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ABSTRACT 

Quantum materials reveal unexpected and exotic behavour when subjected to extreme 

conditions such as low temperature and/or high pressure. Ultra cold gases provide a 

very powerful tool for simulation and study of condensed matter systems. Based on 

recent developments on applications of quantum gases, we have to look for 

experimental models that can be used to probe and manipulate particles in quantum 

state and look at their theoretical framework in order to understand their properties. In 

this work, a mixture of bosons and fermions at zero Kelvin temperature is considered 

and its properties studied. Most theoretical work have been devoted to a system of two 

Bose condensates. It is in this research therefore, that we consider a system of Bose 

condensate with fermionic impurities and look at the properties that arise due to their 

interaction. The aim of this research was to determine the density distribution of bosons 

and fermions that are trapped in isotropic external potential and compare their density 

distribution for different values of ratio of their interaction strength  ℎ/𝑔. Gross- 

Pitaevski mean field equation for the boson distribution in the trap is solved by utilizing 

Thomas Fermi Approximation to extract the density profile of the fermions and bosons 

components. The results show that the Fermi gas will constitute a shell around a core 

of Bose condensate for ℎ > 𝑔 and it forms a core inside the Bose condensate for ℎ >

𝑔. For ℎ = 𝑔, both states exist simultaneously, the fermions has a constant spatial 

density where the bosons are localized. In this work, the existence of three distinct states 

of the system under variation of the ratio of the interaction strength  ℎ/𝑔 has been 

confirmed. 
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CHAPTER ONE 

INTRODUCTION 

  

1.1  Background information  

All particles, elementary particles such as electrons as well as composite particles such 

as atoms and molecules, belong to one of two possible classes: they are either fermions 

or bosons. The class in which a particle belongs to is determined by its spin. If the spin 

is an odd multiple of  ℏ /2, the particle is a fermion. For even multiplesof  ℏ /2, it is a 

boson. Examples of fermions are electrons or Li3
6  atoms. Li3

7   and photons are examples 

of bosons. The quantum properties of a particle are influenced by its bosonic or 

fermionic nature. For a system of identical particles, the many particle wave function 

must be symmetric under the exchange of two particles for bosons and anti-symmetric 

under the exchange of two particles for fermions. A direct consequence of this (anti-) 

symmetrization postulate is that it is impossible for two fermions to occupy the same 

quantum state, as illustrated in Figure1.1. This is called the Pauli Exclusion Principle. 

No process can add a fermion to an already occupied state. The process is inhibited by 

Pauli blocking. For bosons it is favorable to occupy the same state, as illustrated in 

Figure 1.1 and the more bosons that are already in this state, the higher the probability 

that another boson is transferred to it. This property is called Bose enhancement. 

Bose enhancement leads to a phase transition at high phase-space densities, 

corresponding to low temperatures and/or high densities. When the phase-space density 

is increased past a certain critical value, the occupation of the ground-state rapidly 

becomes macroscopic. This effect is called Bose-Einstein Condensation (BEC) 
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(Inguscio, et. al., 1999).  Bosons behave very differently from fermions at ultra-low 

temperatures, where the atoms behave more like waves than as point-like particles.  

 

When identical bosons are cooled to near absolute zero (about –0.1833 K), they coexist 

in the same energy state called the Zero Momentum State (ZMS). Their movements fall 

into step at a single low energy level, and they behave as one unified "super-atom," 

called a BEC. Lately, a lot of attention has also been given to fermions especially in 

view of the possibility of achieving temperatures low enough to observe a BCS type 

transition. Cooling fermions is harder than cooling bosons. 

 

 

Figure 1.1: At absolute zero, gaseous boson atoms all end up in low energy 

state. The fermions in contrast, fill the available states with one atom per 

state-shown here for one dimensional harmonic confining potential. 

The main difficulty arises from Fermi statistics as the s-wave collisions between spin 

polarized fermions in a magnetic trap are forbidden by Pauli’s Exclusive principle. A 

common strategy uses sympathetic cooling, which is based on s-wave collision between 

fermions and a second gaseous component made either of fermions in a different 
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internal state or bosons. The latter choice seems to minimize the effects of Pauli 

blocking. This leads finally to two trapped condensates.  

 

The developments in the trapping and cooling of atoms have made it possible to 

investigate the properties of dilute gases at very low temperature where bosonic or 

fermionic character of the atom are scrutinized. When laser cooling is used, very cold 

Bose Condensate can be obtained in the temperature range of nano- Kelvin (10-9K). A 

mixture of Bose Condensate and Fermi gas was studied assuming that a degenerate 

Fermi gas (Degenerate Fermi gas is a system at very low temperature where classical 

laws or classical statistical mechanics is not applicable) interacts with a Bose 

Condensate (Roati, et. al., 2002). The mixture was assumed to be trapped in an external 

potential Vext(r). The atoms interact by elastic collisions. Because of extremely low 

temperature, the atoms have very low kinetic energies, and this permits replacement of 

their short range interaction potential by a delta function. 

 

The conditions in which the bosons and fermions can significantly overlap was 

determined and also how the bosons and fermions distribution in space can be strongly 

modified by various components such as the number of bosons and fermions and the 

values of 𝑔, ℎ, 𝜔 and 𝑎 (distance to the trap center or the oscillator ground state width). 

In the mixture of bosons and fermions the following patterns can exist: 

i. Bosons and fermions can significantly overlap, 

ii. Bosons surround the fermions and the fermions constitute the core, 

iii. Fermions surround the bosons and the bosons constitute the core. 

All the above possibilities were studied in detail in the present work. 
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1.2 Statement of the Problem 

A number of experiments have been conducted on systems with two condensates. Most 

theoretical work concerning multi component condensates have been devoted to a 

system of two Bose condensates. Theoretical framework for a system of a Bose 

condensate with fermionic impurities has not been fully developed despite the fact that 

cooling of fermions has already been reported (DeMarco, et al, 1999) 

 

In this work, the properties of a degenerate Fermi gas which is interacting with a Bose 

condensate was considered. The miscibility properties of boson-fermion mixture at zero 

temperature Kelvin in a trap is discussed in detail. This has been done within the 

Thomas- Fermi approximation, where the separation of the components is studied 

numerically as a function of the inter-particle interaction. An analytical study of the 

miscibility of fermions-boson mixtures in the uniform case has been carried out in order 

to obtain the types of phase boundaries that may occur in this system at zero Kelvin 

temperature, in order to determine its properties.  

1.3 Objective 

1.3.1   General Objective 

The aim of this research was to obtain the density distribution of bosons and fermions 

that are trapped in isotropic external potential and compare their density distribution for 

different values of ratio of their interaction strength  ℎ/𝑔. 
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1.3.2  Specific Objective 

The specific objectives are; 

i. Determine the density profiles for bosons and fermions trapped in isotropic 

external potential as a function of r, the distance from the trap centre. 

ii. Compare the density distribution for the trapped bosons and fermions from trap 

center for different values of boson-boson interaction strength ℎ  and boson-

fermion interaction strength, 𝑔. 

 

1.4   Justification of the study 

One of the first practical applications suggested for the ultra-cold Bose- Fermi gases is 

in quantum computing, which is based on the theory of quantum mechanics. Quantum 

computing will be able to quickly solve problems that would be too complex for today's 

digital computers.  

Unlike Newtonian mechanics, which describes the motions of stars and planets in 

space, quantum mechanics predicts the movements of electrons and the other invisible 

particles that make up all matter. And unlike digital computing, which relies on only 

two possible information states-on or off, quantum computing depends on the idea that 

in the quantum world, both states could exist at the same time, superimposed on top of 

each other.  

In addition to quantum computing, researchers are interested in using ultra-cold polar 

molecules as models for studying complicated physical systems, such as 

superconductors. They can also be used in precision measurement of fundamental 

physical constants. For doing precision measurement, the particles have to be ultra-cold 
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so that they can be held on to for a long time. At ultra-cold temperatures, particles move 

so slowly that they can be trapped more easily, and they won’t have shifts caused by 

their motion. 

Based on these applications, there is need to understand quantum mechanics more fully. 

To do this, we have to design experiments that can be used to probe and manipulate 

particles in a quantum state. One such model is an ultra-cold highly condensed atom 

gas called a Bose-Einstein Condensate (BEC). There is need also to study their 

properties, such as their position and momentum in order to understand them. This work 

therefore was aimed at obtaining their density distribution and look at how their density 

distribution is altered by inter-particle interaction strengths. 

1.5 Scope 

A simple theoretical analysis of the situation in which a Bose condensate and a 

degenerate fermi gas coexist will be considered. The atoms are assumed to be trapped 

in the same external harmonic oscillator potential which is isotropic. 40K and 87Rb 

Fermi-Bose mixture at zero temperature Kelvin have been chosen for this study. The 

reason for choosing 40K and 87Rb atom is the fact that experiments on these atoms have 

been carried out (Inguscio, et. al., 1999, Mølmer, K., et. al., 1998, Dalfovo, F., et. al., 

1999, Butts, D. A. and Rokhsar, D.,1997, Roati, G., 2002, Pitaevskii, L. and Stringari, 

S., 2003). 
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CHAPTER TWO:  

THEORY AND LITERATURE REVIEW 

2.1  Introduction 

 

Since the experimental realization of Bose- Einstein condensation in dilute gases of 

Rubidium (Inguscio, et. al., 1999, Mølmer, K., et. al., 1998, Dalfovo, F., et. al., 1999, 

Butts, D. A., and Rokhsar, D., 1997), Sodium (Roati, G., 2002, Pitaevskii, L. and 

Stringari, S.,2003), lithium (Pethick, C. J., et. al., 2001), and hydrogen (DeMarco, B. 

and Jin, D. S., 1999), a great deal of interest in Bose Condensed systems have 

concentrated on the topic of multi- component condensates. This field was stimulated 

by the successful demonstration of overlapping condensates in different spin states of 

rubidium in a magnetic trap (De Marco, B., et. al., 1999, Granade, S. R., et. al., 2002) 

and of sodium in an optical trap (Schreck, F., et. al, 2001), the (binary) mixtures being 

produced either by sympathetic cooling, which involves one species being cooled to 

below the transition temperature only through thermal contact with an already 

condensed Bose gas, or by radiative transitions out of a single component condensate. 

Since then a host of experiments has been conducted on systems with two condensates, 

exploring both the dynamics of component separation (Truscott, G., et. al., 2001), and 

measuring the relative quantum phase of the two Bose- Einstein condensates 

(Hadzibabic, Z., et al, 2002). Most of the theoretical work concerning multi-component 

condensates (Roati, G., et. al., 2002, Modugno, G., et al, 2002, Nygaard, N. and 

Molmer, K., 1999, Roth, R., et. al., 2002, Miyakawa, T., et. al., 2000, Griffin, A., Albus, 

A.P., et. al., 2002, 1996, Viverit, L. and Giorgini, 2002, Albus, A.P, 2003 and 
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Ospelkaus, C., et. al., 2006) has been devoted to systems of two Bose condensates. 

However, other systems are of fundamental interest, one of these being a Bose 

condensate with fermionic impurities, for instance a system of 40K -87Rb Fermi-Bose 

mixture. In particular the possibility of sympathetic cooling of fermionic isotopes has 

been predicted in both 6Li-7Li (DeMarco, B., et. al., 1999) 39K-40K, and 41K-40K 

(Modugno, M., et al, 2003). Magneto - optical trapping of the fermionic potassium 

isotope 40K has been reported (Fedichev, P. O., et. al., 1996).  

 

2.2  Atomic fermi gases 

 

Let me start by reviewing the properties of a trapped non-interacting Fermi gas. I then 

describe the procedure to produce a degenerate Fermi gas of 40K atoms. In particular, 

the procedure to bring fermions into degeneracy exploits the technique of sympahetic 

cooling in which a bosonic gas of 87Rb atoms acts as a refrigerator. 40K-87Rb Fermi-

Bose mixture is an extremely rich system which gives us a twofold possibility: on the 

one hand, it can be compared directly with the behavior of two atomic gases obeying 

to two different quantum statistics and, on the other hand, interspecies interaction 

effects can be investigated. In particular, our Fermi-Bose mixture exhibits a large 

interspecies attraction which strongly affects both the density distribution and the 

dynamics of the system. 

