

considered a rectangular channel when the total current was zero and when it was not 

zero. They found that the general solution had two unknown constants. They showed that 

when these constants are chosen the general solution can be made to fit the solution of 
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two dimensional channels whose geometry approaches the limit to that of one 

dimensional channel. Rao and Vdyanidhl (1969) studied two dimensional unsteady flow 

of a conducting viscous incompressible fluid between parallel porous plates where one 

was fixed while the other one was uniformly accelerated in a transverse magnetic field. 

They found that for a given Hartmann number, a suction parameter  increases  velocity at 

any point of the fluid while the skin friction at the stationary plate increases and that of 

the accelerated plate decreases. Greif et al (1971) obtained an exact solution for the 

problem of laminar convective flow in a vertical heated channel within the optically thin 

limit. Kearsley (1994) studied the problem of steady state couette flow with viscous 

heating and found an exact solution for non linear problem with thermal mechanical 

coupling. The steady flow of the fluid with viscosity   exponentially depended on 

temperature which was shared between an adiabatic fixed inner cylinder and thermos 

rotating outer cylinder. He found that there was maximum torque above which no steady 

flow was possible and below which flows were possible, a high shear and a low shear 

steady flow for each value was realized. 

Raptis et al (1982) analyzed the problem of hydromagnetic free convection flow through 

a porous medium between two parallel plates. In their study, the effects of buoyancy, 

boundary and inertia of porous media were discussed as well as Hartmann effects on 

MHD and heat generation or absorption of fluid were also discussed and resulting 

ordinary differential equations were solved. 

Daskalaski (1990) studied on the couette flow through a porous medium of a high Prandtl 

number fluid with temperature dependent viscosity. He concluded that, in the steady state 

the medium permeability for both velocity and temperature profiles are positively skew 
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and its skewness increases with permeability. Albarbi (2010) studied convective heat and 

mass transfer characteristics of an incompressible MHD visco-elastic fluid flow through a 

porous medium over a stretching sheet with chemical reaction and thermal stratification. 

It was found that both temperature and concentration increase with increasing visco-

elastic parameter, porosity parameter and magnetic parameter. In addition, the velocity 

profile and temperature profile increase with the increase of heat absorption parameter 

and decrease with increasing chemical reaction. 

Bhargava and Takhar (2001) studied the numerical solution of free convection MHD 

micropolar fluid between two parallel porous vertical plates. The basics of 

electromagnetic induction were reviewed and the magnetic Reynolds number due to 

Ohmic resistance was defined. For the case of a perfectly conducting fluid, Alfven’s 

frozen flux theorem was derived. They studied the presence of temperature dependent 

heat sources and the effect of friction heating in the presence of magnetic field. The 

profiles for velocity, microrotation and temperature were presented for a wide range of 

Hartmann numbers and micropolar parameter. The skin friction, couple stress and 

Nusselt numbers at the plates were shown in the tables. Aristov and Gitman (2002) 

studied the motion of a viscous incompressible liquid between two parallel disks moving 

towards each other. They analyzed the possible descriptions of motion based on the exact 

solution of Navier-Stokes equation and the stability of the motion for different initial 

perturbations. Hazeem (2006) investigated the effect of variable viscosity on the transient 

couette flow of dusty fluid with heat transfer between parallel plates. He showed some 

important effects for the viscosity and uniform magnetic field on the transient flow and 

heat transfer of both the fluid and dusty particles. Attia (1997) analyzed the transient 
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MHD flow and heat transfer between two parallel plates with temperature dependent 

viscosity while Sharma et al (2005) explained the steady laminar flow and heat of a non-

Newtonian fluid through a straight horizontal porous channel in the presence of heat 

source. 

Okelo (2007) investigated unsteady free convection incompressible fluid past a semi-

infinite vertical porous plate in the presence of a strong magnetic field inclined at an 

angle to the plane with hall and ion slip current effects. He found that an increase in mass 

diffusion parameter caused an increase in the concentration profile, while an increase in 

Eckert number caused an increase in temperature profile. He further observed that an 

increase in the angle of inclination lead to an increase in primary velocity profiles but a 

decrease in secondary profiles. Guria (2008) studied hydromagnetic flow between two 

porous disks rotating about non coincident axes. He found that the temperature increased 

with increase in either Hartmann number or thermal conductivity and that the rate of heat 

increased with increase in temperature. Das et al (2008) analyzed a three dimensional 

couette flow of a viscous incompressible electrically conducting fluid between two 

infinite horizontal parallel porous flat plates in the presence of a transverse magnetic 

field. The governing equations were solved by using the series expansion method and the 

expressions for the velocity field, temperature field, skin friction and heat flux in terms of 

Nusselt number was obtained. They found that magnetic parameter retards the main fluid 

velocity and accelerates radial velocity of the flow field. Israel –Cookey and Nwaigwe 

(2010) considered unsteady MHD flow of a rotating fluid over a vertical moving heated 

porous plate with time-dependent suction. In their study closed form analytical solutions 

were constructed for the problem, the results were discussed quantitatively with the aid of 
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dimensionless parameters. Screenivasulup et al (2013) investigated the effects of 

radiation on MHD flow. They found that magnetic field reduced the fluid velocity but 

increase the temperature while Ramesh and Murulidhara (2013) provided a numerical 

solution of the MHD Reynolds equations for squeeze-film lubrication between porous 

and rough rectangular plates. Baoku et al (2010) examined the problem of hydromagnetic 

Couette flow of a high viscous fluid through a channel in the presence of an applied 

uniform transverse magnetic field and thermal radiation. They found that an increase in 

thermal radiation results in a decrease in the temperature profiles of the hydromagnetic 

Couette fluid and the increase in magnetic field lead to an increase in the velocity 

profiles.  

Kumar et al (2010) considered the problem of unsteady MHD periodic flow of viscous 

fluid through a planar channel in a porous medium using perturbation techniques. Singh 

(2014) studied a steady laminar flow of viscous incompressible fluid between two 

parallel infinite plates under applied pressure gradient when upper plate is moving with 

constant velocity and lower plate is held stationary under the influence of inclined 

magnetic field. The Laplace transform method was used to solve the governing equations. 

The expression for fluid velocity at different strengths of magnetic field and at different 

inclination was shown graphically. The results showed that increase in inclination of 

magnetic field produced a decrease in velocity profile. Manyonge et al (2012) examined 

the motion of a two dimensional steady flow of a viscous, electrically conducting 

incompressible fluid flowing between two infinite parallel plates where  the lower plate 

was porous and upper not. The parallel plates were under the influence of transverse 

magnetic field and constant pressure gradient. The resulting differential equations were 
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solved using analytical method and solutions expressed in terms of Hartmann number and 

the effects of magnetic inclinations to velocity were discussed graphically. 

In this study, it considers a hydromagnetic flow of a steady two dimensional laminar flow 

of an incompressible viscous fluid between parallel stationary porous plates in the 

presence of transverse magnetic field by finding the approximate solution for velocity 

profile parallel and normal to the wall plates and the temperature distribution in the flow 

which previous studies had not considered. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

In this chapter, the discussion of formulation of the problem, assumptions and 

approximations, boundary conditions, non dimensionalization and the solution of the 

third order partial differential equation of an incompressible flow by the method of 

regular perturbation and the power series expansion are considered. 

