
Citation: Were, K.; Kebeney, S.;

Churu, H.; Mutio, J.M.; Njoroge, R.;

Mugaa, D.; Alkamoi, B.; Ng’etich, W.;

Singh, B.R. Spatial Prediction and

Mapping of Gully Erosion

Susceptibility Using Machine

Learning Techniques in a Degraded

Semi-Arid Region of Kenya. Land

2023, 12, 890. https://doi.org/

10.3390/land12040890

Academic Editors: Vesna Zupanc,

Nejc Bezak and Carla Ferreira

Received: 5 March 2023

Revised: 4 April 2023

Accepted: 13 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Spatial Prediction and Mapping of Gully Erosion Susceptibility
Using Machine Learning Techniques in a Degraded Semi-Arid
Region of Kenya
Kennedy Were 1,*, Syphyline Kebeney 2, Harrison Churu 2 , James Mumo Mutio 2 , Ruth Njoroge 2,
Denis Mugaa 2, Boniface Alkamoi 2, Wilson Ng’etich 2 and Bal Ram Singh 3,*

1 Kenya Agricultural and Livestock Research Organization, Kenya Soil Survey,
P.O. Box 14733, Nairobi 00800, Kenya

2 School of Agriculture and Biotechnology, University of Eldoret, P.O. Box 1125, Eldoret 30100, Kenya;
syphyline.kebeney@uoeld.ac.ke (S.K.); harrison.churu@uoeld.ac.ke (H.C.); mumomutio@gmail.com (J.M.M.);
ruthnjoroge@uoeld.ac.ke (R.N.); sagrsosm001@uoeld.ac.ke (D.M.); alkamoi.boniface@uoeld.ac.ke (B.A.);
w.ngetich@physics.org (W.N.)

3 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life
Sciences, P.O. Box 5003, 1432 Ås, Norway

* Correspondence: kenwerez@yahoo.com or kennedy.were@kalro.org (K.W.); balram.singh@nmbu.no (B.R.S.)

Abstract: This study aimed at (i) developing, evaluating and comparing the performance of support
vector machines (SVM), boosted regression trees (BRT), random forest (RF) and logistic regression
(LR) models in mapping gully erosion susceptibility, and (ii) determining the important gully erosion
conditioning factors (GECFs) in a Kenyan semi-arid landscape. A total of 431 geo-referenced gully
erosion points were gathered through a field survey and visual interpretation of high-resolution
satellite imagery on Google Earth, while 24 raster-based GECFs were retrieved from the existing
geodatabases for spatial modeling and prediction. The resultant models exhibited excellent per-
formance, although the machine learners outperformed the benchmark LR technique. Specifically,
the RF and BRT models returned the highest area under the receiver operating characteristic curve
(AUC = 0.89 each) and overall accuracy (OA = 80.2%; 79.7%, respectively), followed by the SVM and
LR models (AUC = 0.86; 0.85 & OA = 79.1%; 79.6%, respectively). In addition, the importance of the
GECFs varied among the models. The best-performing RF model ranked the distance to a stream,
drainage density and valley depth as the three most important GECFs in the region. The output
gully erosion susceptibility maps can support the efficient allocation of resources for sustainable land
management in the area.

Keywords: soil erosion; land degradation; sustainable land management; landscape restoration;
spatial prediction; machine learning

1. Introduction

Soil is a precious and irreplaceable natural resource that offers vital ecosystem services
and performs multiple ecological functions to support life on Earth. It plays a role in
the production of food, fodder and timber, purification and storage of water, cycling of
nutrients, filtration of toxic substances, and preservation of biodiversity, among others [1].
Despite this, a third of the world’s soils are degraded, with 25–40 billion tons of soil being
lost annually due to erosion [2,3]. This has implications for the productivity, resilience
and sustainability of both agricultural and ecological systems [4]. Although soil erosion
is global, Africa is the worst-hit continent, with the most destructive process being gully
erosion [5]. Gully erosion is a complex and destructive geomorphic phenomenon driven
by various environmental factors, including soil type, lithology, topography, climate, land
use and vegetation [6,7]. For instance, in parts of East Africa, it has been attributed to
increased overland flow owing to the declining and low vegetation cover [8]. Gully erosion
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is of great concern to scientists because runoff concentrates and flows detach and transport
large amounts of soil particles, carving out wide (>0.3 m), deep (>0.6 m) and long channels
across the landscape, causing many problems downstream [9,10]. The channels, which are
difficult to eliminate, can stem from mechanisms, such as incision, piping, fluting, mass
wasting, subsurface flows, and the development of rills and cracks in the soils [11,12].