 

2.2.1  Trapped Fermi gas 

 

While the bosonic degeneracy involves the formation of a Bose-Einstein condensate, 

the fermionic degeneracy leads to a single particle occupation of quantum states. At 
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zero temperature, the occupation number of each fermionic quantum state is equal to 

one, up to energies close to the Fermi energy EF, and is zero for larger energies. The 

Fermi energy EF corresponds to the higher energy level occupied at T=0 K, and sets the 

relevant energy scale of the system. This tight packing creates a Fermi sea of particles 

where a minimum size is maintained by the so-called Fermi pressure (Ferlaino, F., 

2004). Furthermore, added particles cannot penetrate into the Fermi Sea and this gives 

rise to the Pauli blocking of collisions. It is interesting to note that all these features 

arise some-how from the properties of symmetry of the fermionic wave-function. In 

particular, a system composed by N identical fermions is described by a wave-function 

which is anti-symmetric under the interchange of any pair of particle coordinates. On 

the contrary, a bosonic function is completely symmetric. This fundamental difference 

leads to different statistical mechanics which governs these two classes of particles. A 

Fermi gas is described by Fermi-Dirac distribution (Ferlaino, F., 2004) 

𝑓(r, p) =
1

eβ[H(r,p)−µ] + 1
                                                                                       2.1 

Where 𝛽 is 1/KBT with KB the Boltzmann constant. The function 𝑓(𝑟, 𝑝)is the 

occupation probability of a state of energy ε, where 𝐻(𝑟, 𝑝)𝜓(𝑟, 𝑝)  =  𝜀 𝜓(𝑟, 𝑝). The 

chemical potential µ fixes the number of atoms in the gas. The zero-temperature Fermi 

distribution is equal to one for energies lower than EF =µ (T = 0K) and zero otherwise. 

The presence of a finite temperature smoothes the step-wise transition from one to zero 

occupation numbers. In particular, at a finite temperature a shell of amplitude kBT opens 

around EF, and the unitary occupation is no more guaranteed. For such a distribution, 

only fermions with energies in a shell near the Fermi surface provide a response of the 

system to external perturbations (Ferlaino, F., 2004). Thus, the ratio between the 

temperature T and the Fermi temperature, TF=EF/KB, defines the degree of degeneration 
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of the system. Note that the scenario is opposite in a Bose-condensed system where all 

the particles participate in the response (Dalfovo, F., et. al., 1999). 

 

 The main quantities involved in a Fermi gas which is confined by a harmonic trap with 

a cylindrical symmetry, such as temperature and the number of atoms, depend also on 

the trapping potential. We now briefly describe the basic features of a harmonically 

trapped Fermi gas. A more detailed description can be found in (Butts, D. A., and 

Rokhsar, D, 1997, Roati, G., 2002). 

 

 The Hamiltonian H(r, p) of a harmonically trapped Fermi gas is known to be 

𝐻(𝑟, 𝑝) =
𝑝2

2𝑚
+ 𝑉𝐹(𝑟),                                                                                      (2.2) 

Where 𝑚, is the atomic mass of the fermion and 𝑉𝐹(r) is the harmonic trap potential. 

Our harmonic potential exhibits a cylindrical symmetry along the z-axis, also named 

axial direction. The trapping frequencies are (ω1, ω2, ω3) ≡(ωr, ωr, ωz)with ωr,z the radial 

and axial frequency, respectively. Introducing the aspect ratio of the trap λ=ωz/ωr, VF 

is given by 

VF(r)  =
1

2
Mωr

2(x2+y2+λz2).              (2.3) 

The single particle levels are the Eigen values of the harmonic oscillator. If the thermal 

energy far exceeds the level spacing (kBT>> ℏ ωr), we can replace the discrete single-

particle harmonic spectrum with a continuum one, whose density of energy states is 

(Butts, D. A., and Rokhsar, D., 1997) 

𝑔(𝜖) =
𝜖2

2𝜆(ℏ𝜔𝑟)3
                                                                                    (2.4) 

The chemical potential µ is then given by the normalization condition for the total 

number of fermions NF in the trap 
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𝑁𝐹 =
1

(2𝜋ℏ)3
∫

𝑔(𝜖)𝜕𝜖

𝑒𝛽(𝜖−𝜇)
                                                                       (2.5) 

Eq. (2.5) also fixes the Fermi energy 𝐸𝐹 of the system (Butts, D. A., and Rokhsar, D., 

1997). Solving the integral, one indeed finds 

𝐸𝐹 = ℏ𝜔𝑟[6𝜆𝑁𝐹]
1

3                                                                         (2.6) 

 

which sets the relevant energy scale of the system. From the Fermi energy, we can 

define the typical size of a trapped degenerate gas 

𝐸𝐹 = 𝑚𝜔𝑟
2𝑅𝐹

2   →   𝑅𝐹 = √
𝐸𝐹

𝑚𝜔𝑟
2

  = 𝑎ℎ𝑜(48𝑁𝐹)
1

6                                            (2.7) 

Where the harmonic oscillator length is 𝑎ℎ𝑜 = √ℏ 𝑚⁄ ω ℎ𝑜  and ω ho = (𝜔𝑟
2ωz) 1/3. 

From Eq. (2.7), it follows that if the number of fermions NF>>1, the size of the trapped 

Fermi cloud is much greater than 𝑎ℎ𝑜 (Ferlaino, F., 2004). This is as a result of blocking 

by the Pauli Exclusion Principle. This effective repulsion between fermions in the trap 

is known as Fermi pressure, and leads to a bigger size of the cloud with respect to the 

harmonic oscillator length 𝑎ℎ𝑜. This is another important difference with respect to both 

a "classical" gas and a Bose condensed gas. Indeed decreasing the temperature, the size 

of a classical gas continuously shrinks accordingly to the classical Boltzmann 

distribution as shown in Figure 2.1. The size of a non-interacting Bose-Einstein 

Condensate is instead temperature-independent and at T=0 K it is exactly equal to ah0 

because they all occupy the lowest state of the harmonic oscillator. If one also 

introduces the two-body repulsive interaction between condensed atoms, the radius of 

the cloud also increases with NB. In particular, the radius of the condensate RB scales 

with NB as 𝑁𝐵
1/5

 (Ferlaino, F., 2004) which is slightly different from the behavior found 

for a Fermi gas, RF∝𝑁F
1/6

 (Butts, D. A., and Rokhsar, D 1997) 
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Figure 2.1: False-color reconstruction of the density distributions of a gas 

with fermionic 40K (front) and bosonic 87Rb (back) during the evaporative 

cooling process, as detected after a ballistic expansion of the mixture 

(Griffin, A., 1996).  

 

2.2.2  Spatial and momentum distribution. 

 

For a temperature different from zero, the density distribution of a degenerate Fermi 

gas has to be calculated numerically by integrating the distribution function (equation 

2.1) in the momentum space. At T= 0K, one instead finds an analytic expression 

(Ferlaino, F., 2004): 

𝑛(𝑟, 𝑇 = 0) =
8𝜆𝑁

𝑚𝜔𝑟
2

[1 −
𝜌2

𝑅𝐹
2]

3

2

                                                            (2.8) 

Where ρ is the effective distance ρ= (x2+y2+ λ2z2)1/2 defined for a harmonic trap with a 

cylindrical symmetry. Another important quantity is the momentum distribution of the 

cloud. Indeed, in the experiments, most of the information about the sample is obtained 

looking to the absorption signal of the cloud, after the sudden release from the trap. 

When the confinement is switched off, the cloud performs a rapid and adiabatic 
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expansion and we are able to measure the velocity distribution by imaging the atoms. 

The momentum distribution (Thomas-Fermi distribution) at zero temperature is  

𝑛(𝑝, 𝑇 = 0) =
1

(2𝜋)3
∫ 𝑑3 𝑟Θ(𝑝𝐹(𝑟) − 𝑃)                                                                   (2.9) 

Where  Θ(𝑝𝐹(𝑟) − 𝑃)is the unit step function and the Fermi momentum 𝑝𝐹 = √2𝑚𝐸𝐹 

The integral (2.9) gives (Dalfovo, F., et. al., 1999) 

𝑛(𝑝, 𝑇 = 0) =
8𝑁

𝜋2𝑝𝐹
3 [1 −

𝑝2

𝑝𝐹
2]

3

2

                                                                              (2.10) 

The momentum distribution of the degenerate Fermi gas is isotropic i.e. the momentum 

distribution depends only on the magnitude of 𝑝. As we will discuss in the next section, 

this is an important difference with respect to the case of a Bose gas. 

 

2.2.3  Comparison with the Bose-Einstein condensate 

 

 A Bose gas shows a behavior somehow opposite with respect to the one exhibited by 

Fermi gas. The difference between these two systems arises entirely from their different 

statistical mechanical nature. Above all, trapped bosons undergo a phase transition as 

the critical temperature Tc is reached and all the atoms prefer to occupy macroscopically 

a single state. Furthermore, differently from a gas of identical fermions, the condensed 

bosons collide with each other. Due to the low temperatures (T≤Tc≈100 nK) and the 

diluteness of the cloud, the inter-particle interaction can be described in a simple way. 

Indeed one can consider that each boson experiences a mean field potential produced 

by all the other particles on the gas (Dalfovo, F., et. al., 1999, Pitaevskii, L., et. al., 

2003). This approximation is somehow justified by the fact that, at low temperature, 

just two-body collisions survive. The interatomic potential can be written as a δ-

function using the method of the pseudo-potentials (Ferlaino, F., 2004), 
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𝑉(𝑟 −́ 𝑟) = 𝑔𝛿(𝑟 −́ 𝑟)                                                                               (2.11) 

 

The coupling constant 𝑔, at the first order of the perturbation, takes the form 

𝑔 =
4𝜋ℏ2𝑎𝐵𝐵

𝑚
                                                                                         (2.12) 

 

Where 𝑎𝐵𝐵 is the boson-boson s-wave scattering length. This interaction introduces in 

the system a sort of rigidity which yields to phenomena of superfluidity observed in 

Bose-Einstein condensate (Dalfovo, F., et. al., 1999). For a large number of atom NB, 

the interaction energy is notably larger than the kinetic energy. In this limit, one can 

neglect the latter contribution to the energy and the system is known to be in the 

Thomas-Fermi regime (Ferlaino, F., 2004). At T=0 K, the density distribution of a 

trapped condensate has an inverted-parabola shape 

𝑛𝐵(𝑟) =
𝑅𝐵

2

2𝑔
[1 −

𝜌2

𝑅𝐵
2]                                                                                          (2.13) 

 

Where 𝑅𝐵 is the maximum radius of the cloud (Dalfovo, F., et. al., 1999 Butts, D. A., 

and Rokhsar, D., 1997) 

𝑅𝐵 = (
15𝜆𝑔𝑁𝐵

4𝜋
)

1

5

                                                                                                (2.14) 

 

The typical energy scale of a Bose gas is the zero-temperature chemical potential µ 

which scales with the atom number more rapidly than the Fermi energy (µ ∝

𝑁𝐵
2/5

whileE𝐹 ∝ 𝑁𝐵
1/3

). Another important difference is connected to the spatial and 

momentum distribution of the two clouds. Even if the two gases exhibit a similar spatial 

distribution, their momentum distributions differ in a profound way. The momentum 
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distribution of both a thermal cloud and a Fermi gas turns out to be isotropic. On the 

contrary, in a condensate, 𝑛𝐵(𝑝)is anisotropic in a asymmetric trap due to the non-

linearity of the inter-particle interaction. Furthermore, the widths of the momentum 

distribution scale in the opposite way: 𝑝𝐹 increases with 𝑁𝐹, while the typical 

momentum for a condensed atom decrease with particle number, since 𝑝𝐵α
1

𝑅𝐵
 due to 

the Heisenberg uncertainty principle. 