3.2 Formulation of the problem 

The steady laminar flow of an incompressible viscous conducting fluid with a small 

electrical conductivity defined by the scalar quantity 𝜎 between the two parallel 

stationary non conducting porous plates in the presence of a uniform transverse magnetic 

field 𝐵⃗  and with the main fluid velocity U along x-axis, the fluid flow direction is 

considered. Assuming that the conducting fluid is isotropic, the interaction of magnetic 

field and the induced current density produces an electromotive force, 𝑭 and both the two 

porous plates are taken to have equal porosity. A Cartesian coordinate system (𝑥, 𝑦, 𝑧) 

where 𝑥, 𝑦 and 𝑧 are the coordinate axes is chosen. 
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𝑦 = ℎ 

 

Uniform suction, V 

u=0 

                                   𝑦 − 𝑎𝑥𝑖𝑠                                                                                         ℎ 

                                                            𝑥 − 𝑎𝑥𝑖𝑠                                            𝐵0 

    u=0   

 

Porous plate 

                                    Uniform suction, V 

Figure 3.1The physical configuration of the problem 

The  𝑥 and  𝑦 are parallel and perpendicular to the channel walls respectively and the 

origin is taken at the centre of the channel. The length of the plates is assumed to be L 

and 2h is the distance between the two parallel plates. The plates are of infinite length in 

𝑧-direction; therefore all the physical quantities involved are independent of 𝑧 for this 

fully developed laminar flow thus the problem is a two-dimensional. The upper and the 

lower plates are subjected to a constant suction,  𝑉(> 0) due to electromotive force 

occurring simultaneously with the induced current. Denoting 𝑢,𝑣 and 𝑤 to be the 

components of velocity in the directions of 𝑥,𝑦 and 𝑧 increasing respectively as shown in 

the figure 3.1. The value of 𝑤 = 0 since the velocity along this axis is independent of  𝑧. 

          Porous plate 

Porous plate 
𝑦 = −ℎ 

 

𝑦 = 0 

𝑧 − 𝑎𝑥𝑖𝑠 
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3.2.1 Assumptions and approximations 

The following assumptions and approximations are made; 

 There is uniform withdrawal of fluid at the porous plates 

 The porous plates are non-conducting 

 No chemical reaction is taking place in the fluid 

 No external electric field and induced magnetic field in the flow 

 The fluid is Newtonian such that fluid viscosity is assumed constant 

 The fluid is steady, incompressible and laminar 

 The magnetic Reynolds number is very small 

 There is no joules heating effect in the flow 

 The flow is limited to slow speed (𝑣, 𝑢 ≪ 𝑐) 

From the above assumptions and approximations the equations (1.11), (1.24), (1.25) and 

(1.30) then becomes the governing equations for the steady hydromagnetic flow. 

From the diagram of Figure 3.1 above the velocity at any cross-section of the channel 

varies from the walls of the porous plates to a maximum at the centre when there is no 

magnetic field indicating that there is a well defined free stream otherwise affected by the 

porous nature of the plates. 

3.2.2 Conditions at the porous plate 

 

The conditions for the hydromagnetic flow through a channel with parallel porous plates 

where the fluid is withdrawn from both walls of the channel at the same rate are 

complicated by the type of porosity of the plates and the no-slip condition is relaxed on 
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the velocity component normal to the walls of the plates. Therefore, the general 

conditions are as follows: 

𝑉𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙: 𝑢(𝑥, ℎ) = 0 , 𝑢(𝑥, −ℎ) = 0 (No-slip condition)     (3.1) 

𝑉𝑛𝑜𝑟𝑚𝑎𝑙: 𝑣(𝑥, ℎ) = 𝑉, 𝑎𝑛𝑑   𝑣(𝑥, −ℎ) = −𝑉 (Flow through wall)     (3.2) 

where 𝑉 is the suction velocity at the plates of the channel and h is the channel width 

from the axis of the channel to the plates. 

The temperature conditions are also complicated by a porous wall in that the suction at 

the plate walls where the fluid leaves the main flow and passes into the wall is 

sufficiently accurate to assume that:   𝑇𝑓𝑙𝑢𝑖𝑑 = 𝑇𝑤𝑎𝑙𝑙 

𝑇 = {
  𝑇𝑤  𝑦 = ±ℎ 
   𝑇0   𝑦 = 0    

                   (3.3) 

3.2.3 Non-dimensionalization 

To dimensionless the equations (1.1), (1.25) and (1.6) 

Let 

𝜂 =
𝑦

ℎ
 ⟹   𝜕𝜂 =

𝜕𝑦

ℎ
             (3.4) 

Substituting the non-dimensional equation (3.4) into equations (1.1), (1.25) and (1.6) it 

becomes 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

ℎ𝜕𝜂
= 0          (3.5) 

𝑢
𝜕𝑢

𝜕𝑥
+

𝑣

ℎ

𝜕𝑣

𝜕𝜂
=

−1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝑣 (

𝜕2𝑢

𝜕𝑥2
+

1

ℎ2
𝜕2𝑢

𝜕𝜂2
) −

𝜎𝐵2𝑢

𝜌
     (3.6) 
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𝑢
𝜕𝑣

𝜕𝑥
+

𝑣

ℎ

𝜕𝑣

𝜕𝜂
=

1

𝜌ℎ

𝜕𝑝

𝜕𝜂
+ 𝑣 (

𝜕2𝑣

𝜕𝑥2
+

1

ℎ2
𝜕2𝑢

𝜕𝜂2
)       (3.7) 

Equations (3.5), (3.6), and (3.7) give the dimensionless form of the governing equations. 

The boundary conditions (3.1) and (3.2) then reduces to 

𝑢 (𝑥, 1)  = 0,    𝑢(𝑥, −1)  =  0 and  𝑣(𝑥, 1) = 𝑉, 𝑣(𝑥, −1)  =  −𝑉         (3.8) 

In describing the fluid flow, the stream function plays a great role since it is a scalar 

function of space and time. Its partial derivative with respect to any direction gives the 

velocity component at right angles to the direction. For steady flow, it’s defined as 

𝜓 = 𝑓(𝑥) such that 

𝑢(𝑥, 𝜂) = 𝜕𝜓/𝜕𝑦 𝑎𝑛𝑑 𝑣(𝑥, 𝜂) = −𝜕𝜓/𝜕𝑥         (3.9) 

The dimensionless form of (3.9) becomes 

𝑢 =
1

ℎ

𝜕𝜓

𝜕𝜂
, 𝑣 = −

𝜕𝜓

𝜕𝑥
                                                       (3.10) 

The equation of continuity can be satisfied by a stream function of the form 

𝜓(𝑥, 𝑦) = [ℎ𝑈(0) − 𝑉𝑥]𝑓(𝜂)       (3.11) 

where 𝑈 (0) is the average entrance velocity at 𝑥 = 0. Differentiating equation (3.11) 

with respect to 𝜂 and 𝑥 and substituting into equation (3.10) the velocity components 

becomes 

𝑢 =
𝜕𝜓

𝜕𝑦
=

1

ℎ
[ℎ𝑈(0) − 𝑉𝑥]𝑓𝜂(𝜂)        (3.12) 
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and 

𝑣 = −
𝜕𝜓

𝜕𝑥
= 𝑉𝑓(𝜂)         (3.13) 

where 𝑓𝜂(𝜂) is the partial differentiation with respect to the dimensionless variable  𝜂. 

Since we are considering a situation when the fluid is being withdrawn at constant rate 

from both the walls, then 𝑉 is independent of  𝑥 and using  (3.12) and (3.13) in (3.6) and 

(3.7) the equation of momentum  reduces to 

−
1

𝜌

𝜕𝑝

𝜕𝑥
= [(𝑈(0) −

𝑉𝑥

ℎ
) (

𝑉

ℎ
(𝑓𝑓𝜂 − 𝑓𝜂

2) −
𝑣

ℎ2
𝑓𝜂𝜂𝜂 +

𝜎𝐵2

𝜌
𝑓𝜂)]    (3.14) 

or 

−
1

ℎ𝜌

𝜕𝑝

𝜕𝜂
=

𝑉2

ℎ
𝑓𝑓𝜂 −

𝑣𝑉

ℎ2
𝑓𝜂𝜂            (3.15) 

Differentiating (3.15) with respect to  𝜂 becomes 

𝜕2𝑝

𝜕𝑥𝜕𝜂
= (𝑈(0) −

𝑉𝑥

ℎ
)
𝜕

𝜕𝜂
[
𝑉

ℎ
(𝑓𝑓𝜂𝜂 − 𝑓𝜂

2) −
𝑣

ℎ2
𝑓𝜂𝜂𝜂 +

𝜎𝐵2𝑓𝜂

𝜌
]     (3.16) 

Also differentiating (3.15) with respect to 𝑥 and simplifying becomes 

𝜕2𝑝

𝜕𝑥𝜕𝜂
= 0           (3.17) 

Substituting equation (3.17) into equation (3.16) and simplifying becomes 

𝜕

𝜕𝜂
[
𝑉

ℎ
(𝑓𝑓𝜂𝜂 − 𝑓𝜂

2) −
𝑣

ℎ2
𝑓𝜂𝜂𝜂 +

𝜎𝐵2𝑓𝜂

𝜌
] = 0      (3.18) 
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Integrating (3.18) with respect to 𝜂 and substituting the dimensionless parameters 

(Reynolds number, 𝑅 and Hartmann number,  𝑀) become 

    𝑓𝜂𝜂𝜂 + 𝑅(𝑓𝜂
2 − 𝑓𝑓𝜂𝜂) − 𝜀𝑅𝑓𝜂 = 𝐾        (3.19) 

Where 𝜀𝜀 =
𝐻0

2𝜇𝑒
2𝜎ℎ

𝜌𝑉
, 𝑅 =

𝜌𝑢𝑙

𝜇
=

𝑢𝑙

𝜈
 and𝐾 𝐾 is an arbitrary constant to be determined. 