The environmental and socio-economic repercussions of gully erosion are manifold.
They range from desertification, flooding and stagnation of agricultural productivity to the
degradation of water quality in rivers, depletion of essential soil nutrients, infrastructural
damage and loss of soil biodiversity and agro-pastoral lands [4,5,11–16]. To prevent, halt
and reverse gully formation and expansion, geographic targeting and uptake of sustainable
land management technologies, innovations and management practices, including soil and
water conservation measures, is indispensable. This calls for spatially-explicit information
on the risk of gully erosion, which can support the delineation and prioritization of hotspots
for intervention.

The need for spatially-explicit information has stimulated several studies, which
have supplied sufficient evidence on the applicability of different models in mapping
the predisposition of various landscapes to gully erosion. Such studies have also been
boosted by the rapid advances in machine learning and geocomputing capabilities, as well
as by the increased availability of reliable and open-access geospatial data. Thus far, the
capabilities of several modeling techniques in mapping gully erosion susceptibility have
been demonstrated, including knowledge-based models, such as the analytical hierarchy
process [14,17] and statistical models, such as binary logistic regression, frequency ratio, the
weight of evidence and multivariate adaptive regression splines [13,18–22], and machine
learning and deep learning neural networks models, such as support vector machines,
random forest, boosted regression trees, artificial neural networks, maximum entropy and
convolutional neural networks [10,23–36].

Despite the multiplicity of studies that have contributed knowledge on the capabilities
of different modeling techniques in gully erosion susceptibility mapping, very few have
focused on Africa’s arid and semi-arid lands, where the severity of land degradation is
disturbing [37]. Recently, Busch et al. [9] reported satisfactory classification accuracy after
applying the random forest technique to model the gully erosion susceptibility across a
semi-arid environment in Ethiopia. Similarly, Igwe et al. [17] obtained promising results
when they applied the frequency ratio and analytical hierarchy process in a semi-arid region
of northeastern Nigeria; however, these studies never attempted to assess the performance
of different machine learning techniques comparatively. It would be interesting, for instance,
to know whether different modeling techniques would yield uniform results when applied
in the same geographic setting or even when a single technique is implemented in different
arid and semi-arid landscapes within the continent. In brief, knowledge about the dynamics
of gully erosion and performance of the existing modeling techniques, especially the state-
of-the-art machine learning methods, in Africa’s less-studied and data-scarce arid and
semi-arid environments is still insufficient.

In order to bridge this gap in knowledge, this study was carried out in West Pokot, a
semi-arid region in northwestern Kenya, where deep and severely eroded gullies, carved
by water and intensified by recurrent droughts, flash floods, overgrazing, deforestation
and inappropriate agricultural practices, have ravaged the landscape [38]. This gullied
landscape has instigated the loss of animal and human life, increased the physical separa-
tion of neighbors, aggravated water scarcity during the dry season by lowering the water
table, and reduced the amount of cultivable, habitable and grazing land, threatening the
agro-pastoral system. This study aimed to (i) develop logistic regression, support vector
machines, boosted regression trees and random forest models and compare their perfor-
mance in predicting the spatial patterns of gully erosion susceptibility; and (ii) establish the
comparative importance of the environmental factors that determine the gullying process.
The logistic regression model provided a basis for comparing the machine learning models.
The outputs will provide evidence of gully-prone sites to support the prioritization and
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spatial targeting of technological solutions, interventions and programs for sustainable
soil management, restoration of the degraded lands and realization of a land degradation-
neutral environment in accord with Sustainable Development Goal 15.3 [39]. Moreover,
the outputs will yield new evidence about the performance of different machine learning
methods in the arid and semi-arid regions of Africa, which will ensure holistic scientific
discussions on the best modeling approach for gully erosion susceptibility mapping.

2. Materials and Methods

Figure 1 summarizes the flow of data and methods that were instrumental in the
production of the gully erosion susceptibility maps. The major steps comprised: (a) spatial
data acquisition and preparation; (b) exploratory data analysis and variable selection;
(c) model development (i.e., fitting, evaluating and comparing models); and (d) spatial
prediction and mapping (i.e., the application of the models to generate spatially-distributed
gully erosion susceptibility maps).
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2.1. Description of the Study Area

This study was conducted in Senetwo location, West Pokot County, Kenya (Figure 2),
which covers approximately 49 km2. It lies between latitudes 1◦18′–1◦23′ N and longitudes
35◦7′–35◦12′ E, with the altitudes varying from 1510 to 2180 m above sea level. In terms
of climate, the mean annual temperature is about 22 ◦C, while the mean annual rainfall
is about 750 mm. The rainfall regime is bimodal, with the long-rain season starting from
March to May and the short-rain season from August to November [40,41]. The soils are
well-drained, shallow to moderately deep, sandy loam to sandy clay loam, dark brown to
dark reddish-brown (or dark reddish-brown to dark red), the underlying metamorphic
rocks of which are mostly gneisses, rich in ferromagnesian minerals [42]. The physiography
is characterized by hills and mid-level uplands with gentle and moderately steep slopes
covered by grasses and sparse trees. Small-scale agro-pastoralism dominates the land use
and economic organization of the residents, who are mainly the Pokot, with food crops,
such as maize, beans, sorghum and millet being grown, and animals, such as cattle, goats,
sheep and chickens being kept [43].
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Figure 2. Location of the study area and gully erosion sites.