 

2.2.4  The cooling a Fermi gas 

 

A Fermi gas of 40K atoms well below TF is produced using the technique of sympathetic 

cooling with 87Rb atoms (Ferlaino, F., 2004).  In this section, we give a rapid overview 

on the experimental technique used to produce atomic Fermi gas. A detailed description 

can be found in the PhD thesis of Giacomo Roati (Roati, G., 2002).Since the first 

achievement of Bose-Einstein condensation, the standard technique to cool an atomic 

gas below the temperature of degeneracy consists of a pre-cooling phase based on laser 

cooling which carries the system at T ≈100µK and of an evaporative cooling phase 

(Pethick, C. J., and Smith, H., 2001). The initial cooling phase for both alkali bosons 

and fermions proceeds via laser cooling and MOT. The sub-sequent cooling phase has 

instead to be different for the two species. Bosons can indeed exploit techniques based 

on re-thermalization, while fermions cannot collide down to µK (DeMarco, B., et. al., 

1999). In particular, bosons are transferred from the MOT into a magnetic trap, where 

a forced evaporative cooling is applied to bring the gas into degeneracy. The 

evaporation of bosons is performed usually by using a radio-frequency signal which 

removes selectively the hottest atoms from the trap. The key requirement for the 

usefulness of this technique is clearly the existence of a large elastic collisional rate 
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between atoms which allows for an efficient thermalization of the gas. In general, the 

elastic cross-section depends on the temperature. At very low temperature, the only 

significant contribution to the collisional rate is given by the s-wave scattering 

amplitude which is temperature-independent. The other contributes (p-wave, d-wave, 

etc) are proportional to the temperature and thus suppressed down to 100µK. 

 

The situation is even more complicated for identical fermions because inter-atomic 

collisions are completely suppressed in such a system. As a consequence, the 

evaporative cooling fails for spin-polarized fermions and another cooling procedure has 

to be found. One can circumvent this problem using some form of mutual or 

sympathetic cooling between two types of distinguishable particles, either two spin 

states of the same atomic species or of two kinds of atoms. In the first scheme, fermions 

are simultaneously trapped in two different spin states and evaporating cooling is then 

performed on both components (De Marco, B., et. al., 1999, Granade, S. R., et. al., 

2002). Thermalization is now assured by s-wave collisions between these two spin 

states. The other scheme exploits the idea of to mix fermions with a gas of bosons which 

can be efficiently cooled using the usual evaporative cooling. The Fermi gas decreases 

its temperature by colliding with bosons which act like a refrigerator. This latter 

technique is known as sympathetic cooling and has been carried out with success at 

ENS (Paris) (Schreck, F., et. al, 2001), at Rice (Texas) (Truscott, G., et. al., 2001) and 

at MIT (Hadzibabic, Z., et al, 2002). 
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2.3  Quantum degeneracy of boson-fermion mixture 

 

Quantum degeneracy was first reached with mixtures of bosonic Li3
7  and fermionic Li3

6  

(Truscott, G., et. al., 2001), and also with Na11
23  (boson) and Li3

6  (fermion) as well as 87Rb 

(boson) and 40K (fermion) at ultra-low temperatures. These boson-fermion mixtures 

offer unique possibilities to study the effects of quantum statistics directly. Recently, 

superfluidity has been obtained experimentally in a mixture of Bose condensed gas and 

superfluid Fermi gas of two Lithium atoms, 6Li and 7Li (Ferrier-Barbut, I., et al, 2014), 

where a new mechanism of superfluidity and its instability was observed. In a Bose-

Fermi superfluid mixture, there could be a fully mixed phase and a fully separated 

phase, and a third phase could consist of pure fermions in equilibrium with a mixture 

of bosons and fermions (Tylutki, M., et. al., 2016) or it could be pure bosons in 

equilibrium with a mixture of bosons and fermions. Ultimately the conditions for 

stability of homogenous phase of the mixture have to be studied. The phase diagram of 

a weakly interacting Bose-Fermi mixture at zero temperature is derived starting from 

the following expression (Tylutki, M., et. al., 2016) for energy density 𝐸(𝑛𝐹; 𝑛𝐵), i.e, 

𝐸(𝑛𝐹; 𝑛𝐵) =
1

2
𝑔𝐵𝐵𝑛𝐵

2 + 𝑔𝐵𝐹𝑛𝐵𝑛𝐹 +
3

5
𝐸𝐹𝑛𝐹                                                    (2.15) 

Where 𝑛𝐵 is the density of bosons, 𝑛𝐹 is the density of fermions and 𝐸𝐹 =
ℏ2𝑘𝐹

2

2𝑚𝐹
 , where 

𝑘𝐹 is the fermi momentum and 𝑚𝐹 is the mass of the fermi particles; 𝑔𝐵𝐵 is the bosonic 

inter-species coupling constant and 𝑔𝐵𝐹 is the boson-fermion coupling constant. These 

coupling constants are related to corresponding scattering lengths 𝑎𝐵𝐵 and 𝑎𝐵𝐹. Recent 

experiments have shown that Bose-Fermi scattering length does not depend on the 

internal state of the Fermi atoms (Delehaye, M., et al, 2015). The stability condition 

predicted by the energy density of equation (2.15) for the uniform mixture is 
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𝑛𝐹

1
3⁄

=
ℏ2𝑔𝐵𝐵

2𝑚𝐹𝑔𝐵𝐹
2                                                                                           (2.16) 

For 𝑛𝐹 larger than this critical value, the uniform mixture is unstable and the system 

exhibits either partial or full phase separation (Tylutki, M., et. al., 2016). However 

interacting superfluid fermions and the Bose-condensed bosons are coupled via the 

interspecies interaction term determined by 𝑔𝐵𝐹. In general, the number of bosons and 

the number of fermions are not equal in the mixture. But the stability conditions of the 

mixture will depend on the relative number of bosons and fermions in the mixture, and 

this will also determine the phase separation, i.e., whether the box is filled with pure 

fermions, while bosons are still in the mixed phase in the remaining volume; and this 

corresponds to the partially mixed phase of the mixture (Tylutki, M., et. al., 2016).  

 

Bosonic lasers have been developed based on BEC of exciton-polaritons in 

semiconductor micro cavities. These electrically neutral bosons coexist with charged 

electrons and holes, which are thus Bose-Fermi mixtures. In the presence of magnetic 

fields, the charged particles are bound to their cyclotron orbits, while the neutral 

exciton-polaritons move freely. In this way the magnetic fields dramatically affect the 

phase diagram of a mixed Bose-Fermi mixture, switching between fermionic lasing, 

incoherent emission and bosonic lasing (Vladimir, P., et.al, 2016). 

 

2.4  Thermodynamics of a mixture of bosons and fermions 

 

There have been a number of experimental observations (Schreck, F., et. al, 2001, 

Truscott, G., et. al., 2001, Hadzibabic, Z., et al, 2002) and theoretical calculations 

(Khanna, K.M., et. al., 2003) on the ultra-cold trapped Bose Fermi (BF) mixtures of 

alkali metal atoms (Albus, A.P., et. al., 2002, Viverit, L., and Giorgini, 2002). 
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Consequently, a number of theoretical investigations were done to study the static 

property (Mølmer, K., 1998), phase diagram and phase separation (Albus, A.P, 2003), 

stability conditions (Ospelkaus, C., et. al., 2006). Interaction-driven Dynamics and 

collective excitation (DeMarco, B., et. al., 1999) of the trapped BF mixtures. These 

investigations were mainly done in the limit of the temperature tending to zero or at 

T=0, and studied the Bose condensate of the bosonic atoms.  

 

The interest in this attempt is to study the properties of binary BF mixtures, and to 

address the question of how BF interactions affect the thermodynamics properties of 

such mixtures. The objective is to calculate the condensate fraction and the critical 

temperature of BEC at various interaction strengths. Particularly the effect of BF 

attractive interaction and BF repulsive interaction as studied on the variation of 

condensate fraction and the critical temperature. 

 

The theory developed (Modugno, M., et al, 2003) to study the in-homogenous 

interacting Bose gas will be used to study the thermodynamic properties of the BF 

mixtures. The modification of the theory in the presence of the BF interaction will be 

pointed out wherever necessary. 

 

Now the trapped dilute mixture is considered as a system in a thermodynamic 

equilibrium under the grand canonical ensemble whose thermodynamic variables are 

NB is the total number of trapped bosonic atoms, NF is the total number of trapped 

fermionic atoms, T is the absolute temperature, µB is the chemical potential of the 

bosons and µF is the chemical potential of the fermions. The Hamiltonian of the system 

is written as (in units of ℏ = 1) (Sakwa, T.W., et al, 2013) 
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𝐻 =𝐻𝐵+𝐻𝐹+𝐻𝐵𝐹                                                                             (2.17) 

Where  

𝐻𝐵 = 𝑎𝐵
+ [−

∇2

2𝑚𝐵
+ 𝑉𝑡𝑟𝑎𝑝

𝐵 − 𝜇𝐵] 𝑎𝐵 +
𝑔

2
𝑎𝐵

+𝑎𝐵
+𝑎𝐵𝑎𝐵                                                 (2.18) 

𝐻𝐹 = 𝑎𝐹
+ [−

∇2

2𝑚𝐹
+ 𝑉𝑡𝑟𝑎𝑝

𝐹 − 𝜇𝐹] 𝑎𝐹                                                                              (2.19) 

𝐻𝐵𝐹 = ℎ𝑎𝐵
+𝑎𝐵𝑎𝐹

+𝑎𝐹                                                                                                          (2.20) 

 

Where aB is the Bose field operator that annihilates a boson at the position r, and 𝑎𝐹 the 

Fermi field operator that annihilates a fermion at the position r, HB stands for the 

Hamiltonian for bosons that interact with each other, the interaction strength between 

two bosons is given by 𝑔, HF is the Hamiltonian for fermions which are assumed not to 

interact with each other, and HBF is the Hamiltonian for the interaction between bosons 

and fermions and ℎ is the interaction strength between bosons and fermions. For 

spherically symmetric systems, the trap potentials are; 

For bosons, 

𝑉𝑡𝑟𝑎𝑝
𝐵 (𝑟) =

𝑚𝐵𝜔𝐵
2 𝑟2

2
                                                                                               (2.21) 

And for fermions, 

𝑉𝑡𝑟𝑎𝑝
𝐹 (𝑟) =

𝑚𝐹𝜔𝐹
2𝑟2

2
                                                                                                (2.22) 

Where mB and 𝜔B are the bosonic mass and the trap frequency; and mF and 𝜔F are the 

corresponding values for fermions. The interaction between the bosons, and bosons and 

fermions are described by contact potentials and are given by coupling constants 𝑔 and 

ℎ respectively 

𝑔 =
4𝜋ℏ2𝑎𝐵𝐵

𝑚𝐵
                                                                                                              (2.23) 
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ℎ =
2𝜋ℏ2𝑎𝐵𝐹

𝑚𝑟
                                                                                                             (2.24) 

 

Where 𝑎𝐵𝐵 is the scattering length for boson-boson interaction, 𝑎𝐵𝐹 is the scattering 

length for boson fermion interaction and mr, is the reduced mass and is given by 

𝑚𝑟 =
𝑚𝐵𝑚𝐹

𝑚𝐵 + 𝑚𝐹
 

The fermion- fermion interaction is neglected since the s-wave collisions are forbidden 

by Pauli Principle. In the dilute system the Hamiltonian describing the BF coupling, 

can be treated in a self consistent mean field manner such that, 

𝐻𝐵𝐹 = ℎ[𝑎𝐵
+𝑎𝐵 < 𝑎𝐹

+𝑎𝐹 > +< 𝑎𝐵
+𝑎𝐵 > 𝑎𝐹

+𝑎𝐹 −< 𝑎𝐵
+𝑎𝐵 >< 𝑎𝐹

+𝑎𝐹 >]               (2.25) 

This kind of decomposition has been used extensively for theoretical investigations of 

BF mixtures at zero temperature (Inouye, S., et al, 1998, Fedichev, P. O., et. al., 1996). 