The solution of the equations of motion and continuity is given by a non linear third order 

partial differential equation (3.19) which is to be solved by perturbation method when 𝑅 

and 𝜀 are small subject to the boundary conditions on 𝑓(𝜂)𝑓 which are: 

𝑓𝑓(1) = 1, 𝑓(−1) = −1, 𝑓𝜂(1) = 0,   𝑎𝑛𝑑 𝑓𝜂(−1) = 0    (3.20) 

And 

𝑓0(−1) = −1, 𝑓0𝜂(0) = 0 , 𝑓0(1) = 1, 𝑓0𝜂(1) = 0        (3.21) 

The energy equation is  𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝜈

𝑐𝑝
(
𝜕𝑢

𝜕𝑦
)
2

    (3.22) 

Using the conditions  

   𝑇 = {
𝑇∞, 𝑦 = ∞
𝑇0,𝑦 = 0

              (3.23) 

and assuming 𝑣 = 0, 𝑢 = (
𝑦

𝐿
)𝑈 and 𝑇 = 𝑇(𝑦)        (3.24) 

Equation (3.22) becomes 

0 = 𝛼
𝜕2𝑇

𝜕𝑦2
+

𝜈

𝑐𝑝
(
𝜕𝑢

𝜕𝑦
)
2

𝑜𝑟 𝑘
𝜕2𝑇

𝜕𝑦2
+ 𝜇 (

𝜕𝑢

𝜕𝑦
)
2

= 0 ⇒
𝜕2𝑇

𝜕𝑦2
= −

𝜇

𝑘
(
𝑈

𝐿
)
2

    (3.25) 
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Integrating (3.22) twice with respect to y we get 

𝑇(𝑦) =
𝜇

2𝑘
(
𝑈

𝐿
)
2

𝑦2 + 𝑐1𝑦 + 𝑐2       (3.26) 

The boundary conditions for temperature when 𝑦 = 0  is 𝑇 = 𝑇0 and when 𝑦 = ℎ is 𝑇 =

𝑇ℎ  applying these boundary conditions in (3.26) gives the temperature distribution as 

𝑇(𝑦) = 𝑇0 +
𝜇𝑈2

2𝑘
[
𝑦

𝐿
− (

𝑦

𝐿
)
2

] + (𝑇ℎ − 𝑇0)
𝑦

𝐿
      (3.28) 

which in the dimensionless form is 

𝑇(𝑦)−𝑇0

𝑇𝑤−𝑇0
=

𝑦

𝐿
[1 +

𝜇𝑈2

2𝑘(𝑇𝐿−𝑇0)
(1 −

𝑦

𝐿
)]       (3.29) 

Or 

𝜃(𝜂) = 𝜂 [1 +
1

2
𝑃𝑟] 𝐸(1 − 𝜂)         (3.30) 

where various non-dimensional qualities are defined as 

𝜃(𝜂) =
𝑇(𝑦)−𝑇0

𝑇𝑤−𝑇0
,  non-dimensional temperature        (3.31) 

  𝜂 =
𝑦

𝐿
 , dimensionless length,        (3.32) 

𝑃𝑟 =
𝜇𝑐𝑝

𝑘
, Prandtl number         (3.33) 

𝐸 =
𝑈2

𝐶𝑝(𝑇ℎ−𝑇0)
, Eckert number         (3.34) 
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3.3 Perturbation Theory 

The theory deals with mathematical methods for finding an approximate solution to a 

problem by starting from an exact solution of a related simpler problem and breaking it 

into a solvable part. It is applicable if the problem at hand cannot be solved exactly, but 

can be formulated by adding a small term to the mathematical description of the exactly 

solvable problem. This leads to an expression for the desired solution in terms of a power 

series in the small parameter. The solution of nonlinear partial differential equations in 

fluid mechanics has been of importance since the basic nonlinearity exact solutions are 

rare thus we approximate. Approximations are used when one or more of the parameters 

in the problem are small. The dimensionless parameters such as Reynolds, Hartmann, 

Prandtl and Eckert numbers are amongst many in fluid dynamics used as the perturbation 

quantity. This quantity when it tends to zero makes the approximation becomes accurate. 

In practice, we usually calculate the exact first approximation known as rational 

approximation while on the other hand, useful approximations do not become exact in 

any known limit thus become irrational (represents dead end). In this thesis, we shall deal 

with rational approximation which concerns with asymptotic expansions for small values 

of parameter of the solutions of the equation of fluid motion. In parameter perturbations 

the basic solution is often a uniform parallel stream flow which is referred to as ‘zeroth 

approximation’ from the first approximation or first-order solution. 

A perturbation solution which leads to satisfactory results and the series cannot converge 

for the small parameter everywhere in the flow field is called regular perturbation while 

singular perturbation is one in which the straightforward perturbation solution is not 

uniformly valid throughout the flow field and become worse rather than better. For this 
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thesis, the regular perturbation method is used because the reasonably small parameter is 

everywhere uniform in the flow field and appears to be true. Due to the exact solutions 

being rare for non linear problems, a single exact solution is perturbed in a number of 

ways to explore different effects and the following regular perturbation procedures are 

adopted which consists of: 

a) Substituting the power series 𝑦(𝜂, 𝑅) ≈ ∑ 𝑅𝑛𝑓𝑛(𝜂)
∞
𝑛=0  into the partial differential 

equation and the boundary conditions 

b) Expanding the quantities in a power series in R 

c) Collecting terms with same powers of R and equating them to zero 

d) Solving the hierarchy of boundary value problems sequentially. 

Therefore investigating the solution of equation (3.19) subject to the boundary conditions 

(3.20) and (3.21) by the above procedure and considering the case when 𝑅 and 𝜀 are 

small we approximate the analytic results that will be obtained by using the method of 

regular perturbation approach and Taylor’s expansion. The non-linear nature of equation 

(3.19) preclude its exact solution hence we seek the solution in the form of power series 

in 𝑅, that is 

𝑓 = ∑ 𝑅𝑛𝑓𝑛(𝜂) =
∞
𝑛=0 𝑓0(𝜂) + 𝑅

1𝑓1(𝜂) + 𝑅
2𝑓2(𝜂)     (3.33) 

Or 

𝑘 = ∑ 𝑘𝑛𝑅
𝑛∞

𝑛=0 = 𝑘0 + 𝑅
1𝑘1 + 𝑅

2𝑘2 +⋯        (3.34) 
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Differentiating successively the partial differential equation (3.33) with respect to 𝜂 we 

get 

𝑓𝜂 = 𝑓0𝜂 + 𝑅𝑓1𝜂 + 𝑅
2𝑓2𝜂 +⋯

𝑓𝜂𝜂 = 𝑓0𝜂𝜂 + 𝑅𝑓1𝜂𝜂 + 𝑅
2𝑓2𝜂𝜂 +⋯

𝑓𝜂𝜂𝜂 = 𝑓0𝜂𝜂𝜂 + 𝑅𝑓1𝜂𝜂𝜂 + 𝑅
2𝑓2𝜂𝜂𝜂 +⋯

}      (3.35) 