2.2. Spatial Data Acquisition and Preparation

The data depicting gully erosion occurrence and the conditioning factors were pro-
cured from various sources in different formats and preprocessed to build models for
predicting and mapping the spatial patterns of gully erosion susceptibility in the study area.

2.2.1. Gully Erosion Occurrence Data

The gully locations were extracted from high-resolution satellite imagery on Google
Earth Pro through visual interpretation and were verified through a field visit in June 2021.
New gully locations were also added during the field visit (Figure 3). A total of 431 points
were gathered and spatially referenced to represent the presence of gullies. For modeling
purposes, a similar number of points were randomly selected by using geographical
information systems (GIS) tools to represent the absence of gullies [19]. Ultimately, a
balanced set of data and an inventory of gullies were created (Figure 2).
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2.2.2. Gully Erosion Conditioning Factors

Twenty-four (24) auxiliary datasets depicting the conditioning factors that could
potentially explain and predict the occurrence of gullies were gathered in raster formats
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based on a literature review, data availability and expert knowledge. The rainfall, digital
elevation model, soil texture (clay and sand content) and atmospherically-corrected Landsat
8 operational land imager data were directly downloaded from existing geodata portals (see
Table 1), while the rest of the data were derived from them. That is, 17 terrain parameters,
including the slope aspect, slope angle, slope length-steepness factor, topographic wetness
index, topographic position index, topographic ruggedness index, stream power index,
flow accumulation, flow direction, plan curvature, profile curvature, convergence index,
convexity, landform, valley depth, geomorphons and texture were extracted from a digital
elevation model without sinks using the relevant terrain analysis tools in a GIS [44].

Table 1. Gully erosion conditioning factors.

Factor Scale Proxy for/Effects Source

Elevation (DEM) 30 m Micro-climate, vegetation, drainage network https://earthexplorer.usgs.gov
(Accessed on 1 August 2021)

Rainfall (1970–2000) 1 km Soil moisture, volume of surface runoff,
sediment transport capacity, slope stability

https://worldclim.org
(Accessed on 1 August 2021)

Slope angle (gradient)
30 m

Overland and subsurface flows, erosive
energy of overland flow, flow velocity,
drainage density, sediment transport
capacity, infiltration rate

DEMSlope length-steepness
(LS) factor

Flow accumulation
30 m Soil moisture (saturation), surface runoff DEM

Topographic wetness index

Slope aspect 30 m Evapotranspiration, soil moisture, vegetation
structure, weathering rate, micro-climate DEM

Plan curvature

30 m
Concentration of overland flow,
flow velocity (rate) DEM

Profile curvature

Convexity

Convergence index

Terrain ruggedness index

Topographic position index

Geomorphons

Landform

Texture

Valley depth

Stream power index 30 m Stream incision, slope erosion DEM

Land use/cover
30 m

Slope stability, evapotranspiration,
infiltration, overland flow, surface runoff
generation, sediment dynamics

Landsat 8 OLI imagery
https://earthexplorer.usgs.gov
(Accessed on 1 August 2021)NDVI

Drainage density
30 m

Flow magnitude, sediment transport
capacity, infiltration, surface runoff DEM

Distance to stream

Clay content
0–20 cm depth Infiltration rate, surface runoff, erosion

resistance, subsurface flow and piping
https://isda-africa.com/isdasoil
(Accessed on 1 August 2021)Sand content

Additionally, the land cover layer was obtained through the supervised classification
of Landsat 8 satellite imagery, utilizing the maximum likelihood algorithm [45], while the
normalized difference vegetation index layer was derived by manipulating the surface
reflectance values from the Landsat 8 bands 4 and 5 using the raster algebra operations [46].
A stream networks layer was first created from the (depressionless) digital elevation model
using hydrological tools to process the drainage density and distance to stream layers.

https://earthexplorer.usgs.gov
https://worldclim.org
https://earthexplorer.usgs.gov
https://isda-africa.com/isdasoil
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Thereafter, the line density tool was used to create the drainage density layer, whereas the
Euclidean distance tool was applied to compute the distance to stream layer.