The Bose field operator can now be decomposed into a C-number part plus an operator 

with vanishing expectation value; that is, 

𝑎𝐵(𝑟, 𝑡) = 𝜙(𝑟)𝑒−𝑖(𝜖0−𝜇𝐵)𝑡 + 𝑎̅𝐵(𝑟)                                                                            (2.26) 

Where 𝜙(𝑟) represents the condensate wave function with eigen values 𝜖0 and  𝑎̅𝐵(𝑟)  

is an operator that represent the excitations of the condensate. Now the equation of 

motion for 𝑎𝐵(𝑟, 𝑡)   can be written as, 

𝑖
𝜕𝑎𝐵(𝑟, 𝑡)

𝜕𝑡
= [−

∇2

2𝑚𝐵
+ 𝑉𝑡𝑟𝑎𝑝

𝐵 − 𝜇𝐵] 𝑎𝐵(𝑟, 𝑡) + 𝑔𝑎𝐵
+(𝑟, 𝑡)𝑎𝐵(𝑟, 𝑡)𝑎𝐵(𝑟, 𝑡)

+ ℎ𝑎𝐹
+(𝑟, 𝑡)𝑎𝐹(𝑟, 𝑡)𝑎𝐵(𝑟, 𝑡)                                                                  (2.27) 

 

From equation (2.26), we can write the local density   of the condensate as 

𝑛𝐶(𝑟) = |𝜙(𝑟)|2                                                                                                         (2.28) 

And the depletion 𝑛̅(𝑟) as, 
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𝑛̅(𝑟) =< 𝑎̅𝐵
+(𝑟, 𝑡)𝑎̅𝐵(𝑟, 𝑡) >                                                                                 (2.29) 

And the density of the Fermi gas, 𝑛𝐹(𝑟) is the well known relation; 

 𝑛𝐹(𝑟) =< 𝑎𝐹
+(𝑟, 𝑡)𝑎𝐹(𝑟, 𝑡) >                                                                               (2.30) 

Equation (2.27) can be transformed by using the Bogoliubov transformation given by 

𝑎̅𝐵(𝑟, 𝑡) = ∑[𝑢𝑖(𝑟)𝛼𝑖𝑒
−𝑖𝜖𝑖𝑡 + 𝑉𝑖

⋆𝛼𝑖
+𝑒𝑖𝜖𝑖𝑡]

𝑖

                                                        (2.31) 

The transformation of equation (2.27) will lead to an equation that will define a quasi 

particle excitation energy   relative to the condensate eigen value (given in equation 

(2.26) and the quasi particle amplitude are 𝑢𝑖 and 𝑣𝑖. The thermal number of quasi 

particle is given by, 

< 𝛼𝑖
+𝛼𝑖 >=

1

(𝑧𝑒𝛽𝜖𝑖 − 1)
                                                                               (2.32) 

Where, 

𝑧 = 𝑒𝛽(𝜖0−𝜇) = 1 +
1

𝑁𝐶
                                                                        (2.33) 

𝜖𝑖 is the energy of the 𝑖th state and𝑁𝐶 =
1

𝑒𝛽(𝜖0−𝜇)−1
  is the number of Bose particles in 

the condensed state. 

 

The density of depletion  𝑛̅(𝑟) is given by 

𝑛̅(𝑟) =
|𝑢𝑖(𝑟)|2 + |𝑣𝑖(𝑟)|2

𝑧𝑒𝛽𝜖𝑖 − 1
+ |𝑣𝑖(𝑟)|2                                                                   (2.34) 

And 

𝑛̅(𝜖, 𝑟) =
𝑚𝐵

3
2⁄

√2𝜋2
[

1

(𝑧𝑒𝛽𝜖 − 1)
+

1

2

−
𝜖

2𝜖𝐻𝐹
] [𝜖𝐻𝐹 − 𝑉𝑡𝑟𝑎𝑝

𝐵 (𝑟) + 𝜖0 − 2𝑔𝑛𝐵(𝑟) − ℎ𝑛𝐹(𝑟)]
1

2                  (2.35) 

For 𝜖𝑖 = 𝜖0, the energy of the condensed state. 
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𝜖ℎ𝐹 = [𝜖2 + 𝑔2𝑛𝐶
2(𝑟)]

1

2                                                                                           (2.36) 

The total density of the Bose gas is, 

𝑛𝐵(𝑟) = 𝑛𝐶(𝑟) + 𝑛̅(𝑟)                                                                                             (2.37) 

The local density 𝑛𝐹(𝑟)of the Fermi gas will be found by writing 

𝑎𝐹(𝑟, 𝑡) = ∑ 𝑎𝐹𝑖𝑐𝑖𝑒
−𝑖𝜖𝑖𝑡

𝑖

                                                                                    (2.38) 

Where 𝑎𝐹(𝑟, 𝑡) is written in terms of new Fermi operator 𝑐𝑖 that annihilates a fermions 

at the 𝑖thstate such that, 

𝑛𝐹𝑖 = |𝑎𝐹𝑖𝑟|2 < 𝑐𝑖
+𝑐𝑖 >                                                                           ( 2.39) 

And thus 

𝑛𝐹(𝜖, 𝑟) =
𝑚𝐹

3
2⁄

𝜋2√2

1

𝑒𝛽(𝜖−𝜇𝐹) + 1
[𝜖 − 𝑉𝑡𝑟𝑎𝑝

𝐹 (𝑟) − ℎ𝑛𝐵(𝑟)]
1

2⁄
                          (2.40) 

Where the Fermi distribution is given by 

< 𝑐𝑖
+𝑐𝑖 >=

1

𝑒𝛽(𝜖−𝜇𝐹) + 1
                                                                                      (2.41) 

Now the general expression that will be used for the condensate fraction 𝜂 is 

𝜂 =
𝑁𝑐(𝑟)

𝑁𝐵
= [1 − (

𝑇

𝑇𝑐
0)

3

]                                                                                  (2.42) 

The value of the condensate fraction 𝜂𝑐 near the critical temperature𝑇𝑐 is given by  

𝜂𝑐 =
𝑁𝑐

0

𝑁𝐵
= [1 − (

𝑇

𝑇𝑐
0)

3

] − 2.1825 (
𝑇

𝑇𝑐
0)

2
1

(𝑁𝐵)
1

3

                                             (2.43) 

Where 𝐾𝑇𝑐
0 = 0.94ℏ𝜔𝐵𝑁𝐵

1

3 
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2.5  Ultracold mixtures of bose and fermi gases 

 

BEC of the trapped ultra-cold atomic gases has been observed experimentally (Truscott, 

G., et. al., 2001), and a lot of progress has been made in the study of Fermi-degenerate 

systems and Bose-Fermi mixtures (Schreck, F., et. al, 2001, Hadzibabic, Z., et al, 2002, 

and Albus, A.P., et. al., 2002). Recently, the Feshbach-resonance method (this is the 

application of an external magnetic field to change the sign of the scattering length from 

negative to positive or positive to negative) has been used for molecular formations for 

two fermions (Viverit, L. and Giorgini, 2002, Mølmer, K., 1998), and two bosons 

(Albus, A.P, 2003, Ospelkaus, C., et. al., 2006). Interaction-driven Dynamics and 87Rb-

40K boson-fermion hetero-nuclear molecules (Schreck, F., et. al, 2001, DeMarco, B., 

et. al., 1999). Effects of inter-particle correlations have been studied on boson-fermion 

systems (Hadzibabic, Z., et al, 2002). 

 

Another theory used for the study of the Bose-Fermi mixtures is the Quasi-chemical 

equilibrium theory that was originally developed to study the electron system in 

superconductors (Modugno, M., et al, 2003 Fedichev, P. O., et. al., 1996), has been 

used to study the behavior of boson-fermion, boson-boson and fermion-fermion 

mixtures of ultracold atomic gases. In this theory inter-particle interactions can easily 

be included to obtain equilibrium structures, particularly, the inter-particle interactions 

for the s- wave scattering process. 
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2.5.1  Introduction to quasi-chemical equilibrium theory 

 

Let us consider an atomic- gas mixture composed of two atomic species A1 and A2 with 

masses m1 and m2. The gas A1 may be boson and A2 may be fermion, such that the 

gases are described in quantum statistics, Bose-Einstein statistics for bosons and Fermi 

Dirac statistics for fermions. The mixture can have three kinds of combinations; boson-

boson (BB), fermion- fermion (FF) and boson fermion (BF) 

In the quasi-chemical equilibrium theory (Bruun, G. M. et. al., 1998), the molecular 

formation or dissociation process in the mixture is written as  

𝐴1 + 𝐴2 ↔ (𝐴1𝐴2) = 𝑀                                                                                (2.44) 

Where M is the composite molecule with mass mM which is bosonic in the BB and FF 

mixtures, and is fermionic in the BF mixture 

 

The mass defect∆𝑚𝑀 of the molecule is defined as, 

∆𝑚𝑀 ≡ (𝑚𝑀 − 𝑚1 − 𝑚2)                                                                       (2.45) 

For the bound molecule, ∆𝑚𝑀 < 0, and the molecule is stable in both vacuum and 

gases, and the molecule has a molecular binding energy ∆𝐸 = ∆𝑚𝑀𝑐2, 𝑐 is the velocity 

of light in a vacuum. If  ∆𝑚𝑀 > 0, we get what we call the resonance state, and such a 

state is unstable in a vacuum, but may exist as a stable state in gases. Thus both bound 

molecule state and resonance states could be considered. 

 

If  𝜇1  is the chemical potential of specific gas 1, 𝜇2the chemical potential of gas 2 and  

𝜇𝑀 is the chemical potential of the molecule composed of 𝐴1 and 𝐴2, then the 

equilibrium condition for the process in equation (2.44) is given by 

𝜇1 + 𝜇2 + 𝜇𝑀 = ∆𝐸𝑀                                                                                                 (2.46) 
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The molecular binding energy ∆𝐸𝑀 in equation (2.46) is very small 10-(5-10) eV in 

molecular formation in the ultra-cold atomic gases. This could be treated as a measure 

of interaction energy between the two atoms constituting the molecule in the mixture. 