Substituting equation (3.34) and (3.35) into (3.19) becomes 

(𝑓0𝜂𝜂𝜂 + 𝑅𝑓1𝜂𝜂𝜂 + 𝑅
2𝑓2𝜂𝜂𝜂 +⋯) + 𝑅[(𝑓0𝜂 + 𝑅𝑓1𝜂 + 𝑅

2𝑓2𝜂 +⋯)
2

− 

{(𝑓0 + 𝑅𝑓1 + 𝑅
2𝑓2 +⋯)(𝑓0𝜂𝜂 + 𝑅𝑓1𝜂𝜂 + 𝑅

2𝑓2𝜂𝜂 +⋯)}

− 𝜀 (𝑓0𝜂 + 𝑅𝑓1𝜂 + 𝑅
2𝑓2𝜂 +⋯)] 

= 𝑘0 + 𝑅𝑘1 + 𝑅
2𝑘2          (3.36) 

Expanding the expression (3.36) gives 

𝑓0𝜂𝜂𝜂 + 𝑅 [𝑓0𝜂𝜂𝜂 + 𝑓0𝜂
2 − 𝑓0𝑓1𝜂𝜂 − 𝜀𝑓0𝜂 +⋯ ] + 𝑅2 [𝑓2𝜂𝜂𝜂 + 2𝑓0𝜂𝑓1𝜂 − 𝑓0𝑓1𝜂𝜂 −

𝑓0𝜂𝜂𝑓1 − 𝜀𝑓1𝜂 +⋯ ] + 𝑅3 [𝑓3𝜂𝜂𝜂 + 𝑓0𝜂𝑓2𝜂 + 𝑓1𝜂
2 +⋯] = 𝑘0 + 𝑅𝑘1 + 𝑅

2𝑘2 +⋯ (3.37) 

Equating the coefficients of R becomes 

𝑓0𝜂𝜂𝜂 = 𝑘0            (3.38) 

𝑓1𝜂𝜂𝜂 + 𝑓0𝜂
2 − 𝑓0𝑓1𝜂𝜂 − 𝜀𝑓0𝜂 = 𝑘1       (3.39) 

𝑓2𝜂𝜂𝜂 + 2𝑓0𝜂𝑓1𝜂 − 𝑓0𝑓1𝜂𝜂 − 𝑓0𝜂𝜂𝑓1 − 𝜀𝑓1𝜂 = 𝑘2     (3.40) 
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.
 

and so on. 

Integrating equation (3.39) twice becomes 

𝑓0𝜂𝜂 = 𝑘0𝜂 + 𝐴

𝑓0𝜂(𝜂) =
𝑘0𝜂

2

2
+ 𝐴𝜂 + 𝐵

𝑓0(𝜂) =
𝑘0

6
𝜂3 +

𝐴

2
𝜂2 + 𝐵𝜂 + 𝐶

}
 
 

 
 

             (3.41) 

Solving simultaneously the derived equations (3.41) subject to conditions (3.20) and 

(3.21) gives 

𝐴 = 0, 𝐵 =
3

2
, 𝐶 = 0, and  𝑘1 = −3          (3.42) 

Thus the solution to (3.38) becomes 

𝑓0(𝜂) =
𝜂

2
(3 − 𝜂2)         (3.45) 

Solving equation (3.37) using the derivatives of (3.43) gives 

𝑓1𝜂𝜂𝜂 = 𝑘1 +
3

2
𝜀 −

15

4
𝜂4 − (

3𝜀−9

2
) 𝜂2 −

9

4
      (3.44) 

Integrating (3.41) thrice becomes 

𝑓1𝜂𝜂 = (𝑘1 +
3𝜀

2
−

9

4
) 𝜂 −

3

20
𝜂5 − (

𝜀

2
) 𝜂3 + 𝐴       (3.45) 

𝑓1𝜂 = (
𝑘1

2
+
3𝜀

4
−

9

8
) 𝜂2 −

𝜂6

40
− (

𝜀

8
) 𝜂4 + 𝐴𝜂 + 𝐵     (3.46) 
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𝑓1 = (
𝑘1

6
+

𝜀

4
−
3

8
) 𝜂3 −

𝜂7

280
− (

𝜀

40
) 𝜂5 +

𝐴𝜂2

2
+ 𝐵𝜂 + 𝐶    (3.47) 

Solving equations (3.45-3.47) subject to the boundary conditions (3.20) and (3.21) and 

simplifying equation (3.47) becomes 

𝑓1(𝜂) = 0.010714285𝜂
3 − 0.003571429𝜂7 − 0.025𝜀𝜂5 − 0.025𝜀𝜂 − 

0.007142857𝜂 + 0.05𝜀𝜂3         (3.48) 

The first order perturbation solutions for 𝑓(𝜂) is given by 

𝑓(1)(𝜂) = 𝑓0(𝜂) + 𝑅𝑓1(𝜂)           (3.49) 

Substituting (3.43) and (3.48) into (3.49) the first order perturbation solution becomes 

𝑓(1)(𝜂) =
𝜂

2
(3 − 𝜂2) + 0.010714285𝑅𝜂3 − 0.003571429𝑅𝜂7 − 0.025𝑀2𝜂5 −

0.025𝑀2𝜂 − 0.007142857𝑅𝜂 + 0.05𝑀2𝜂3      (3.50) 

And for 𝑘 is given by 

𝑘(1) = 𝑘0 + 𝑅𝑘1, that is 𝑘(1) = −3 − 1.2𝑀2 + 2.314285714𝑅   (3.51) 

where  𝑀2 = 𝜀𝑅 in the above equations (3.50) and (3.51). 

Solving equation (3.40) using (3.43), (3.48), their derivatives and anti-derivatives as in 

the procedure of solution of (3.39) subject to the boundary conditions (3.20) and (3.21) 

gives 
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𝑓2 =

(0.0013𝜀2 − 0.00209𝜀 − 0.00054)𝜂 +

(0.00671 + 0.0027695𝜀 − 0.003211667𝜀2)𝜂3 ++(0.214285714𝜀 + 0.0025𝜀2)𝜂5 +

(0.000153061 − 0.001071429𝜀 − 0.000595238𝜀2)𝜂7 − (0.000297619 +

0.000148810𝜀)𝜂9 + 0.000010823𝜂11      (3.52) 

and 

𝑘2 = 0.0057𝜀2 − 0.0512𝜀 − 0.0174      (3.53) 

Thus the second order perturbation solutions for 𝑓(𝜂) is given by 

𝑓2(𝜂) = 𝑓0(𝜂) + 𝑅𝑓1(𝜂) + 𝑅
2𝑓2(𝜂)       (3.54) 

Substituting (3.43), (3.48) and (3.52) in (3.54) and then simplifying the expressions, the 

second order perturbation becomes 

𝑓(2)(𝜂) =
𝜂

2
(3 − 𝜂2) + 0.010714285𝜂3 − 0.003571429𝜂7 − 0.025𝜀𝜂5 − 0.025𝜀𝜂 −

0.007142857𝜂 + 0.05𝜀𝜂3 + (0.0013𝜀2 − 0.00209𝜀 − 0.00054)𝜂 + (0.00671 +

0.0027695𝜀 − 0.003211667𝜀2)𝜂3 ++(0.214285714𝜀 + 0.0025𝜀2)𝜂5 +

(0.000153061 − 0.001071429𝜀 − 0.000595238𝜀2)𝜂7 − (0.000297619 +

0.000148810𝜀)𝜂9 + 0.000010823𝜂11           (3.55) 

And the second perturbation for 𝑘 is   𝑘(2) = 𝑘(1) + 𝑘2𝑅
2       (3.56) 

Substituting (3.51) and (3.53) in (3.56) gives 
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𝑘(2) = −3 − 1.2𝑀2 + 2.314285714𝑅 + 0.0057𝑀4 − 0.0512𝑀2𝑅 − 0.0174𝑅2  (3.57) 

where   𝜀𝑅 = 𝑀2, 𝜀𝑅2 = 𝜀𝑅. 𝑅 = 𝑀2𝑅, 𝜀2𝑅2 = 𝑀4 

The first order expressions for the velocity components are given by (3.12) and 

(3.13).The derivative of (3.50) is 

𝑓𝜂(𝜂) =
3

2
(1 − 𝜂2) + 0.032142855𝑅𝜂2 − 0.021428574𝑅𝜂6 − 0.1𝑀2𝜂4 − 0.025𝑀2 −

0.007142857𝑅 − 0.15𝑀2𝜂2        (3.58) 