The 23 thematic raster layers were clipped to the region of interest, resampled to a
common spatial resolution (30 m) using the bilinear interpolation method, transformed to
UTM WGS84 Zone 36N and stacked. After that, the balanced set of gully erosion occurrence
points was overlaid on the stack of conditioning factors to extract the raster values to the
points. Finally, a spatial database was built, which served as the input data for gully erosion
susceptibility modeling.

2.3. Spatial Modeling, Prediction and Mapping

Before modeling, the input data were randomly split into training and testing datasets
in the ratio of 80:20. The former dataset was used to fit models, while the latter was used to
validate the fitted models in terms of their predictive capacity.

2.3.1. Exploratory Data Analysis

Multi-collinearity among the gully erosion conditioning factors was detected by com-
puting their variance inflation factors in a regression model and by analyzing their correla-
tion coefficients. From a pair, one conditioning factor was discarded when the correlation
coefficient was equal to or more than 0.8 [47]. Moreso, the conditioning factors with vari-
ance inflation factors exceeding 10 were excluded from further analysis [48]. This step
reduced redundancy and ensured the accurate estimates of model parameters and measures
of statistical significance.

2.3.2. Model Development

Four predictive models were built using logistic regression, support vector machines,
boosted regression trees and random forest techniques.

• Logistic regression

The target variable had only two possible outcomes: the presence (1) and absence (0)
of gullies. Hence, the binary logistic regression technique was appropriate for explaining
the relationship between the target variable and the associated conditioning factors, as well
as for predicting the probability of a gully event. The binary logistic regression technique
is based on logit transformation [48,49], which aims at linearizing the S-shaped logistic
response function as defined in Equation (1):

log
(

π(x)
1− π(x)

)
=∝ +∑n

i=1 βixi (1)

where π̂(x) is the probability that an event will occur, ∝ is the constant and βi is the
coefficient of the explanatory variables xi. The ratio π(x)

1−π(x) is known as the odds, or

likelihood ratio, while log
(

π(x)
1−π(x)

)
is referred to as log odds, or the logit transformation of

π̂(x). After transformation, Equation (2) is applied to convert the log odds into conditional
probabilities and force the values to lie between 0 and 1. Values close to 1 imply a higher
chance of an occurrence.

π̂(x) =
e∝+∑n

i=1 βixi

1 + e∝+∑n
i=1 βixi

=
1

1 + e−(∝+∑n
i=1 βixi)

(2)

First, a full logistic regression model was fitted using the maximum likelihood method
to estimate the model parameters and, thereafter, was reduced by a stepwise regression
algorithm. The reduced model was selected on the basis of the Akaike information crite-
rion, while its goodness-of-fit, significance and parameter estimates were tested using the
Hosmer–Lemeshow, likelihood ratio and Wald statistics [48,49], respectively.
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• Random forest

This technique uses recursive binary splitting to grow several uncorrelated decision
trees, which it ultimately combines to make a classification. The classifier draws random
samples with replacements from the training data and grows one tree for each sample.
Two-thirds of the sample is used to grow a tree, while the out-of-bag sample is used to
assess its predictive accuracy and the importance of the environmental covariates. In
growing a tree, the random forest algorithm splits the feature space at each tree node into
two by using a random subset of environmental covariates and then groups the target
variable at the two descendant nodes to minimize dissimilarities [50]. Binary splitting
continues recursively until the sample size goes below a certain threshold at a terminal
node. Three hyperparameters are defined in the process, including the (i) number of trees to
grow (ntree), (ii) smallest sample size at each terminal node (nodesize), and (iii) the number
of environmental covariates to consider at each node for splitting (mtry). In this study, the
mtry was determined through a special tuning algorithm, whereas the ntree and the node
size were set to 1000 and 5 (default values), respectively.

For the predictions, the random forest algorithm takes new data through each tree
and classifies them based on majority voting [51,52]. It also computes the probability of
each class membership from the fraction of votes received. The mean decrease accuracy
is calculated to rank the covariates according to their importance. Firstly, the prediction
error for each tree is estimated using the out-of-bag sample. Thereafter, the values of the
covariates in the out-of-bag samples are randomly permutated in turn, and the prediction
errors are re-calculated using the modified out-of-bag data. Finally, the differences in the
average out-of-bag errors before and after permutation indicate variable importance.

• Support vector machines

This is a supervised learning technique that aims to minimize the structural or empiri-
cal risk as it separates classes [53]. By using kernel functions, this technique transforms the
original input data from a low dimensional space, where classes are linearly inseparable,
into a feature space of much higher dimensionality, where it fits an optimal separating
hyperplane, which maximizes the margins of the boundaries of two classes with minimal
errors and complexity [30,53,54]. The fitted nonlinear hyperplane easily classifies (or pre-
dicts) new data. Here, we used the Gaussian radial basis function kernel (Equation (3)) to
convert the original input data into a higher dimension.