 

For free uniform gases, the particle densities are given by the Bose and Fermi statistics 

(Bruun, G. M. and Burnett, K., 1998) 

For bosonic atoms, 

𝑛𝛼 =
1

(2𝜋)3
∫

𝑑3𝑟

[𝑒(𝜖𝛼−𝜇𝛼) 𝐾𝐵𝑇⁄ − 1]
+ 𝑛𝛼

(0) 1

(𝜆𝑇,𝛼)
3 𝐵3

2

(−
𝜇𝛼

𝐾𝐵𝑇
) + 𝑛𝛼

(0)
                  (2.47) 

And for fermionic atoms, 

𝑛𝛼 =
1

(2𝜋)3
∫

𝑑3𝑟

[𝑒(𝜖𝛼−𝜇𝛼) 𝐾𝐵𝑇⁄ + 1]
 ≡

1

(𝜆𝑇,𝛼)
3 𝐹3

2

(−
𝜇𝛼

𝐾𝐵𝑇
)                                    (2.48) 

Where 𝐾𝐵 is the Boltzmann is constant, 𝜆𝑇,𝛼 is the thermal de Broglie length of the 

particle 𝐴𝛼  at temperature T, and the Bose 𝐵𝐴(𝜈) is;  

𝐵𝐴(𝜈) =
1

Τ(𝐴)
∫

𝑥𝐴−1𝑑𝑥

𝑒𝑥+𝜈 − 1

∞

0

                                                                                  (2.49) 

Where Τ(𝐴)is the gamma function and 𝜈 is fugacity= 𝑒
𝜇

𝐾𝐵𝑇 

 

The Fermi- Dirac function  𝐹𝐴(𝜈)  is; 

𝐹𝐴(𝜈) =
1

Τ(𝐴)
∫

𝑥𝐴−1𝑑𝑥

𝑒𝑥+𝜈 + 1

∞

0

                                                                                          (2.50) 

 

For T >Tc, where Tc is the critical temperature at which some transition can take place, 

in equation (2.47) the first part gives the thermal part of the number density , and the 

second part gives the condensed part of the number density. These can be written as  
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𝑛𝛼
(𝑡ℎ)

=
(𝑚𝛼)

3
2⁄

2𝜋
𝜉 (

3

2
)                                                                                           (2.51) 

𝑛𝛼
(0)

= 𝑛𝛼 [1 − (
𝑇

𝑇𝑐
)

3

2

]                                                                                          (2.52) 

Where 𝜉 (
3

2
) is the Riemann Zeta function 

 

2.5.2  Molecular formation in the BF, FF, and BB mixtures 

 

We consider the BF mixture (A1=B, A2= F) with molecular formation process B+F↔M 

= (BF), the atom or the molecule densities nB, nF and nm in the atom molecule 

equilibrium are obtained from the equilibrium condition given in equation (2.46) along 

with the values given in equation (2.47) and (2.48) under different conditions involving 

the values of  ∆𝐸𝑀 and temperature T, mixed state of atoms and molecules become 

stable in the sense of equilibrium (Bruun, G. M. and Burnett, K., 1998).The atom 

molecule equilibrium in the BF mixture can be explained by the competition between 

the quantum statistical effect and the binding energy of M. The molecule state gives a 

free energy reduction because of  ∆𝐸𝑀 > 0 but at low T, the molecules constitute the 

Fermi Dirac states which have a large kinetic energy due to the occupied high energy 

one particle state. However in the dissociated state, the bosons can reduce the kinetic 

energy largely as they condense into the BEC at low T. Thus depending upon the 

positive or the negative values of ∆𝐸𝑀 , the dissociated or the molecular state becomes 

stable, and a mixed state appears then. 

 

In the FF mixtures, (A1=F1, A2=F2) the atom molecule equilibrium is considered 

through a process F1+F2 ↔M = (F1F2) in the same way as in the BF mixture. In the 
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crossover theory (Modugno, M., et al, 2003 Fedichev, P. O., et. al., 1996 Stoof, H. T. 

C., et. al., 1996)), two kinds of bare fermions become dressed quasifermion and quasi-

molecule state (or Cooper pair state) appear as physical degree of freedom. The change 

in strength of the attractive interaction between bare fermions gives the crossover 

between the BCS states (weak interaction) and the molecular BEC states (strong 

interaction). 

 

The atom-molecule equilibrium in the BB mixture is considered through the process 

B1+B2 ↔M= (B1B2), and the equilibrium condition is again given by equation (2.46). 

If all the bosons condense into the BEC, then the chemical potentials 𝜇𝐵1, 𝜇𝐵2 and  𝜇𝑀 

are zero at T=0. If however, the chemical potentials 𝜇𝐵1 and 𝜇𝐵2 are negative and 

∆𝐸𝑀 < 0 at T=0, then𝜇𝑀 = 0       (the BEC of M). But if  ∆𝐸𝑀 > 0 (dissociated phase), 

then the values of the chemical potentials     𝜇𝐵1 = 𝜇𝐵2 = 0 (the BEC’s of B1 and B2) 

and thus 𝜇𝑀 = −∆𝐸𝑀 and there will be no molecules or 𝑛𝑀 = 0. This is a brief 

description of how the quasi-chemical theory can be used to study the properties of BB, 

FF and BF mixtures. More details can be found in (Bruun, G. M. and Burnett, K., 1998). 
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CHAPTER THREE:  

THEORETICAL DERIVATIONS AND 

METHODOLOGY 

3.1  Introduction 

 

This chapter consists of three parts. In the first part brief discussion on the trapping and 

cooling processes has been discussed. In the second part, theoretical derivations have 

been done with the aim of obtaining an expression which can be used to extract the 

density profiles for fermionic and bosonic components of the mixture. This was done 

by solving Gross-Pitaevskii equation by utilizing Thomas Fermi Approximation. 

Calculations using the derived expressions were carried out in the last part and the 

results tabulated. 

3.2 Methodology 

In this work, a mixture of bosons and fermions at 0K temperature is considered and its 

properties studied. Gross- Pitaevski mean field equation for the boson distribution in 

the trap is solved by utilizing Thomas Fermi Approximation. TFA exploits the fact that 

at very low temperature, kinetic energy of the particle is so low that its kinetic energy 

operator can be neglected in the Gross- Pitaevski equation for boson. The solution to 

the Gross- Pitaevski equation gave functions that were used to determine the density 

distribution for bosons and fermions as a function of distance from the trap center. The 

results for density distribution for different values of boson-boson interaction strength 

ℎ  and boson-fermion interaction strength 𝑔 were tabulated and Ms Excel was used 

extract the density profile of the fermions and bosons components.  
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3.3  Trapping and cooling processes; Feshbach resonance and laser cooling 

 

The trapping of the boson-fermion mixture is via the Feshbach resonance method in 

which the spin dependence of the inter-atomic interaction gives rise to both open and 

closed channels. In the context of ultra-cold gases, they are of special importance as 

they allow the modification of the interactions between the atoms, in particular the 

scattering length (Chin, C., et. al., 2010). A good example of such a mixture is 6Li-40K 

and 87Rb-40K (Wille, E., et al, 2008). More details about collisions among the atoms of 

gases can be found in (Walraven, J.T.M., 2013). It is also known that when the 87Rb 

(boson) atoms are not completely evaporated, various regimes of mixtures are 

accessible, ranging from dense thermal 87Rb cloud of 107, 87Rb right at the phase 

transition point interacting with a moderately degenerate Fermi gas (40K) of 2 × 106 

atoms to deeply degenerate mixtures with almost pure condensate (Ospelkaus, C., et 

al., 2006). Stability conditions for Bose-Fermi mixtures have been studied leading to 

the values of NB and NF for stability (Modugno, M., et al, 2003). 

 

There is experimental realization of Bose-Fermi superfluid mixtures of dilute ultra-cold 

atomic gases (Inguscio, et. al., 1999, Mølmer, K., et. al., 1998, Dalfovo, F., et. al., 1999, 

Butts, D. A., et. al., 1997). Depending upon the values of the scattering lengths, and the 

amount of bosons and fermions, a uniform Bose-Fermi mixture could exhibit a fully 

mixed phase, or a fully separated phase, or a pure fermionic phase co-existing with a 

mixed phase. 

 

In ultra-cold atomic gases, the strength of the interspecies and intra-species interaction 

can be varied by means of an external magnetic field (what is called Feshbach resonance 
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method). This leads to the exploration of the whole phase diagram of the mixture 

(Castin, Y., et. al., 2015, Delehaye, M., et al, 2015). The Bose-Fermi mixture could be 

of two types. One in which the bosonic superfluid is the minority component, and the 

second in which the fermions are the minority component (Karpiuk, T., et.al, 2004). 

The miscibility and immiscibility is determined by interaction. It is also found that the 

Bose-Fermi phase diagram is known to admit, in addition to a fully mixed phase and a 

fully separated phase, also a third phase consisting of a pure fermions in equilibrium 

with a mixture of fermions and bosons (Ludwig, D., et.al, 2011). Laser cooling can, 

lead to very low temperatures, of the order of 10-9K (nano Kelvin). At these 

temperatures the Fermi gas will be degenerated, Bose gas will be condensate, and the 

two systems can interact. There could be intergas and intragas interactions. However, 

the intergas interaction in a Fermi gas could be neglected due to Pauli Principle and the 

interactions between bosons, and bosons and fermions have to be taken into account. 

The boson-boson interaction is represented by 𝑔and the boson fermion interaction is 

represented by ℎ. The strength of both the interactions must be proportional to the S-

wave scattering lengths. 

 

3.3  Theoretical Derivations 

Assuming that the degenerate gas interacts with Bose condensate and the mixture is 

trapped in an external potential𝑉𝑒𝑥𝑡(𝑟), the atoms will interact by elastic collision. At 

low temperatures, the atoms will have low kinetic energies and thus permit replacement 

of their short range interaction with a delta function. In the mean field description of 

the single particle, wave function 𝜓(𝑟), assumed to describe all bosons in the gas is 

governed by Gross Pitaevskii Equation. 

{−
ℏ2

2𝑀
𝛻2 + 𝑉𝑒𝑥𝑡(𝑟) + 𝑔𝑁𝐵|𝜓(𝑟)|2} |𝜓(𝑟)| = 𝜇𝜓(𝑟)                                                 (3.1) 
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The Thomas Fermi Approximation exploits the fact that at low temperature, kinetic 

energy of the atom is so small that the kinetic energy operator  (−
ℏ2

2𝑀
𝛻2 𝑟) can be 

neglected. Hence equation 3.1 becomes (Nygaard, N., and Molmer, K., 1999), 

(𝑉𝑒𝑥𝑡(𝑟) + 𝑔𝑁𝐵|𝜓(𝑟)|2)𝜓(𝑟) =  𝜇𝜓(𝑟)                                                         (3.2) 

Dividing equation 3.2 by 𝜓(𝑟) yields, 

𝑉𝑒𝑥𝑡(𝑟) + 𝑔𝑁𝐵|𝜓(𝑟)|2  =  𝜇                                                                            (3.3) 

Re-arranging equation 3.3 gives, 

𝑛𝐵(𝑟) = 𝑁𝐵|𝜓(𝑟)|2 =
𝜇−𝑉𝑒𝑥𝑡(𝑟)

𝑔
                                                                (3.4) 

Where 𝑁𝐵|𝜓(𝑟)|2 = 𝑛𝐵(𝑟)  is bosonic density, 𝑉𝑒𝑥𝑡(𝑟)is the external confining 

potential and 𝜇 is the bosonic chemical potential (energy per particle). The value of 𝜇 

is fixed by normalization condition. ∫ 𝑑3𝑟. 𝑛𝐵(𝑟) = 𝑁𝐵on the boson density 𝑛𝐵(𝑟) =

𝑁𝐵|𝜓(𝑟)|2 so that it yields the total number of particles. In a harmonic oscillator 

potential, 

𝑉𝑒𝑥𝑡(𝑟) =
1

2
Mω2r2                                                                                                               (3.5) 

where r is the distance from the trap centre. 

and 𝜇 is determined analytically to be 

𝜇 = [
15

8𝜋
𝑁𝑔 (

𝑚𝜔2

2
)

3
2⁄

]

2
5⁄

                                                                             (3.6) 

When N is very small, Thomas Fermi Approximation gives a good approximation to 

the exact distribution of particles and to the single particle energy. For low kinetic 

energy, short range interaction potential is replaced by a delta function of strength  𝑔 

and ℎ. 𝑔 and ℎ represent the boson-boson and boson-fermion interaction strength 

proportional to the respective s-wave scattering lengths. 
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For the particles in the TFA, due to Pauli’s exclusion principle, the atoms in the 

degenerate gas of fermions do not occupy a single state. Hence there is no equivalent 

of Gross Pitaevskii equation for fermions. Instead, the particles will be described by 

classical position and momenta. However, we use the quantum mechanical result that 

a volume in phase space d3rd3k can accommodate, 
𝑑3𝑟𝑑3𝑘

ℏ3(2𝜋)3 fermions, i.e., if the local 

density 𝑛𝐹(𝑟) will have the wave numbers within the integral 0 ≤ 𝑘 ≤ 𝑘𝐹(𝑟). The 

fermions will experience a local potential (Nygaard, N., and Molmer, K., 1999), 

𝑉(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + h. 𝑛𝐹(𝑟)                                                                                                (3.7) 

For the particles in motion for such a potential, it is possible to define a local Fermi 

vector 𝑘𝐹(𝑟)by, 

EF =
ℏ2kF(r)2

2M
+ V(r)                                                                                                    (3.8) 

So that the volume of the local Fermi sea in 𝑘 space is  

4

3
𝜋𝑘𝐹(𝑟) = (2𝜋)3𝑛𝐹(𝑟)                                                                                                    (3.9) 