Substituting (3.60) and (3.50) in (3.12) and (3.13) respectively gives 

𝑢(𝑥, 𝜂) = (𝑈(0) −
𝑉𝑥

ℎ
) [

3

2
(1 − 𝜂2) + 0.032142855𝑅𝜂2 − 0.021428574𝑅𝜂6 −

0.1𝑀2𝜂4 − 0.025𝑀2 − 0.007142857𝑅 − 0.15𝑀2𝜂2]                   (3.59) 

And 

𝑣(𝜂) = 𝑉𝑓(𝜂) = 𝑉 [
𝜂

2
(3 − 𝜂2) + 0.010714285𝑅𝜂3 − 0.003571429𝑅𝜂7 −

0.025𝑀2𝜂5 − 0.025𝑀2𝜂 − 0.007142857𝑅𝜂 + 0.05𝑀2𝜂3 ]          (3.60) 

From (3.59), 𝑈(0)  is the average entrance velocity and 𝑉 is the suction velocity. Since 

the fluid is being withdrawn at the same rate from both porous walls, therefore the 

suction velocity, 𝑉 is independent of  𝑥 hence  𝑉𝑥 can be fixed. This means that the flow 

along the vertical and the horizontal axes are constant and only depends on the 

Reynolds’s number 𝑅 and Hartmann’s number 𝑀2. 
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Therefore the radial velocity 𝑣𝑟 (parallel to y-axis) becomes 

𝑓(𝜂) = 𝑣𝑟 =
𝜂

2
(3 − 𝜂2) + 0.010714285𝑅𝜂3 − 0.003571429𝑅𝜂7 − 0.025𝑀2𝜂5 −

0.025𝑀2𝜂 − 0.007142857𝑅𝜂 + 0.05𝑀2𝜂3      (3.61) 

And the axial velocity 𝑣𝑎 (parallel to x-axis) becomes 

𝑓𝜂(𝜂) = 𝑣𝑎 =
3

2
(1 − 𝜂2) + 0.032142855𝑅𝜂2 − 0.021428574𝑅𝜂6 − 0.1𝑀2𝜂4 −

0.025𝑀2 − 0.007142857𝑅 − 0.15𝑀2𝜂2      (3.62) 

To investigate the effects of porous plates on velocity profiles in the hydromagnetic flow, 

the values of radial velocity, 𝑣𝑟  and axial velocity, 𝑣𝑎   are plotted against non 

dimensional length, 𝜂  as the values of the suction Reynolds number, 𝑅 and the Hartmann 

number, 𝑀  are varied as discussed in the next chapter. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, the results of the radial velocity, axial velocity and temperature profiles of 

the hydromagnetic flow are presented and the results were generated by the MATLAB 

software. 

4.2 Results 

4.2.1 Radial velocity, 𝒗𝒓 

Considering equation (3.61), the values of radial velocity, 𝑣𝑟  are plotted against the non 

dimensional length, 𝜂  as the values of suction Reynolds number, 𝑅 and Hartmann 

number, 𝑀 are varied. Figure 4.1 shows the variation of radial velocity, 𝑣𝑟 with the non 

dimensional variable, 𝜂 and its corresponding table is presented in table A1 in the 

appendix A. 
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Figure 4.1: Radial velocity profiles as a function of 𝜼 for constant M=0 and varying 

R. 

In the figure 4.1, it is observed that the radial velocity decreases as Reynolds number 

increases when Hartman number is zero, but increases from the central region of the flow 

towards the plates as the non dimensional length increases. It is observed that when the 

fluid is non MHD (M=0) there is no magnetic field existing in the flow thus reduces the 

radial velocity. When the viscous forces in the flow becomes very small the inertia forces 

dominates thus increases the radial velocity towards the porous plates. 
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Figure 4.2: Radial velocity profiles as a function of 𝜼 for constant R=0.001 and 

varying M. 

 

In Figure 4.2, it’s observed that for different values of increasing M in the region 

 −1 ≤ 𝜂 ≤ 0, radial velocity, 𝑣𝑟  Increases with small values of R because inertia forces 

are negligible while in the region 

 0 ≤ 𝜂 ≤ 1 , radial velocity, 𝑣𝑟   decreases with the increase of M significantly. When M 

and R are significantly small the radial velocity is less sinusoidal about the centre of the 

flow and increases as the non dimensional numbers increases 
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Figure 4.3: Graph of radial velocity profiles as a function of 𝜼 for the range of R(1-

6,) and M(3,6,9) 

 

In Figure 4.3 as M and R increases tremendously the radial velocity profile steepens for 

the range  −1 ≤ 𝜂 ≤ 0 and reduces in the range   0 ≤ 𝜂 ≤ 1. This is because viscous 

forces are minimal and the flow is dominated by inertia forces and electric conductivity is 

high.  
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Figure 4.4: Graph of radial velocity profiles as a function of 𝜼 for small R and large 

M 

In Figure 4.4 as the increase of Reynolds number from 0.1 to 0.001and as M increases 

(10 to 50) the radial velocity profile becomes more sinusoidal about the central position 

and flat near the plates. The curve has a minimum turning point between  0 ≤ 𝜂 ≤ 1 due 

to the high presence of magnetic field which reduces the radial velocity towards the 

plates. 

4.2.2 Axial velocity, 𝒗𝒂 

The axial velocity 𝑣𝑎 (parallel to x-axis) is the derivative of the radial velocity (parallel to 

y-axis) given by equation (3.62). The values of the axial velocity, 𝑣𝑎  are plotted against 



42 
 

 
 

 

the non dimensional length 𝜂 and varying the suction Reynolds number, R and 

Hartmann, M as shown by the tables A2, A3 and A4 in  appendix A and its 

corresponding Figures 4.5, 4.6 and 4.7 below. 

 

Figure 4.5: Graph of radial velocity profiles as a function of 𝜼 for constant R=0.001 

and varying M (0.01, 10, and 20) 

 

In Figure 4.5 it is found that the effect of decreasing M increases velocity field when 

Reynolds number is kept minimal at 0.001.The fluid velocity profile is parabolic with 



43 
 

 
 

 

maximum magnitude along the channel centerline and minimum at the plates and it 

stretches outwards as Hartmann number reduces. 

 

 

 

Figure 4.6: Axial velocity profiles as a function of 𝜼 for Constant M=0 and varying 

R (0.01,10, 20) 

Figure 4.6 shows the fluid velocity profile when there is no magnetic field that is when 

Hartmann number is zero. It is observed that the axial velocity is zero at the plates and 

increases to the maximum at the central region thus forming a curve with maximum 

turning point depicting the normal free flow velocity of the stream with very small 

Reynolds number. As Reynolds number increases the axial velocity decreases meaning 

that the viscous forces are minimal thus inertia forces dominates the flow. 
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Figure 4.7: Graph of axial velocity profiles as a function of 𝜼 for large R and small 

M. 

 

In Figure 4.7, the increase significantly in Reynolds number and insignificantly in 

Hartmann number reduces the axial velocity. For instance, when R=50 and M=0.1 there 

is almost the same velocity in the range -0.6 to 0.6 this indicates that when there is less 

presence of magnetic field the flow is dominated by inertia forces.  
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Figure 4.8: Graph of radial and axial velocity profiles as a function of 𝜼 for R=0.1 

and M=1 

Figure 4.8 compares the radial and axial velocities at low Reynolds and Hartmann 

numbers. It is observed that axial velocity (parallel to x-axis) forms a parabolic curve 

which shows that the fluid velocity retards at the plates and maximum at the centre of the 

plates while the radial velocity (parallel to y-axis) increases with increase in non 
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dimensional length. This indicates the presence of viscous forces and magnetic field in 

the fluid flow. 

4.2.3 Temperature 

From the temperature distribution expression (3.30) for the fluid flow, the temperature 

profile is obtained by plotting the non dimensionless temperature, 𝜃 against the non 

dimensional length, 𝜂 as depicted by the table 4.5 in the appendix 1 and the graph of 

figure 4.9 below. The values of Prandtl number and Eckert number are varied.  