K
(
xi, xj

)
= exp−

||xi,xj ||
2

2σ2 (3)

where K is the kernel function, x is the input vector, and σ is the bandwidth parameter
(sigma), which controls the degree of nonlinearity in the hyperplane [55]. Sigma and the
regularization (cost) parameter had to be specified. The latter governs the tradeoff between
the complexity of the model and empirical errors, which also controls overfitting. Optimal
values for these two parameters were chosen through the grid search method with 10-fold
cross-validation [56].

• Boosted regression trees

Similar to random forest, the boosted regression trees algorithm constructs a set of
trees but merges them by using a boosting technique to derive a final model with an
improved predictive ability [57]. That is, it bootstraps the training data and constructs
the first regression tree by applying equal weights to the data points. Thereafter, the
boosted regression trees algorithm fits the second regression tree by giving higher weights
to the observations that were poorly predicted in the first step. This process continues
iteratively until a model with a low prediction error is obtained. The final model is a
summation of the regression trees fitted in the entire iterative process [57,58]. During model
building, five hyperparameters are tuned, including the (i) learning rate to determine each
tree’s contribution to the model, (ii) tree complexity to control the depth of the variable
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interactions or the number of splits in each tree, (iii) bag fraction to specify the proportion
of the bootstrapped sample for each boosting iteration, (iv) number of trees to indicate the
number of trees to be fitted, considering the learning rate and tree complexity, and (v)
terminal node size to define the minimal sample size at the terminal nodes [59]. In this study,
a few combinations of the five hyperparameters were tested in a grid search process to
establish the values that yielded the minimum prediction error.

2.3.3. Model Evaluation and Comparison

The predictive power of the models was determined by computing the area under
the receiver operating characteristic curve (i.e., AUC), utilizing the testing data. The curve
plotted sensitivity (true positives) as a function of 1—the specificity (false positives) for all
the possible cut-off values that could be taken to interpret the predicted probabilities as
gully erosion events [60,61]. The curve depicted the tradeoff between the rate of making true
predictions of gully erosion events and that of making false predictions [62]. The computed
AUC values ranged between 0.5 and 1, with 0.5 implying a random, 0.6–0.7 a good, 0.7–0.8
an acceptable, 0.8–0.9 an excellent, and 0.9–1.0 an outstanding performance [63]. Apart
from the AUC, the specificity, sensitivity and overall accuracy were also calculated for each
model using Equations (4)–(6) after cross-classifying the observed and the predicted gully
and non-gully events in a 2 × 2 contingency table (Table 2) [49].

Sensitivity =
TP

TP + FN
(4)

where TP = true positive and FN = false negative

Specificity =
TN

TN + FP
(5)

where TN = true negative and FP = false positive

Overall accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative.

Table 2. Cross-tabulation of the observed and predicted gully erosion events.

Predicted

O
bs

er
ve

d Presence (1) Absence (0)

Presence (1) TP (1|1) FN (1|0)

Absence (0) FP (0|1) TN (0|0)
Note: TP = true positive, TN = true negative, FP = false positive, and FN = false negative.

2.3.4. Model Application

The parameters of each model were applied to the stack of gully erosion controlling
factors to create prediction raster surfaces, which were subsequently reclassified into five
categories (natural groupings) based on the similarities in the data values using Jenks’
natural breaks method. The five classes reflected areas of very low, low, moderate, high
and very high susceptibility to gully erosion. Finally, the gully erosion susceptibility maps
were produced.

2.4. Software

Data preparation, geocomputation, spatial prediction and mapping were executed on
ArcGIS, QGIS, SAGA GIS and R Studio platforms [64].
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3. Results
3.1. Exploratory Data Analysis

Correlation analysis revealed that the rainfall and elevation (r = 0.84), sand content and
clay content (r = 0.87), and landform and slope gradient (r = 0.92) were highly correlated.
Thus, rainfall, clay content and landform were eliminated from subsequent analysis to
break up the near-linear dependency in the gully erosion conditioning factors and reduce
redundancy. The absence of multi-collinearity in the remaining 21 predisposing factors
was also confirmed by their respective variance inflation factors, which did not exceed 10
(Table 3). Otherwise, multi-collinearity would have biased the estimation of the parameters
and measures of statistical significance, leading to prediction inaccuracies, especially in
logistic regression modeling.

Table 3. Results of the multi-collinearity tests.