Local Fermi vector will be given by 

𝑘𝐹(𝑟) = (6π2𝑛𝐹(𝑟))
1

3⁄
                                                                                             (3.10) 

In low temperature limit, p-wave scattering can be neglected. The suppression of the s-

wave scattering amplitude due to antisymmetry of the many body function implies that 

the spin polarized fermions may constitute a non-interacting gas; hence the energy 

density of fermionic component is given by the expression; 

ℏ2𝑘𝐹
2(𝑟)

2𝑀
+ 𝑉𝑒𝑥𝑡(𝑟) + ℎ. 𝑛𝐵(𝑟) = 𝐸𝐹                                                                 (3.11) 

Re-writing equation 3.11 using equation 3.4 and equation 3.10 yields, 

𝐸𝐹 =
ℏ2(6π2𝑛𝐹(𝑟))

2
3⁄

2𝑀
+ 𝑉𝑒𝑥𝑡(𝑟) +

ℎ(𝜇−𝑉𝑒𝑥𝑡(𝑟))

𝑔
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𝐸𝐹 =
ℏ2(6π2𝑛𝐹(𝑟))

2
3⁄

2𝑀
+ 𝑉𝑒𝑥𝑡(𝑟) +

ℎ

𝑔
𝜇 −

ℎ

𝑔
𝑉𝑒𝑥𝑡(𝑟)                                                     

𝐸𝐹 =
ℏ2(6π2𝑛𝐹(𝑟))

2
3⁄

2𝑀
+ 𝑉𝑒𝑥𝑡(𝑟) −

ℎ

𝑔
𝑉𝑒𝑥𝑡(𝑟) +

ℎ

𝑔
𝜇                                                   

𝐸𝐹 =
ℏ2(6π2𝑛𝐹(𝑟))

2
3⁄

2𝑀
+ [1 −

ℎ

𝑔
] 𝑉𝑒𝑥𝑡(𝑟) +

ℎ

𝑔
𝜇                                               (3.12 

In isotropic traps, the trapping potential  𝑉𝑒𝑥𝑡(𝑟) by bosonic component is equal to the 

local potential experienced by the fermions. 

 𝑉𝑒𝑥𝑡(𝑟) = 𝑉(𝑟)                                                                                                                

𝜇 − 𝑔. 𝑛𝐵(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + h. 𝑛𝐹(𝑟)                                                                                        

𝜇 = 𝑉𝑒𝑥𝑡(𝑟) + 𝑔. 𝑛𝐵(𝑟) + h. 𝑛𝐹(𝑟)                                                                           (3.13) 

The TFA for both components solves the coupled equation 3.12 and 3.13. 

The mean occupation number of a single particle energy states with energy 𝜀𝑛 is given 

by 

𝑓(𝜀𝑛) =
1

𝜁−1𝜀𝛽𝜀𝑛 + 𝑎
                                                                                      (3.14) 

Where 𝜁 = 𝜀𝛽𝜇, is the fugacity, 𝛽 =
1

𝐾𝑇
 and 

 𝑎 = {
−1     Bose Einstein Statistic                  
+1            Fermi Dirac Statistic               
0   Maxwell − Boltzmann Distribution

 

In Fermi Dirac, the mean occupation number can become utmost one (Pauli’s 

exclusion principle). Hence equation 3.14 becomes, 

𝑓(𝜀𝑛) =
1

𝜀−𝛽𝜇𝜀𝛽𝜀𝑛 + 1
                                                                                                            

                     𝑓(𝜀𝑛) =
1

𝜀𝛽(𝜀𝑛−𝜇)+1
                                                                                                                                                                        

𝑓(𝜀𝑛) =
1

𝜀
(𝜀𝑛−𝜇

𝐾𝑇
) + 1

                                                                                                     (3.15) 



45 

 

 

For harmonically trapped gases, density of states as a function of energy is given by 

(Butts, D. A., et. al., 1997), 

𝑔(𝜀) =
𝜀2

2(ℏ𝜔)3
                                                                                                                  (3.16) 

The number of particles in the excited states can be calculated according to 

𝑁𝐹

= ∫ 𝑓(𝜀)𝑔(𝜀). 𝑑𝜀          

∞

0

                                                                                                     (3.17) 

Integrating equation 3.17 with 𝑓(𝜀) = {
1  𝜀 > 𝐸𝐹

0  𝜀 < 𝐸𝐹
 

Gives, 

𝑁𝐹

= ∫ 𝑔(𝜀). 𝑑𝜀                                                                                                                  (3.18)

𝐸𝐹

0

 

Substituting equation (3.16) in equation (3.18) gives, 

𝑁𝐹 = ∫ 𝑔
𝜀2

2(ℏ𝜔)3
. 𝑑𝜀                                                                                                      (3.19)

𝐸𝐹

0

 

Integrating equation (3.19) yields, 

𝑁𝐹 =
𝐸𝐹

3

6(ℏ𝜔)3
                                                                                                                    (3.20) 

The fermionic energy will be given by, 

𝐸𝐹 = (6𝑁𝐹)
1

3ℏ𝜔                                                                                                                  (3.21) 

Combining equation 3.12 and 3.21 we get, 

(6𝑁𝐹)
1

3ℏ𝜔 =
ℏ2(6π2𝑛𝐹(𝑟))

2
3⁄

2𝑀
+ [1 −

ℎ

𝑔
] 𝑉𝑒𝑥𝑡(𝑟) +

ℎ

𝑔
𝜇                                        (3.22)  

Combining equation 3.5, 3.6 and 3.22 yields, 
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(6𝑁𝐹)
1

3ℏ𝜔 =
ℏ2(6π2𝑛𝐹(𝑟))

2
3⁄

2𝑀
+ [1 −

ℎ

𝑔
]

1

2
Mω2r2                                                              

+
ℎ

𝑔
[
15

8𝜋
𝑁𝑔 (

𝑚𝜔2

2
)

3
2⁄

]

2
5⁄

                                                                   (3.23) 

Re-arranging equation 3.23 gives, 

𝑛𝐹(𝑟) =

{
2𝑀

ℏ2
[(6𝑁𝐹)

1

3ℏ𝜔 − (1 −
ℎ

𝑔
)

1

2
Mω2r2 −

ℎ

𝑔

15

8𝜋
𝑁𝐵𝑔 (

𝑚𝜔2

2
)

3
2⁄

]

2

5

}

3

2

6𝜋2
              (3.24) 

Equation 3.24 gives an expression for fermionic density. 

The first part of equation (3.13 was used to get the bosonic density 

𝑉𝑒𝑥𝑡(𝑟) + 𝑔. 𝑛𝐵(𝑟) + ℎ. 𝑛𝐹(𝑟) = 𝜇                                                                            

                                𝑔. 𝑛𝐵(𝑟) = 𝜇−𝑉𝑒𝑥𝑡(𝑟) − ℎ. 𝑛𝐹(𝑟) 

𝑛𝐵(𝑟) =
𝜇−𝑉𝑒𝑥𝑡(𝑟) − ℎ. 𝑛𝐹(𝑟)

𝑔
                                                                    (3.25) 

The strength of the boson-boson interaction 𝑔 is chosen to give maximal overlap 

between the two atomic clouds. In order to have clouds of comparable sizes, we equate 

the Thomas Fermi expression for the radius of the Bose Condensate(15𝑁𝐵𝑔 4𝜋𝑀𝜔2⁄ )
1

5 

and the radius of zero temperature Fermi gas(48𝑁𝐹)
1

6(ℏ 𝑀ω⁄ )
1

2[16] 

(15𝑁𝐵𝑔 4𝜋𝑀𝜔2⁄ )
1

5 = (48𝑁𝐹)
1

6(ℏ 𝑀ω⁄ )
1

2                                                              (3.26) 

This gives; 

𝑔 =
21.1𝑁𝐹

5

6

𝑁𝐵
. ℏωa0

3                                                                                                     (3.27) 
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3.4 Parameters 

Table 3.1 shows a list of parameters of the experiments with a87Rb–40K boson-fermion 

mixture. 

 

Table 3.1: List of parameters of experiments with 87Rb-40K Bose-Fermi mixture 

(Rothel, S., 2006) 

Parameters Hamburg experiment 

[23] 

Florence experiment 

[14,24,25] 

mass of 87Rb atom 𝑚 𝐵 =  14.43 × 10−26 kg 

mass of 40K atom 𝑚 𝐹 =  6.636 ×  10−26 kg 

s-wave scattering length (bosons ↔ bosons) 

𝑎 𝐵𝐵 = (5.238 ×  10−9 ± 0.002)  m 

s-wave scattering length (bosons ↔ fermions) 

𝑎 𝐵𝐹 = −15.0 × 10−9m𝑎 𝐵𝐹 = (−20.0 × 10−9 ± 0.8) m 

radial trap frequency (bosons) 𝜔𝐵,𝑟 =  2π. 257 Hz  𝜔𝐵,𝑟 =  2π. 215 Hz  

axial trap frequency (bosons) 𝜔𝐵,𝑧 =  2π. 11.3 Hz   𝜔𝐵,𝑧 =  2π. 16.3 Hz   

radial trap frequency 

(fermions) 

 𝜔𝐹,𝑟 =  2π.  379 Hz   𝜔𝐹,𝑟 =  2π.  317 Hz   

axial trap frequency (fermions) 𝜔𝐹,𝑧 =  2π.  16.7 Hz  𝜔𝐹,𝑧 =  2π.  24.0 Hz  

number of bosons 𝑁𝐵 = 106 
 𝑁𝐵 = 2 ×  105 

number of fermions 𝑁𝐹 = 7.5 ×  105
 𝑁𝐹 = 3 ×  104 
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The list of parameters which have were used in the calculations in this thesis given 

below.  𝑔, is chosen to give maximal overlap between the two atomic clouds 

𝑁𝐹 = 103 

𝑁𝐵 = 107 

𝑀 =
𝑀𝐹𝑀𝐵

𝑀𝐹 + 𝑀𝐵
= 4.54559 × 10−26𝐾𝑔 

ω = 2π × 216Hz 

𝑔 = 0.00066724ℏωa0
3 

ℏ =
ℎ

2𝜋
= 1.0545 × 10−34𝐽𝑠 

𝑎0 = (
ℎ

𝑀ω
)

1

2

 

ℎ =
𝑔

2
, ℎ = 𝑔, ℎ =

3𝑔

2
 

 

3.5  Calculations 

The density distribution of fermions is given by the equation (3.24), such that, 

𝑛𝐹(𝑟)

=

{
2𝑀

ℏ2
[(6𝑁𝐹)

1

3ℏ𝜔 − (1 −
ℎ

𝑔
)

1

2
Mω2r2 −

ℎ

𝑔
[

15

8𝜋
𝑁𝐵𝑔 (

𝑚𝜔2

2
)

3
2⁄

]

2

5

]}

3

2

6𝜋2
                     (3.28) 

 

2𝑀

ℏ2
=

2 × 4.54559 × 10−26𝐾𝑔

(1.0545 × 10−34)2
 

         𝑀𝐵 == 1.45 × 10−25𝐾𝑔 

         𝑀𝐹 = 6.636 × 10−26𝐾𝑔 
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        =
9.09118 × 10−26+34+34

1.1109
 

        = 8.17574 × 1042𝐾𝑔/𝐽2𝑠2 

and, 

(6𝑁𝐹)
1

3ℏ𝜔 = (6 × 103)
1

3 × 1.0545 × 10−34Js × 2π × 216s−1 

                     = 2.6 × 10−30J 

and, 

(1 −
ℎ

𝑔
)

1

2
Mω2r2 = (1 −

ℎ

𝑔
) ×

1

2
× 4.54559 × 10−26 × 2π × 216 × 2π × 216 × r2 

                                  = (1 −
ℎ

𝑔
) × 4.186272 × 10−20 × r2 

and, 

ℎ

𝑔
𝜇 =

ℎ

𝑔
[
15

8𝜋
𝑁𝐵𝑔 (

𝑚𝜔2

2
)