 

Figure 4.9: Graph of temperature profiles as a function of 𝜼 for 𝑷𝒓(𝟐, 𝟏, 𝟎. 𝟓) and   

𝑬𝒄(𝟏, 𝟑, 𝟓) 
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Figure 4.9 shows the temperature profile as a function of the non dimensional length with 

dimensionless numbers Prandtl and Eckert. It shows that when the Prandtl number 

increases and Eckert number decreases, the temperature of the fluid decreases. This 

means that when viscous forces increases in the flow the thermal conductivity becomes 

negligible and thus thermal energy surpasses the kinetic energy. It is observed that there 

is a general decrease in the fluid temperature profiles within the channel with increase in 

Prandtl number. The negative values of temperature can be understood as a reversal of 

the heat flow that is the temperature gradient at the walls causes a change in the direction 

of the heat flow and heat transfer does not increase any further. 

4.3 Discussion 

The Figures 4.1, 4.2, 4.3 and 4.4 discusses the effects of porous plates on the radial 

velocity (parallel to y-axis). It shows that the radial velocity decreases when Reynolds 

number increases and Hartman number decreases in the flow. This shows that when the 

fluid is non MHD (M=0) that is no magnetic field existing in the flow the radial velocity 

reduces. The study of Das et al [2008] which analyzed a three dimensional couette flow 

of a viscous incompressible electrically conducting fluid between two infinite horizontal 

parallel porous flat plates in the presence of a transverse magnetic field found that 

magnetic parameter retards the main fluid velocity and accelerates radial velocity of the 

flow field which agrees with this study. When there is a decrease in M and increase in Re 

the radial velocity profile is less sinusoidal about the centre of the flow as depicted by 

Figures 4.1 and 4.3while decrease in Re and increase in M the radial velocity profile 

becomes more sinusoidal about the central position and flat near the plates as indicated 

by Figures 4.2 and 4.4. 
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It is interesting to note that in figures 4.5, 4.6 and 4.7 the fluid velocity decreases with 

increasing in magnetic field. The fluid velocity profile is parabolic with maximum 

magnitude along the channel centerline and minimum at the plates and it stretches 

outwards as Hartmann number reduces. When Hartmann number is zero, the axial 

velocity is zero at the plates and increases to the maximum at the central region thus 

forming a curve with maximum turning point depicting the normal free flow velocity of 

the stream with very small Reynolds number. The axial velocity decreases when 

Reynolds number increases meaning that the viscous forces are minimal hence inertia 

forces dominate the flow. Figure 4.8 compares the radial and axial velocities at low 

Reynolds and Hartmann numbers. It is observed that axial velocity (parallel to x-axis) 

forms a parabolic curve which shows that the fluid velocity retards at the plates and 

maximum at the centre of the plates while the radial velocity (parallel to y-axis) increases 

with increase in non dimensional length. This indicates the presence of viscous forces and 

magnetic field in the fluid flow.  

Figure 4.9 shows that the temperature of the fluid decreases when the Prandtl number 

increases and Eckert number decreases. An increase in Eckert number leads to an 

increase in temperature profile, this increase causes the fluid to become warmer and 

therefore temperature increases due to viscous dissipation which agrees with the study of 

Okelo [2007]. 

The negative values of temperature indicates a reversal of the heat flow that is the 

temperature gradient at the walls causes a change in the direction of the heat flow and 

heat transfer does not increase any further.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

The solution of the non-linear third order partial differential equation of a steady 

hydromagnetic flow of a conducting viscous incompressible fluid through a channel with 

two parallel porous plates was considered. The plates were stationary and a magnetic 

field transverse at right angle to the electric field. Due to the porous nature of the plates, 

the fluid was withdrawn through both walls of the channel at the same rate. The specific 

equations governing the flow were discussed, transformed using dimensionless 

techniques into a third order partial differential equation which was simplified using 

Taylor’s series expansion and solved by the method of regular perturbation. Expressions 

for the velocity components and temperature profiles were represented in form of tables 

and graphs plotted by use of MATLAB programming software. The velocity profiles 

parallel (axial) and normal (radial) to the plates as well as the temperature distribution on 

the fluid were investigated.  

The effect of porous plates of the hydromagnetic flow on radial velocity and axial 

velocity indicated that radial velocity decreased with increase in Reynolds number while 

the axial velocity was zero at the walls and increased to the maximum at the centre line 

depicting the normal free flow velocity of the stream when there was no magnetic field in 

the fluid flow. The velocity of the fluid decreased with increase in Hartmann number.  

The effect of the dimensionless numbers; Reynolds, Re and Hartmann, M numbers on the 

flow indicates that when M and Re are significantly small the radial velocity is less 
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sinusoidal about the centre of the flow and increases as the non dimensional numbers 

increases. It’s also found that the effect of decreasing M increases velocity field when Re 

number is kept minimal. 

The effect of temperature distribution in the fluid shows that when the Prandtl number 

increases and Eckert number decreases, the temperature of the fluid decreases. This 

means that when viscous forces increases in the flow the thermal conductivity becomes 

negligible and thus thermal energy surpasses the kinetic energy. It is also observed that 

there is a general decrease in the fluid temperature profiles within the channel with 

increase in Prandtl number. The negative values of temperature can be understood as a 

reversal of the heat flow that is the temperature gradient at the walls causes a change in 

the direction of the heat flow and heat transfer does not increase any further. 

5.2 Recommendations 

 

The knowledge of this study has importance in solving the problem of constant leakages 

of oil from the piston-cylinder hydraulic systems where it is assumed that the piston is 

stationary and the gap width is small hence the flow of oil  between two fixed parallel 

plates. The velocity profiles and temperature profiles found can play a great role in many 

industrial processes for instance the removal of pollutants from plant discharge stream by 

absorption and also in MHD devices that utilizes the interaction between velocity 

profiles, magnetic and electric fields in the design of various machines. It is therefore, 

recommended that more research studies be done in this exciting field especially when: 
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1) The fluid flow is unsteady  

2) The boundary plates are inclined at an angle to the horizontal plane 

3) The porosity of the plates is not uniform on the boundary plates. 

4) The use of higher order perturbations to improve the accuracy 

5) The fluid flow is steady with wavy stationary porous plates. 
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APPENDICES 

 

APPENDIX I: Data for radial velocity, axial velocity and temperature  

Table A1: Radial velocity, 𝒗𝒓  for 𝑴 = 𝟎 and varying  𝑹 

𝜂 𝑅 = 0.001 𝑅 = 50 𝑅 = 100 

-1 -0.999999999999000 -0.999999950000000 -0.999999900000000 

-0.8 -0.943999022445373 -0.895122268648960 -0.846244537297920 

-0.6 -0.791997928594205 -0.688429710257280 -0.584859420514560 

-0.4 -0.567997822720011 -0.459136000536320 -0.350272001072640 

-0.2 -0.295998657097166 -0.228854858285440 -0.161709716570880 

0 0 0 0 

0.2 0.295998657097166 0.228854858285440 0.161709716570880 

0.4 0.567997822720011 0.459136000536320 0.350272001072640 

0.6 0.791997928594205 0.688429710257280 0.584859420514560 

0.8 0.943999022445373 0.895122268648960 0.846244537297920 

1 0.999999999999000 0.999999950000000 0.999999900000000 
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Table A2: Radial velocity for 𝑹 = 𝟎.001 and varying 𝑴 

𝜂 𝑀 = 0.01 𝑀 = 10 𝑀 = 20 

-1 -0.999999999999000 -0.999999999999000 -0.999999999998998 

-0.8 -0.943998763245373 -0.684799022445373 0.092800977554624 

-0.6 -0.791997314194205 -0.177597928594205 1.665602071405796 

-0.4 -0.567997117120011 0.137602177279989 2.254402177279990 

-0.2 -0.295998196297166 0.164801342902834 1.547201342902834 

0 0 0 0 

0.2 0.295998196297166 -0.164801342902834 -1.547201342902834 

0.4 0.567997117120011 -0.137602177279989 -2.254402177279990 

0.6 0.791997314194205 0.177597928594205 -1.665602071405796 

0.8 0.943998763245373 0.684799022445373 -0.092800977554624 

1 0.999999999999000 0.999999999999000 -0.999999999998998 
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Table A3.Values of Radial velocity when varying both 𝑴 and 𝑹 