Factor VIF Factor VIF Factor VIF

Aspect 1.28 LS Factor 5.51 Flow direction 1.18
Convergence index 2.49 NDVI 2.86 Flow accumulation 1.23
Convexity 1.46 Sand content 3.49 Geomorphons 2.41
Plan curvature 3.57 Slope gradient 2.25 Land cover 2.25
Profile curvature 1.85 Stream power index 1.62 Topographic position index 1.97
Drainage density 1.54 Distance to stream 1.61 Topographic wetness index 1.75
Elevation 3.07 Texture (SAGA) 1.25 Valley depth 2.58

Note: VIF = variance inflation factor; NDVI = normalized difference vegetation index; LS Factor = slope length
and steepness factor.

3.2. Models of Gully Erosion Susceptibility and Relative Importance of the Conditioning Factors

The remaining 21 conditioning factors were used to build the logistic regression,
support vector machines, boosted regression trees and random forest models that were
subsequently applied to predict gully erosion occurrence. According to the p values of
the likelihood ratio, Hosmer–Lemeshow and the Wald statistics presented in Table 4, the
resultant logistic regression model was statistically significant, fitted the data adequately,
and eight out of the twenty-one conditioning factors had significant effects on gully erosion
occurrence. In particular, the drainage density, sand content, valley depth, elevation
and stream power index had increasing effects on the odds of gully erosion occurrence;
that is, the odds multiplied by 1.22, 1.21, 1.02, 1.01 and 1.00, respectively, for every one-
unit increase in their values. By contrast, the distance to stream, slope gradient and plan
curvature had decreasing effects on the odds of gully erosion occurrence; that is, the chances
were reduced by about 1%, 95% and 100%, respectively, for every one-unit change in their
values. Although the effects of the valley depth, elevation, stream power index and distance
to stream were statistically significant, their magnitudes were rather inconsiderable. In
addition, the odds ratios of these three factors were close to 1, implying that increasing
them by one unit only slightly changed the likelihood of gully formation.

Unlike the logit model, which estimated the parameters that quantified the effects
of the conditioning factors on the likelihood of gully erosion occurrence, the three ma-
chine learners ranked their significance based on their mean-decrease-in-accuracy scores
(Figure 4a–c). These scores were subsequently converted into percentages. The results
showed that the boosted regression trees, support vector machines and random forest
models ranked the conditioning factors somewhat differently. According to the support
vector machines and random forest models, distance to stream was the most important
determinant of gully erosion susceptibility, followed by the drainage density and valley
depth (Figure 4a,c), whereas the boosted regression trees model ranked sand content,
elevation and stream density as the three most important factors that control gullying
(Figure 4b). Furthermore, the results showed that land cover had the least influence in the
boosted regression trees and random forest models, while the stream power index had the
lowest importance in the support vector machines model. It is also notable that the order
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of importance of the 21 conditioning factors varied depending on the machine learning
algorithm used for model development.

Table 4. Summary statistics for the reduced logistic regression model.

Parameter Estimate Std. Error Odds
Ratio p Value

(Intercept) −36.1502 5.0454 0.0000 0.0000
Plan curvature −148.9885 42.8495 0.0000 0.0005
Drainage density 0.1991 0.0554 1.2203 0.0003
Sand content 0.1879 0.0276 1.2067 0.0000
Elevation 0.0137 0.0022 1.0138 0.0000
Valley depth 0.0165 0.0036 1.0167 0.0000
Distance to stream −0.0095 0.0029 0.9906 0.0009
Slope gradient −2.9885 1.3371 0.0504 0.0254
Stream power index 0.0001 0.0000 1.0001 0.0227

Pr > LRo χ2 0.0000
Pr > HL χ2 0.7072

Note: LRo = likelihood ratio; HL = Hosmer–Lemeshow.
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3.3. Model Evaluation and Comparison

The high AUC values (>0.80) and receiver operating characteristic curves, shown
in Figure 5, indicate that the fitted logistic regression, boosted regression trees, support
vector machines and random forest models had excellent capacity to predict new gully
erosion occurrence and that each model provided a greater true positivity rate for any
given false positivity rate. Boosted regression trees and random forest models displayed
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similar predictive capabilities, having the highest AUC (0.89), followed by support vector
machines (AUC = 0.86) and logistic regression (AUC = 0.85). Evidently, the differences
in the AUC values of the four models were marginal. The overall prediction accuracy,
sensitivity and specificity values were also high (Table 5), affirming the good performance
of the models. Specifically, the values of these three performance indicators exceeded 70%
in all the models except for the specificity of the logistic regression model (66%), indicating
that the benchmark logit model had a slightly lower ability to predict the absence of gullies
relative to the machine learning models.
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Figure 5. Evaluation of the boosted regression trees, support vector machines and logistic regression
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Table 5. Evaluation of the models using proportions in 2 × 2 contingency tables.