3
2⁄

]

2
5⁄

 

         =
ℎ

𝑔
[
15

8𝜋
𝑁𝐵𝑔 (

𝑚𝜔2

2
)

3
2⁄

]

2
5⁄

 

and, 

𝜇 = 3.9572 × 10−30𝐽/𝐾𝑔 

 

𝑔 = 0.00066724ℏωa0
3 

    = 6.6724 × 10−4 × 1.0545 × 10−34 × 2π × 216 × (
ℏ

Mω
)

3

2

 

= 6.6724 × 10−4 × 1.0545 × 10−34 × 2π × 216

× (
1.0545 × 10−34

4.54559 × 10−26 × 2π × 216
)

3

2

 

= 2.13397 × 10−52 𝐽2𝑠 𝐾𝑔⁄  
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Hence, equation 3.28 becomes; 

𝑛𝐹(𝑟)

=
{8.18 × 1040 [2.6 × 10−30J − (1 −

ℎ

𝑔
) × 4.186 × 10−20 × r2 −

ℎ

𝑔
× 3.957 × 10−30]}

3

2

6𝜋2
 

𝑛𝐹(𝑟)

=
{8.18 × 1040 [2.6 × 10−30J − (1 −

ℎ

𝑔
) × 4.186 × 10−20 × r2 −

ℎ

𝑔
× 3.957 × 10−30]}

3

2

59.21
 

For bosons, 

𝑛𝐵(𝑟) =
𝜇−𝑉𝑒𝑥𝑡(𝑟) − ℎ. 𝑛𝐹(𝑟)

𝑔
                                               (3.27) 

 

𝑛𝐵(𝑟) =
3.957 × 10−30 − 4.186 × 10−20 × r2 − ℎ. 𝑛𝐹(𝑟)

2.13397 × 10−52
                                (3.28) 

 

For ℎ < 𝑔 (ℎ =
1

2
𝑔) 

𝑛𝐹(𝑟)

=

{8.18 × 1040 [2.6 × 10−30J − (1 −
1

2
𝑔

𝑔
) × 4.186 × 10−20 × r2 −

1

2
𝑔

𝑔
× 3.957 × 10−30]}

3

2

59.21
 

𝑛𝐹(𝑟)

=
{8.18 × 1040 [2.6 × 10−30J −

1

2
× 4.186 × 10−20 × r2 −

1

2
× 3.957 × 10−30]}

3

2

59.21
 

𝑛𝐹(𝑟)

=
{8.18 × 1040[2.6 × 10−30J − 2.096 × 10−20 × r2 − 1.9785 × 10−30]}

3

2

59.21
 (3.29) 

 



51 

 

 

𝑛𝐵(𝑟) =
3.957 × 10−30 − 4.186 × 10−20 × r2 −

1

2
𝑔. 𝑛𝐹(𝑟)

2.13397 × 10−52
 

 

𝑛𝐵(𝑟) =
3.957 × 10−30 − 4.186 × 10−20 × r2

2.13397 × 10−52
− 0.5. 𝑛𝐹(𝑟) 

                            𝑛𝐵(𝑟) = −1.9616 × 1032 − 0.5. 𝑛𝐹(𝑟)                                            (3.30) 

Table 3.2: The calculated number of bosons and fermions from the trap centre  

        for     𝒉 < 𝑔 (ℎ =
𝟏

𝟐
𝒈) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distance from the trap Centre (r) 𝑛𝐹(𝑟)  × 1031 𝑛𝐵(𝑟)  × 1031 

-5 -14.9875 -12.222 

-4 -7.6737 -15.7791 

-3 -3.2373 -17.9973 

-2 -0.9592 -19.1364 

-1 -0.119 -19.6101 

0 0 -19.616 

1 -0.119 -19.6101 

2 -0.9592 -19.1364 

3 -3.2373 -17.9973 

4 -7.6737 -15.7791 

5 -14.9875 -12.222 
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For ℎ = 𝑔 

𝑛𝐹(𝑟)

=
{8.18 × 1040 [2.6 × 10−30J − (1 −

𝑔

𝑔
) × 4.186 × 10−20 × r2 −

𝑔

𝑔
× 3.957 × 10−30]}

3

2

59.21
 

𝑛𝐹(𝑟) =
{8.18 × 1040[2.6 × 10−30J − 0 × 4.186 × 10−20 × r2 − 3.957 × 10−30]}

3

2

59.21
 

𝑛𝐹(𝑟) =
{8.18 × 1040[2.6 × 10−30J − 0 × r2 − 1.9785 × 10−30]}

3

2

59.21
(3.31) 

 

𝑛𝐵(𝑟) =
3.957 × 10−30 − 4.186 × 10−20 × r2−. 𝑛𝐹(𝑟)

2.13397 × 10−52
 

 

𝑛𝐵(𝑟) =
3.957 × 10−30 − 4.186 × 10−20 × r2

2.13397 × 10−52
− 𝑛𝐹(𝑟) 

 

                                 𝑛𝐵(𝑟) = −1.9616 × 1032 − 𝑛𝐹(𝑟)                                              (3.32) 
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Table 3.3: The calculated number of bosons and fermions from the trap centre  

for     𝒉 = 𝒈 

 

 

 

 

 

 

 

 

 

 

 

Distance from the trap Centre (r) 𝑛𝐹(𝑟)  × 1031 𝑛𝐵(𝑟)  × 1031 

-5 1.6565 -19.16 

-4 1.6565 -19.16 

-3 1.6565 -19.16 

-2 1.6565 -19.16 

-1 1.6565 -19.16 

0 1.6565 -19.16 

1 1.6565 -19.16 

2 1.6565 -19.16 

3 1.6565 -19.16 

4 1.6565 -19.16 

5 1.6565 -19.16 
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For ℎ < 𝑔 (ℎ =
3

2
𝑔) 

𝑛𝐹(𝑟)

=

{8.18 × 1040 [2.6 × 10−30J − (1 −
3

2
𝑔

𝑔
) × 4.186 × 10−20 × r2 −

3

2
𝑔

𝑔
× 3.957 × 10−30]}

3

2

59.21
 

𝑛𝐹(𝑟) 

=
{8.18 × 1040 [2.6 × 10−30J +

1

2
× 4.186 × 10−20 × r2 −

3

2
× 3.957 × 10−30]}

3

2

59.21
 

𝑛𝐹(𝑟)

=
{8.18 × 1040[2.6 × 10−30J + 2.096 × 10−20 × r2 − 1.9785 × 10−30]}

3

2

59.21
 (3.33) 

 

𝑛𝐵(𝑟) =
3.957 × 10−30 − 4.186 × 10−20 × r2 −

3

2
𝑔. 𝑛𝐹(𝑟)

2.13397 × 10−52
 

 

𝑛𝐵(𝑟) =
3.957 × 10−30 − 4.186 × 10−20 × r2

2.13397 × 10−52
− 1.5. 𝑛𝐹(𝑟) 

 

             𝑛𝐵(𝑟) = −1.9616 × 1032 − 1.5. 𝑛𝐹(𝑟)                                              (3.34) 
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Table 3.4: The calculated number of bosons and fermions from the trap  

centre for      𝒉 > 𝑔 (ℎ =
𝟑

𝟐
𝒈) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distance from the trap Centre (r) 𝑛𝐹(𝑟)  × 1031 𝑛𝐵(𝑟)  × 1031 

-5 14.9875 -42.0973 

-4 7.6737 -31.1266 

-3 3.2373 -24.4719 

-2 0.9592 -21.0548 

-1 0.119 -19.7945 

0 0 -19.616 

1 0.119 -19.7945 

2 0.9592 -21.0548 

3 3.2373 -24.4719 

4 7.6737 -31.1266 

5 14.9875 -42.0973 
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CHAPTER FOUR:  

RESULTS AND DISCUSSIONS 

4.1  Introduction 

 

In this chapter, the results obtained are reported and analysis is done in order to obtain 

the density profiles for bosonic and fermionic components of the mixture. A detailed 

discussion based on those results is also done in this chapter.  

 

The Bose and Fermi components can separate under variation of the strength of the 

boson-boson and boson-fermion interaction. In the Thomas-Fermi approximation for 

both components, the density distributions can be obtained by solving the coupled 

equations 

𝑉𝑒𝑥𝑡(𝑟) + 𝑔. 𝑛𝐵(𝑟) + ℎ. 𝑛𝐹(𝑟) = 𝜇                                                        (4.1) 

ℏ2

2𝑀
(6π2𝑛𝐹(𝑟))

2
3⁄

+ 𝑉𝑒𝑥𝑡(𝑟) + ℎ. 𝑛𝐵(𝑟) = 𝐸𝐹                                                (4.2) 

The solution of equations 4.1 and 4.2 is obtained by insertion of the density distribution 

of bosons in equation 4.1 in equation 4.2 and numerically searching for energies 𝜇 and 

𝐸𝐹 yielding the desired number of particles. If fermions are very few, we can neglect 

the third term in the equation 4.1 and combine the resulting equation with equation 4.2 

to get the equation of fermions as, 

(6𝑁𝐹)
1

3ℏ𝜔 =
ℏ2(6π2𝑛𝐹(𝑟))

2
3⁄

2𝑀
+ [1 −

ℎ

𝑔
] 𝑉𝑒𝑥𝑡(𝑟) +

ℎ

𝑔
𝜇                                          (4.3)  

The strength of the boson-boson interaction was chosen to give the maximal overlap 

between the two clouds. This was done by equating Thomas Fermi expression for radius 

of Bose Condensate and the radius of zero temperature Fermi gas. 
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Modification of the interactions between the atoms especially its scattering length, 

using Feshbach resonance (Chin, C., et. al., 2010) and variation of external fields 

(Fedichev, P. O., et. al., 1996, Inouye, S., et al, 1998) has been reported. This has 

allowed the tuning of scattering length through positive and negative values. Positive 

values only were used in calculations in this research. The Thomas-Fermi expression 

for the Fermi energy of 𝑁𝐹 fermions in a harmonic potential is 𝐸𝐹 =  (6𝑁𝐹)
1

3ℏ𝜔 (Butts, 

D. A., and Rokhsar, D. S., 1997). 

  

The density distributions of harmonically trapped Bose Condensate and Fermi gas are 

obtained using experimental parameters of MIT experiments (Mølmer, K., 1998) given 

in Table3.1 and parameters used in this thesis on equation 4.3. In these experiments a 

Bose condensate of about 107 atoms may enclose roughly 103 fermions and vice versa. 

 

4.2  Density distribution for bosons and fermions for  𝒉 < 𝒈 (𝒉 =
𝟏

𝟐
𝒈) 

Figure 4.1(a) shows the density distribution of fermions as a function of the distance 

from the trap centre for ℎ < 𝑔. From the figure, it can be seen that the fermionic 

particles has the largest number at the centre of the radial trap, i.e. at r=0. Their density 

falls when the distance from the trap centre is increased. 

Figure 4.1(b) shows the density distribution of bosons as a function of the distance from 

the trap centre for ℎ < 𝑔. From the figure it can be seen that the bosonic particles has 

the least number at the centre of the radial trap. Their density increases when the 

distance from the trap centre is increased. 
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Since they are trapped in a radial trap, then for ℎ < 𝑔, the fermions will occupy the 

central part of the trap and will form something like a ball at the centre. The number of 

bosons will be very minimal at the centre but increases towards the periphery of the 

trap. It will look as if the bosons are enveloping the fermions. Therefore the fermions 

will be a shell immersed inside the bose condensate.  

The trapping of bosonic and fermionic atoms is via Feshbach resonance. This is done 

by subjecting the atoms to an external magnetic field. The effective magnetic 

confinement experienced by atoms depends on the derivative of magnetic field 

(Ferlaino, 2004). The atoms will experience different cylindrical harmonic potential 

since they are trapped using different frequencies.  