𝜂 𝑀 = 3 

𝑅 = 1 

𝑀 = 6 

𝑅 = 3 

𝑀 = 9 

𝑅 = 6 

-1 -0.999999999000000 -0.999999997000000 -0.999999994000000 

-0.8 -0.919694445372979 -0.847755336118938 -0.728182672237875 

-0.6 -0.734632594205146 -0.564601782615437 -0.281907565230874 

-0.4 -0.502318720010726 -0.307452160032179 0.016599679935642 

-0.2 -0.253185097165709 -0.126083291497126 0.085305417005747 

0 0 0 0 

0.2 0.253185097165709 0.253185097165709 -0.085305417005747 

0.4 0.502318720010726 0.502318720010726 -0.016599679935642 

0.6 0.734632594205146 0.734632594205146 0.281907565230874 

0.8 0.919694445372979 0.919694445372979 0.728182672237875 

1 0.999999999000000 0.999999999000000 0.999999994000000 
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Table A4: Values of Radial velocity for very small R and large M 

𝜂 𝑀 = 10 

𝑅 = 0.1 

𝑀 = 20 

𝑅 = 0.01 

𝑀 = 50 

𝑅 = 0.001 

-1 -0.999999999900000 -0.999999999989999 -0.999999999998991 

-0.8 -0.684702244537298 0.092809775546270 5.536000977554622 

-0.6 -0.177392859420514 1.665620714057948 14.568002071405797 

-0.4 0.137817727998928 2.254421772799892 17.072002177279984 

-0.2 0.164934290283429 1.547213429028343 11.224001342902831 

0 0 0 0 

0.2 -0.164934290283429 -1.547213429028343 -11.224001342902831 

0.4 -0.137817727998928 -2.254421772799892 -17.072002177279984 

0.6 0.177392859420514 -1.665620714057948 -14.568002071405797 

0.8 0.684702244537298 -0.092809775546270 -5.536000977554622 

1 0.999999999900000 0.999999999989999 0.999999999998991 
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Table A5: Axial velocity values for constant R=0.001 and varying M 

𝜂 𝑀 = 0.01 𝑀 = 10 𝑀 = 20 

-1 -0.999999999999000 -0.999999999999000 -0.999999999998998 

-0.8 -0.943998763245373 -0.684799022445373 0.092800977554624 

-0.6 -0.791997314194205 -0.177597928594205 1.665602071405796 

-0.4 -0.567997117120011 0.137602177279989 2.254402177279990 

-0.2 -0.295998196297166 0.164801342902834 1.547201342902834 

0 0 0 0 

0.2 0.295998196297166 -0.164801342902834 -1.547201342902834 

0.4 0.567997117120011 -0.137602177279989 -2.254402177279990 

0.6 0.791997314194205 0.177597928594205 -1.665602071405796 

0.8 0.943998763245373 0.684799022445373 -0.092800977554624 

1 0.999999999999000 0.999999999999000 0.999999999998998 
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Table A6: Axial velocity for values of Constant M=0 and varying R (0.01, 10, 20) 

𝜂 𝑅 = 0.01 𝑅 = 10 𝑅 = 20 

-1 0.000357142400000 0.035714240000000 0.071428480000000 

-0.8 0.540078111980973 0.618111980973440 0.696223961946880 

-0.6 0.960034287992514 0.994287992514560 1.028575985029120 

-0.4 1.259979122283609 1.239122283608960 1.218244567217920 

-0.2 1.439941414857713 1.381414857712640 1.322829715425280 

0 1.499928571430000 1.428571430000000 1.357142860000000 

0.2 1.439941414857713 1.381414857712640 1.322829715425280 

0.4 1.259979122283609 

 

1.239122283608960 1.218244567217920 

0.6 0.960034287992514 0.994287992514560 1.028575985029120 

0.8 0.540078111980973 0.618111980973440 0.696223961946880 

1 0.000035714240000 0.035714240000000 0.071428480000000 
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Table A7: Axial velocity Values for small R and large M 

𝜂 𝑀 = 0.001 

𝑅 = 5 

𝑀 = 0.5 

𝑅 = 20 

𝑀 = 0.1 

𝑅 = 50 

-1 0.017856845000000 0.070740980000000 0.178543700000000 

-0.8 0.579055828526720 0.695819061946880 0.930543708867200 

-0.6 0.977143904297280 1.028346085029120 1.131430766572800 

-0.4 1.249561090244480 1.218115667217920 1.155606262044800 

-0.2 1.410707397696320 1.322751815425280 1.147071172563200 

0 1.464285690000000 1.357080360000000 1.142854650000000 

0.2 1.410707397696320 1.322751815425280 1.147071172563200 

0.4 1.249561090244480 1.218115667217920 1.155606262044800 

0.6 0.977143904297280 1.028346085029120 1.131430766572800 

0.8 0.579055828526720 0.695819061946880 0.930543708867200 

1 0.017856845000000 0.070740980000000 0.178543700000000 
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Table A8: Comparison of Radial and Axial velocities 

𝜂 𝑣𝑟 

𝑀 = 1 

𝑅 = 0.1 

𝑣𝑎 

𝑀 = 1 

𝑅 = 0.1 

-1 -0.274642857600000 -0.999999999900000 

-0.8 0.378821119809734 -0.941310244537298 

-0.6 0.868382879925146 -0.785648859420515 

-0.4 1.208231222836090 -0.560726272001072 

-0.2 1.408254148577127 -0.291257709716571 

0 1.474285714300000 0 

0.2 1.408254148577127 0.291257709716571 

0.4 1.208231222836090 0.560726272001072 

0.6 0.868382879925146 0.7856sss48859420515 

0.8 0.378821119809734 0.941310244537298 

1 -0.274642857600000 0.999999999900000 
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Table A9: Temperature Values for    𝑷𝒓(𝟐, 𝟏, 𝟎. 𝟓) and   𝑬𝒄(𝟏, 𝟑, 𝟎. 𝟓) 

𝜂 𝑃𝑟 = 2 

𝐸𝑐 = 1 

𝑃𝑟 = 1 

𝐸𝑐 = 3 

𝑃𝑟 = 0.5 

𝐸𝑐 = 0.5 

-1 -4.000000000000000 -9.000000000000000 -1.250000000000000 

-0.8 -2.880000000000000 -6.480000000000001 -0.900000000000000 

-0.6 -1.920000000000000 -4.319999999999999 -0.600000000000000 

-0.4 -1.120000000000000 -2.519999999999999 -0.350000000000000 

-0.2 -0.480000000000000 -1.080000000000000 -0.150000000000000 

0 0 0 0 

0.2 0.320000000000000 0.720000000000000 0.100000000000000 

0.4 0.480000000000000 1.080000000000000 0.150000000000000 

0.6 0.480000000000000 1.080000000000000 0.150000000000000 

0.8 0.320000000000000 0.720000000000000 0.100000000000000 

1 0 0 0 
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APPENDIX II: MATLAB Program 

Program 1 for Figure 4.1 

format long 

n=-1:0.2:1; 

m=0; 

R1=0.001; 

y1=0.5*n.*(3-n.^2)+0.010714285*R1*n.^3-0.003571429*R1*n.^7-0.025*m^2*n.^5-

0.025*m^2*n-0.007142857*R1*n+0.05*m^2*n.^3 

R2=50; 

y2=0.5*n.*(3-n.^2)+0.010714285*R2*n.^3-0.003571429*R2*n.^7-0.025*m^2*n.^5-

0.025*m^2*n-0.007142857*R2*n+0.05*m^2*n.^3 

R3=100; 

y3=0.5*n.*(3-n.^2)+0.010714285*R3*n.^3-0.003571429*R3*n.^7-0.025*m^2*n.^5-

0.025*m^2*n-0.007142857*R3*n+0.05*m^2*n.^3 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('R=0.001','R=50','R=100') 

grid on 

xlabel('Non dimensiona length,\eta') 

ylabel('Radial Velocity,v_r') 
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Program 2 for Figure 4.2 

format long 

n=-1:0.1:1; 

m1=0.01; 