Model
Predicted

Observed Presence Absence % Correct

LR
Presence 80 18 81.6 a
Absence 25 49 66.2 b

Overall accuracy (%) 79.6

SVM
Presence 79 19 80.6 a
Absence 16 58 78.4 b

Overall accuracy (%) 79.1

BRT
Presence 77 21 78.6 a
Absence 14 60 81.1 b

Overall accuracy (%) 79.7

RF
Presence 80 18 81.6 a
Absence 16 58 78.4 b

Overall accuracy (%) 80.2
Note: a = sensitivity; b = specificity.

3.4. Spatial Patterns of Gully Erosion Susceptibility

Visually, the mapping results of the boosted regression trees, support vector machines
and logistic regression models had some similarities in terms of the spatial distribution of
the probability of gully erosion occurrence in the area (Figure 6). Zones of high to very high
erosion susceptibility mostly appeared in the eastern and southeastern parts, whereas those
of very low susceptibility mostly occurred on the western side in the four resultant maps.
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However, quantitative analysis of the mapping results revealed the less obvious areal
differentiations occasioned by the four modeling approaches (Table 6). The random forest-
based map showed that 51% of the landscape had low (24%) to very low (27%) gully erosion
susceptibility, 21% had moderate susceptibility, and the rest had high (18%) to very high
(12%) susceptibility. Unlike random forest and the support vector machines, the boosted
regression trees model predictions assigned a large portion of the study area to the very
low (56%) and a small part to the moderate (9%) and high (9%) susceptibility classes.
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Table 6. Areal extents and proportions of the susceptibility classes.

Class
LR BRT RF SVM

Area
(km2) % Area

(km2) % Area
(km2) % Area

(km2) %

Very low 14.81 30.41 27.06 55.56 13.12 26.95 18.07 37.10
Low 9.66 19.84 5.80 11.91 11.56 23.73 9.59 19.69
Moderate 8.90 18.28 4.18 8.59 9.77 20.06 7.46 15.32
High 8.79 18.04 4.15 8.51 8.59 17.63 7.12 14.61
Very high 6.54 13.43 7.52 15.43 5.66 11.63 6.47 13.28

Total 48.71 100.00 48.71 100.00 48.71 100.00 48.71 100.00

4. Discussion
4.1. Relative Importance of the Gully Erosion Conditioning Factors

In this study, the support vector machines, boosted regression trees and random forest
techniques were applied to map gully erosion susceptibility and establish the importance
of its conditioning factors. Despite being applied in the same environmental setting, the
three machine learning techniques yielded inconsistent environmental variable-importance
results. The support vector machines and random forest models ranked distance to stream,
drainage density and valley depth, while the boosted regression trees model ranked
elevation, sand content and distance to stream as the three most influential conditioning
factors. Conflicting variable-importance results have been widely observed and reported.
For example, Chuma et al. [65] conducted a similar study in the Democratic Republic
of Congo using artificial neural network, random forest, boosted regression trees and
maximum entropy algorithms and noted a variation in the environmental determinants of
gully erosion from one model to another. Arabameri et al. [66] ascribed such conflicts to the
complexity of factors involved in gully development and the inherent structural differences
in machine learning techniques. That is, each machine learning technique manipulates the
input data differently to unravel the complex linkages between the gully erosion events
and predisposing factors. The structural differences might also explain the variations in
the proportion of land under each susceptibility class for the four modeling approaches
(Table 6).

Nonetheless, the ranking of the most important conditioning factors seemed plausible
because, for instance, it was evident from the resultant maps and field observations that
most of the areas with high to very high gully erosion susceptibility were concentrated
around the drainage channels and on the eastern and southeastern parts where the elevation
was relatively low. Tien Bui et al. [25], Nhu et al. [29] and Pourghasemi et al. [31] also
found that gully erosion evolved as the distance to streams decreased, drainage density
increased and elevation decreased. This can be attributed to the effects of these factors
on the flow magnitude, velocity and concentration, as well as on the sediment transport
capacity, vegetal cover and mechanisms, such as incision, seepage and piping [24,67].