When ℎ < 𝑔, the fermions experience a potential minimum at the center of the trap and 

therefore they populate around the center of the trap (r=0). Their number reduces as one 

moves away from the center. This is shown in the figure 4.1 (a). Bosons on the other 

end are expelled from the center of the trap. Their numbers increase as the distance 

from the trap center is increased. This is shown in the Figure 4.1(b). Since the particles 

were trapped in a radial trap and the number of fermions was small enough, they 

constituted a ‘core’ entire enclosed within the Bose condensate. The oscillation in the 

fermion density distribution near the trap center reflects the matter wave modulation in 

the outermost shell. In the center of the trap, the fermions in the lowest energy state 

experience a vanishing potential for h=0. The bosons are expelled from the trap center, 

minimizing their interaction energy by spreading in a shell around the fermionic bubble. 

The fermionic   component is compressed, having a higher peak and density covering 

a smaller portion of the trapping volume. A similar behavior has been noted for bi-

condensate systems (Miyakawa, T., et. al., 2000 and Griffin, A., 1996). The two 
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quantum gases are said to be truly interpenetrating. In this case a Bose condensate of 

about 1036 atoms may enclose roughly 103 Fermions. For  ℎ <   𝑔, the distribution is 

as shown in the Fig 4.1 

(a)                                                                       (b) 

 

Figure 4.1; (a) shows the density distribution for fermions and (b) bosons 

at zero kelvin temperature for 𝒉 < 𝒈 (𝒉 =
𝟏

𝟐
𝒈); Source (Author, 2016) 

 

4.3  Density distribution for bosons and fermions for  𝒉 = 𝒈  

Figure 4.2(a) shows the density distribution of fermions as a function of the distance 

from the trap centre for ℎ = 𝑔. From the figure it can be seen that the fermionic particles 

has a constant value for all the values of the distance from the trap centre. It implies 

that at any given point in the radial trap, we have equal number of fermions. 

Figure 4.2(b) shows the density distribution of bosons as a function of the distance from 

the trap centre for ℎ = 𝑔. From the figure it can be seen that the bosonic particles are 

uniformly distributed in the trap. 
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Thomas Fermi theory provides of a functional form for kinetic energy of non-

interacting electron gas. One of the essential features predicted in the Thomas Fermi 

Approximation is the existence of a plateau of a constant fermionic density throughout 

the distribution. This phenomenon also appears in this quantum treatment. When  ℎ =

𝑔, the fermions have a constant density throughout the Bose condensate , as shown in 

the figure 4.2. 

(a)                                                           (b) 

 

Figure 4.2; (a) shows the density distribution for fermions and (b) bosons 

at zero kelvin temperature for 𝒉 = 𝒈; Source; (Author, 2016) 

 

4.4  Density distribution for bosons and fermions for  𝒉 > 𝑔 (ℎ =
𝟑

𝟐
𝒈) 

Figure 4.3(a) shows the density distribution of fermions as a function of the distance 

from the trap centre for ℎ > 𝑔. From the figure it can be seen that the number of 

fermionic particles increases as the distance from the trap centre is increased. 
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Figure 4.3(b) shows the density distribution of bosons as a function of the distance from 

the trap centre for ℎ > 𝑔. From the figure it can be seen that the number of bosonic 

particles are concentrated at the centre of the trap. 

When ℎ >  𝑔, the effective potential for the fermions is that of an in invented harmonic 

oscillator having a minimum at the edge of the Bose condensate, where the fermions 

localize as a “shell” wrapped round the condensate. If the outer part is composed of 

fermions, and the number of fermions exceeds the limit of the Bose Condensate, then 

the atoms in the inner core will experience a stronger confining potential. The 

distribution is as shown in the figure 4.3. The fermions have been expelled from the 

Centre of the trap Centre and their number increase as the distance from the trap is 

increased. 

 

We note that the semi-classical description gives a qualitatively correct description, in 

that it reliably predicts the phase separation. 

 

We notice that as the bosons are expelled from the center of the trap, forming a ’mantle’ 

around the fermions, the fermionic component is compressed, having a higher peak 

density and covering a smaller portion of the trapping volume. A similar behavior has 

been noted for bi-condensate systems (Miyakawa, T., et. al., 2000 and Griffin, A., 

1996). One of the essential features predicted in the Thomas-Fermi approximation is 

the existence of a ’plateau’ of constant fermion density through the boson distribution 

for ℎ =  𝑔 As illustrated by Fig. 4.3. 
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(a)                                                         (b) 

 

Figure 4.3; (a) shows the density distribution for bosons and (b) fermions 

at zero kelvin temperature for 𝒉 > 𝒈 (𝒉 =
𝟑

𝟐
𝒈); Source; (Author, 2016) 

 

This phenomenon also appear in our quantum mechanical treatment, although with the 

parameters chosen it does not involve quite as many particles as obtained from the semi-

classical calculations in (Mølmer, K., 1998). It is interesting to compare the above 

mentioned results with those obtained by treating the fermions in the Thomas-Fermi 

approximation.  We note that the semi-classical description gives a qualitatively correct 

description, in that it reliably predicts the phase separation.  
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CHAPTER FIVE  

CONCLUSION AND RECOMMENDATIONS 

 

5.1  Conclusion 

 

In this thesis, zero temperature ground state of a mixture of boson and fermion gases in 

isotropic trapping potentials have been investigated and results presented. Bosonic 

atoms possess according to the spin-statistics theorem integer Spin. Fermions have half 

integer spin, so in general there are at least two Fermionic components – one with spin 

up the other one with spin down – for spin one–half Fermions. Due to the Spin-

alignment in magnetic traps the spin degree of freedom is frozen for the Fermions and 

we could treat the Fermions as one–component particles. In experiments with cold 

atomic gases, the dilute limit provides a very good approximation and thus the particle–

particle interactions are dominated by s–wave scattering. Fermion–Fermion s–wave 

scattering is prohibited in this setting. 

 

With these assumptions, within the framework of density functional theory the ground 

state energy could be incorporated to derive the density field equations beyond a mean-

field level for systems of Bose–Fermi mixtures in a trap. More precisely, we have 

determined the density profiles in the Boson–Fermion scattering length. We solved 

these equations numerically for experimentally relevant parameters for 40 K–87Rb 

mixtures and discussed the results.  

 

According to the possible different combinations of intraspecies and interspecies 

attractive interactions, the system displays a rich phase structure and a simultaneous 
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transition to demixing in the Boson–Fermion sector. The issue of component separation 

has been addressed by solving coupled equations for the spatial density of the two 

species. The calculations have confirmed the existence of three distinct states of the 

system under variation of the ratio of the interaction strengths ℎ/𝑔. For small values of 

this parameter, the gases are interpenetrable, overlapping throughout the occupied 

volume of the trap, as their mutual repulsion is not strong enough to cause separation. 

When the coupling strength ℎ exceeds the strength of the boson-boson interaction, the 

fermions are expelled from the center of the trap. This is in agreement with the previous 

work (Nygaard, N. and Molmer, K., 1999). The spatial configuration in this case 

depends on the symmetry of the trapping potential. In an isotropic trap, the separated 

phase is rotationally symmetric; the fermions constitute a spherical shell wrapped 

around a centrally compressed Bose condensate. In the limiting case ℎ =  𝑔, there 

exists the possibility for the fermions to have a constant spatial density where the bosons 

are localized.  

 

5.2  Recommendations 

An aspect of this work is the availability of an almost isolated degenerate Fermi gas 

through the complete separation of the two species. The trapped, degenerate Fermi gas 

is interesting in view of the possibility of a BCS transition when two spin states are 

trapped simultaneously (Bruun, G. M., et. al., 1998, Stoof, H. T. C., et. al., 1996 and 

Albus, A.P., et.al., 2003) and because of the analogies between this system and both 

atomic nuclei and the interior of neutron stars. 

 

The details of sympathetic cooling of the Fermi gas to the degeneracy level through 

thermal contact with the Bose condensate are of great importance in further research 



65 

 

 

(Timmermans, E. and Cˆot´e, R., 1998). In general the investigation of the cooling 

ability of the condensate should not be restricted to fermionic impurities. In view of the 

recent trapping of simple molecules in both optical (Hirofumi, S., et al, 1998) and 

magnetic (Weistein, J. D., et al, 1998) potentials, also more complex solutes with 

several internal degrees of freedom pose an interesting challenge for future research. 

 

Another direction worth noticing is the prospect of trapping a boson-fermion mixture 

in the periodic potential of an optical lattice (Berg-Sørensen, K. and Molmer, K., 1998) 

both in its own right and as a study of solid state phenomena. With quantum gases well 

beyond the degeneracy level a complete filling of the potential wells may well be 

expected (Mackie, M., et. al., 2004). 

 

It should be mentioned that in this work, systems with a positive coupling strength 

ℎ have been considered, allowing the interaction between the species to become 

attractive. This is known to induce a dramatic change in the macroscopic behavior of 

the system as it becomes unstable against collapse for large negative values of ℎ (Albus, 

A.P., et. al., 2003).This phenomenon can be investigated in detail using the numerical 

procedure developed in this work. 

 

Besides these fundamental theoretical aspects related to the theory of quantum phase 

transitions, Bose–Fermi mixtures in optical lattices are also promising candidates to 

observe BCS phase transitions and qualify for potential applications in the physics of 

quantum information. Bose–Fermi mixtures could in fact allow for new possibilities of 

quantum information processing in optical lattices. The Fermions would be suitable for 
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storage of quantum information due to their non–interacting behavior, whereas the 

Bosons could be used to let the systems interact and perform operations. 

 

The complexity of the systems considered in this thesis can be extended in various 

ways. For example one can consider unpolarized spin–1/2 fermions. Spin unpolarized 

systems are becoming of more experimental relevance, because one can nowadays also 

trap by purely optical means. In this case the Fermions are not necessarily spin– aligned. 

Calculations are very similar to the present situation with the main difference that one 

has to include the effects of the direct interactions of fermions with different spins. This 

would correspond to having a third scattering length aFF. 

 

As already pointed out, quasi one or two dimensional systems are expected to have very 

special properties. The methods used in this thesis could potentially also be used to 

those systems if applied with some care. An interesting perspective would be to 

investigate how the system behaves not only in the presence of Cooper pairing but also 

of ordinary molecule formation. Very recently there were even some speculations about 

the possibility of an atom–molecule Cooper pairing in Bose–Fermi mixtures (Mackie, 

M., et. al., 2004). Some aspects of quasi-chemical equilibrium theory on molecular 

formation in atomic gas mixtures may be used to study the problem.   

 

In the calculations presented in this thesis, two-body interactions have been used via 

the scattering length between boson-boson and boson-fermions interactions. However, 

it may be appropriate to use three-body interactions, although incorporating three-body 

will very much complicate the theory. One could consider three-body repulsive 

interactions among a pair of bosons, or three-body interaction among a pair of bosons 
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and a fermion, or three-body interaction among a pair of fermions and a boson. In such 

a case the energy contribution to the Hamiltonian can be written as 
∈

6
∑ 𝑛𝑖𝑖 (𝑛𝑖 −

1)(𝑛𝑖 − 2), where 𝑛𝑖is the particle number operator for bosons at any site i , 𝑖is the 

three-body repulsive interaction strength between the bosons . Similar terms can be 

written for interaction between a pair of bosons and a fermion, and a pair of fermions 

and a boson. Many-body perturbation theory can be used to calculate the energy of the 

assembly (Bo-Cun, C. and Yunbo, Z., 2008, Mahan, G.D., 2000 and Fetter, A. L. and 

Walecka, J. D., 2003) 

 

Depending on the relative magnitude of the types of interactions considered, one can 

obtain conditions for the kind of phase transitions and the phases (like super-fluid 

phase) that can exist in the mixture of bosons and fermions. Such studies will involve 

more complicated and advanced many-body theory. This study will be taken up in my 

advanced PhD thesis. It will be important to consider the effect of attractive boson-

fermion interactions, and that of the repulsive boson-fermion interactions on the density 

profiles of bosons, fermions and boson-fermion (Robert, R., 2014) mixture. 
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