R1=0.001; 

y1=0.5*n.*(3-n.^2)+0.010714285*R1*n.^3-0.003571429*R1*n.^7-0.025*m1^2*n.^5-

0.025*m1^2*n-0.007142857*R1*n+0.05*m1^2*n.^3 

R2=0.001; 

m2=10; 

y2=0.5*n.*(3-n.^2)+0.010714285*R2*n.^3-0.003571429*R2*n.^7-0.025*m2^2*n.^5-

0.025*m2^2*n-0.007142857*R2*n+0.05*m2^2*n.^3 

m3=20; 

R3=0.001; 

y3=0.5*n.*(3-n.^2)+0.010714285*R3*n.^3-0.003571429*R3*n.^7-0.025*m3^2*n.^5-

0.025*m3^2*n-0.007142857*R3*n+0.05*m3^2*n.^3 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('M=0.01','M=10','M=20') 

grid on 

xlabel('Non dimensionl lenght, \eta') 

ylabel('Radial Velocity,v_r') 
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Program 3 for Figure 4.3 

format long 

n=-1:0.2:1; 

m1=3; 

R1=1; 

y1=0.5*n.*(3-n.^2)+0.010714285*R1*n.^3-0.003571429*R1*n.^7-0.025*m1^2*n.^5-

0.025*m1^2*n-0.007142857*R1*n+0.05*m1^2*n.^3 

R2=3; 

m2=6; 

y2=0.5*n.*(3-n.^2)+0.010714285*R2*n.^3-0.003571429*R2*n.^7-0.025*m2^2*n.^5-

0.025*m2^2*n-0.007142857*R2*n+0.05*m2^2*n.^3 

m3=9; 

R3=6; 

y3=0.5*n.*(3-n.^2)+0.010714285*R3*n.^3-0.003571429*R3*n.^7-0.025*m3^2*n.^5-

0.025*m3^2*n-0.007142857*R3*n+0.05*m3^2*n.^3 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('R=1,M=3','R=3,M=6','R=6,M=9') 

grid on 

xlabel('Non dimensional length,\eta') 

ylabel('Radial Velocity,v_r') 
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Program 4 for Figure 4.4 

format long 

n=-1:0.1:1; 

m1=10; 

R1=0.1; 

y1=0.5*n.*(3-n.^2)+0.010714285*R1*n.^3-0.003571429*R1*n.^7-0.025*m1^2*n.^5-

0.025*m1^2*n-0.007142857*R1*n+0.05*m1^2*n.^3 

R2=0.01; 

m2=20; 

y2=0.5*n.*(3-n.^2)+0.010714285*R2*n.^3-0.003571429*R2*n.^7-0.025*m2^2*n.^5-

0.025*m2^2*n-0.007142857*R2*n+0.05*m2^2*n.^3 

m3=50; 

R3=0.001; 

y3=0.5*n.*(3-n.^2)+0.010714285*R3*n.^3-0.003571429*R3*n.^7-0.025*m3^2*n.^5-

0.025*m3^2*n-0.007142857*R3*n+0.05*m3^2*n.^3 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('R=0.1,M=10','R=0.01,M=20','R=0.001,M=50') 

grid on 

xlabel('Non dimensional length,\eta') 

ylabel('Radial Velocity,v_r') 

 

 

 



68 
 

 
 

 

Program 5 for Figure 4.5 

format long 

n=-1:0.2:1; 

R1=0.001; 

m1=0.01; 

y1=1.5*(1-n.^2)+0.032142855*R1*n.^2-0.021428574*R1*n.^6-0.1*m1^2*n.^4-

0.025*m1^2-0.007142857*R1-0.15*m1^2*n.^2 

R2=0.001; 

m2=10; 

y2=1.5*(1-n.^2)+0.032142855*R2*n.^2-0.021428574*R2*n.^6-0.1*m2^2*n.^4-

0.025*m2^2-0.007142857*R2-0.15*m2^2*n.^2 

R3=0.001; 

m3=20; 

y3=1.5*(1-n.^2)+0.032142855*R3*n.^2-0.021428574*R3*n.^6-0.1*m3^2*n.^4-

0.025*m3^2-0.007142857*R3-0.15*m3^2*n.^2 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('M=0.01', 'M=10', 'M=20') 

grid on 

xlabel('Non dimensional length,\eta') 

ylabel('Axial Velocity,v_a') 
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Program 6 for Figure 4.6 

format long 

n=-1:0.2:1; 

R1=0.01; 

m=0; 

y1=1.5*(1-n.^2)+0.032142855*R1*n.^2-0.021428574*R1*n.^6-0.1*m^2*n.^4-

0.025*m^2-0.007142857*R1-0.15*m^2*n.^2 

R2=10; 

m=0; 

y2=1.5*(1-n.^2)+0.032142855*R2*n.^2-0.021428574*R2*n.^6-0.1*m^2*n.^4-

0.025*m^2-0.007142857*R2-0.15*m^2*n.^2 

R3=20; 

m=0; 

y3=1.5*(1-n.^2)+0.032142855*R3*n.^2-0.021428574*R3*n.^6-0.1*m^2*n.^4-

0.025*m^2-0.007142857*R3-0.15*m^2*n.^2 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('R1=0.01','R2=10','R3=20') 

grid on 

xlabel('Non dimensional,\eta') 

ylabel('Axial Velocity,V_a') 
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Program 7 for Figure 4.7 

format long 

n=-1:0.2:1; 

R1=5; 

m1=0; 

y1=1.5*(1-n.^2)+0.032142855*R1*n.^2-0.021428574*R1*n.^6-0.1*m1^2*n.^4-

0.025*m1^2-0.007142857*R1-0.15*m1^2*n.^2 

R2=20; 

m2=0; 

y2=1.5*(1-n.^2)+0.032142855*R2*n.^2-0.021428574*R2*n.^6-0.1*m2^2*n.^4-

0.025*m2^2-0.007142857*R2-0.15*m2^2*n.^2 

R3=50; 

m3=0; 

y3=1.5*(1-n.^2)+0.032142855*R3*n.^2-0.021428574*R3*n.^6-0.1*m3^2*n.^4-

0.025*m3^2-0.007142857*R3-0.15*m3^2*n.^2 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('R=5,M=0.1','R=20,M2=0.5','R=50,M3=1') 

grid on 

xlabel('Non dimensional length,\eta') 

ylabel('Axial Velocity,v_a') 
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Program 8 for Figure 4.8 

format long 

n=-1:0.1:1; 

R1=10; 

m1=0; 

y1=1.5*(1-n.^2)+0.032142855*R1*n.^2-0.021428574*R1*n.^6-0.1*m1^2*n.^4-

0.025*m1^2-0.007142857*R1-0.15*m1^2*n.^2 

format long 

n=-1:0.1:1; 

m2=0; 

R2=10; 

y2=0.5*n.*(3-n.^2)+0.010714285*R2*n.^3-0.003571429*R2*n.^7-0.025*m2^2*n.^5-

0.025*m2^2*n-0.007142857*R2*n+0.05*m2^2*n.^3 

plot(n,y1 ,'*-',n,y2,'--') 

legend('V_a=R=0.1,M=1','V_r=R=0.1,M=1') 

grid on 

xlabel('Non dimensional length,\eta') 

ylabel('Velocity(Radial and Axial)') 

title('velocities of radial and axial versus Non dimensional length,\eta') 
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Program 9 for Figure 4.9 

format long 

n=-1:0.2:1; 

Pr1=2; 

Ec1=1; 

y1=n.*(1+0.5*Pr1)*Ec1.*(1-n) 

Pr2=1; 

Ec2=3; 

y2=n.*(1+0.5*Pr2)*Ec2.*(1-n) 

Pr3=0.5; 

Ec3=5; 

y3=n.*(1+0.5*Pr3)*Ec3.*(1-n) 

plot(n,y1 ,'*-',n,y2,'--',n,y3,'-') 

legend('Pr=2,Ec=1','Pr=1,Ec=3','Pr=0.5,Ec=5') 

grid on 

xlabel('Non dimensioal length,\eta') 

ylabel('Temperature,\theta') 

 