Lastly, it is worth noting that our variable-importance results differed from those
reported by Amare et al. [68] and Busch et al. [9], who also conducted their studies in
semi-arid contexts in the region. They found land use, drainage density and elevation to
be the most important factors that control gully erosion. However, such discrepancies are
unsurprising because, as Vanmaercke et al. [12] and Nhu et al. [29] argued, gully erosion
conditioning factors tend to be context-specific and vary with spatial scales and spatial data
attributes, including scale, quality, type and quantity. This implies that the most important
conditioning factors reported here should not be carelessly extrapolated to other semi-arid
regions; instead, appropriate investigations would be needed to unravel the important
environmental drivers of gully erosion in each setting.
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4.2. Model Evaluation and Comparison

Again, the three machine learning methods yielded slightly different performance
results in the same environment and a small improvement in the accuracy of predicting
gully erosion. Boosted regression trees and random forest models returned the highest
AUC (0.89), followed by support vector machines (AUC = 0.86) and logistic regression
(AUC = 0.85). The better performance of the random forest model compared to the support
vector machines and logistic regression models coincides with the findings of comparable
studies conducted in other regions [32,33,69–71]. However, the similarity of performance
exhibited by the boosted regression trees and random forest models differs from the
results of Arabameri et al. [23], Chuma et al. [65], Hembram et al. [72], Amiri et al. [73],
Rahmati et al. [74] and Wang et al. [75], who reported that random forest outperformed
the boosted regression trees in modeling gully erosion susceptibility. The superiority of
random forest has been proven in many environmental modeling studies, such as landslide
susceptibility mapping, because, as Youssef et al. [76] pointed out, it generates stable
results, avoids overfitting and deals with missing data, outliers and multi-collinearity
relatively well.

Interestingly, some past studies achieved higher predictive accuracies than this one.
For instance, within the region, Busch et al. [9] and Amare et al. [68] realized AUC val-
ues of 0.99 and 0.95, respectively, while outside of the region, Pourghasemi et al. [31],
Gayen et al. [72] and Saha et al. [77] attained 0.96, 0.96 and 0.99, respectively, using the
random forest algorithm. Such variations in the performance statistics can be attributed
to several factors, ranging from the optimization (tuning) of hyperparameters and site
characteristics to the quality and quantity of the auxiliary datasets. In terms of data quality
and quantity, some of the auxiliary data used in this study, including the sand content and
digital elevation model, were by themselves products of spatial prediction. The digital
elevation model was further used to derive other gully erosion conditioning factors, such as
slope and aspect; hence, the inherent errors may have been propagated in the subsequent
procedures and biased the model results. Nevertheless, these were the best and most
readily available data at the time. In addition, the effects of other important soil-related
conditioning factors, such as the exchangeable sodium, sodium adsorption ratio, elec-
trical conductivity, soil depth, water-dispersible clays and lithology, were not explicitly
accounted for due to lack of data. This could have also impacted model performances.
Thus, in future research, the models should be re-evaluated and refined to account for the
missing soil-related variables as the data become available.

5. Conclusions and Outlook

This study aimed to develop, evaluate and compare the performance of boosted
regression trees, support vector machines, random forest and logistic regression models in
mapping gully erosion risk, as well as to determine the most important conditioning factors
in a semi-arid landscape of northwestern Kenya. The resulting models exhibited excellent
predictive capabilities, although the machine learning models showed their superiority
over the benchmark logistic regression model. Differences in the performance of the models
were rather small; thus, we conclude that each technique is promising and has the potential
to generate reliable maps, information and tools for gully erosion risk management in
similar semi-arid environments globally. However, the performance of the models and the
importance of the gully erosion conditioning factors might be variable. It would always be
worthwhile to compare a set of machine learning models and select the best-performing
model to generate a gully erosion susceptibility map in each context. Regarding the relative
influence of the conditioning factors, random forest and support vector machine analyses
revealed that the distance to stream, drainage density and valley depth were the top three
environmental factors that predisposed the region to gully erosion.

Besides its contribution to the state of knowledge and literature on the performance
of state-of-the-art machine learning techniques in the less-studied and data-scarce arid
and semi-arid lands of Africa, the findings also improve our general understanding of



Land 2023, 12, 890 16 of 19

the spatial dynamics and determinants of gully erosion. Such an understanding, coupled
with the resultant gully erosion susceptibility maps, can support agro-environmental
experts and other stakeholders in strategic planning, formulation of strategies, and efficient
allocation of resources to prevent, halt and reverse land degradation in order to achieve land
degradation-neutral landscapes in compliance with Sustainable Development Goal 15.3. For
example, the output maps from this study suggest to potential agro-environmental projects
that intensive monitoring and investments in sustainable land management technologies,
innovations and practices, such as terracing, revegetation and check dams, should be
targeted at the zones with high to very high likelihood of gully erosion on the eastern
and southeastern parts of the study area. Future research should re-evaluate and refine
the models to account for other soil-related gully erosion conditioning factors, such as
the exchangeable sodium, sodium adsorption ratio, electrical conductivity, soil depth and
water-dispersible clays as these data become available. Moreover, studies attempting to
unravel the future evolution of gully erosion in the study area and similar environments
would be of great interest.
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