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ABsTRACT. Some researchers in combinatorics have developed permutation algorithms using
different approaches. We contribute to this area by developing a formula for generating per-
mutations whereby, starting with an identity permutation, each succeeding permutation is a
composition on the preceding one. We also determine the conditions by which the resulting
permutations form a group.
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1. INTRODUCTION

In this paper, we develop an algorithm for generating permutations whereby the initial
permutation is the identity permutation and a composition rule is derived for computing
the succeeding permutations. In the second section, we review permutations and show that
the set of all permutations is a group under permutation multiplication. In section three, we
present some developed permutation algorithms while in section four we present our results
on permutation algorithm. In section five we give some algebraic properties of the generated

permutations.

2. PERMUTATIONS

A bijection is a mapping that is both one-to-one (hereby called an injection) and onto (hereby

called a surjection). A permutation of a finite set X is a function a: X — X such that a is a
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bijection. For example, if X = {1,2, 3}, then a mapping a: X — X such that la = 3,2a =1

and 3a = 2 is a permutation of X, and is written as:

123 ramplya= (3 12)
o= ,or simply a =
312 Y

In lemma 2.1, we show that composition of two permutations is a binary operation.

Lemma 2.1 Let X be a finite set and let c;, o be any two permutations on X. Then their composition,
written as o5, is another permutation on X.

Proof

Indeed, a;a; is an injection, for if z1(a;a;)=z2(o;), that is, if (r10;)a;=(x204)c;, then
104 =220y (since «; is one-to-one). But this implies that z; = 2, since «; is also a bijection.
Next, o;a; is a surjection since whenever z3 € X, then there must exist an z, € X for which
ra; = x5 (since «; is onto X'). Also, since «; is onto X, then there exists an x; € X such that
10 = Xo. Thus, o0y = (v104); = x3, or z1(yoyj) = x3, and therefore, whenever z3 € X
there must exist an z; € X for which z(a;a;) = x3, and so ;¢ is onto. Since o, is both
one-to-one and onto, we then conclude that it is a bijection and, consequently, is a permutation
on X. O

The binary operation in the above lemma is called permutation multiplication. As an example,
if

123 123
Q= and o =
2 31 321
are two permutations on X, then «a;a; is the permutation obtained as follows:
123 123 123
Q0 = =
2 31 321 213

If X has n elements, then there are n! unique permutations on X.

In theorem 2.2, it is shown that the set of all permutations on a set X is a group under
permutation multiplication.

Theorem 2.2 [1]. Let X be a non-empty set. Then the collection of all permutations on X is a
group under permutation multiplication.

Proof

We have seen in lemma 2.1 that permutation multiplication is a binary operation. Thus, if
we denote the set of all permutations on X by P, then P is closed under this operation.

Now, permutation multiplication is defined as function composition, which is known to be

associative. Next, there is a permutation oy € P for which 2oy = z for all z € X. ag acts as the
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identity in P . Finally, for a permutation «; € P, the inverse function «; ' is the permutation
that reverses the direction of the mapping «;. Thus, za; ' is the element 2’ of X for which
2'a; = x. The existence of exactly one such an element z* is a consequence of the fact that, as a
function, «; lisa bijection. Thus, every member of P has an inverse in P . Since P satisfies all
the group axioms, we then conclude that it is a group. O

The above group is called the symmetric group on X and we shall denote it by S,,. This group
is non-abelian.

In the ongoing example with X = {1, 2,3}, S; has 3! = 6 members. These are given below:

1 2 3 1 2 3 1 2 3
Qp = ;01 = s Qg = ;

1 2 3 2 31 31 2

1 3 2 1 2 3 1 2 3
Q3 = ;g = ; Q05 =

3 21 3 21 21 3

Thus, (S3, o) is a group where S; = {ap, a1, ag, a3, au, s} with ag as the identity permutation
and o denote the permutation multiplication. This group is non-abelian. The group table for

(53, 0) is given below:
TaBLE 1. (S5, 0) Group Table

O | (1 Qo 3 Q4 0Op

Qo | g (x;p Qg (3 Gy Q5
a1 |y o Qp Qg4 G5 Qs
Qg | g g Qi Q5 3 Oy
Q3| 3 Q5 Qg4 Qn Qg QO
Qg | Qg Q3 Q5 Q1 Gy Q2

Qs | iy Qg Q3 Qg Q1 Qo

Theorem 2.3 [1]. Every group is isomorphic to a group of permutations.

A relation between non-empty sets £/ and F'is a subset R of E' x F'. Weread (e, f) € Ras “e
is related to f” and write eRf.

If X is a non-empty set, an equivalence relation on X is a subset ~ of X x X which satisfies
the following properties for all z,y, z € X:

i. Reflexive: v ~ x

ii. Symmetry: x ~y = y~u

iii. Transitive: xt ~yandy ~ 2z =— x ~ 2
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An example of equivalence relation is the congruence modulo n for a positive integer n . If
n € N*, define a relation ~: Z x Z = Z by h ~ k(modn) if and only if h — k = nt for
some t € Z. Then h ~ h(modn) since h — h = n(0) and 0 € Z. Thus ~ is reflexive. Next, if
h ~ k(modn), then h — k = nt for some ¢t € Z. But this shows that k — h = n(—t) and —t € Z
whenever ¢t € Z. So k ~ h(modn) and this shows that ~ is symmetric. Finally, let h ~ k(modn)
and k ~ [(modn). Then h — k = ns and k — | = nt for some s,t € Z. Adding the two equations
we obtain h — | = n(s +t) and s +t € Z whenever s,t € Z. Therefore, h ~ [(modn) and this
shows that ~ is transitive. So we conclude that ~ is an equivalence relation on Z.

The equivalence relation in the above example is denoted by ” = 7, that is, h = k(modn) if
and only if h — k = nt for some t € Z. It is employed in developing a permutation algorithm
in section four.

Each permutation a on a set X determines a natural partition of X into cells with the
property that z;,z; € X are in the same cell if and only if z; = ;0" for some n € Z. This
partition is established by the following equivalence relation:

For each z;,z; € X, let x; ~ z; if and only if z; = x;a" for some n € Z. Then ~ is clearly an
equivalence relation on X. Indeed, we have;

Reflexivity: z; ~ x; since z; = z; [ = 2;0°

Symmetry: If z; ~ z;, then z; = x;a". But this implies that x; = ;™" and —n € Z whenever
n € Z. Thus, z; ~ ;.

Transitivity: Suppose that z; ~ z; and z; ~ x;. Then z; = z;0" and x; = ;0™ for some

M = x,a™™ and m + n € Z whenever m,n € Z. Thus,

m,n € Z. Therefore, z; = (za™)a
T ~ Tp.

If o is a permutation of X, then the equivalence classes in X determined by the above
equivalence relation are the orbits of «.

A permutation o € S, is a cycle if it has at most one orbit containing more than one element.
The length of a cycle is the number of elements in its orbit. A cycle of length 2 is called a
transposition.

Theorems 2.4, 2.5 and 2.6 below give some properties of permutations.

Theorem 2.4 [1]. Every permutation of a non-empty set is a product of disjoint cycles.

Corollary 2.5 [1]. Any permutation of a finite set of at least two elements is a product of transposi-

tions.
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Theorem 2.6 [1]. No permutation in S,, can be expressed both as a product of an even number of
transpositions and as a product of an odd number of transpositions.

A permutation of a finite set is even or odd according to whether it can be expressed as a
product of an even number of transpositions or a product of an odd number of transpositions
respectively.

Theorem 2.7 [1]. If n > 2 is the number of elements in X, then the group of all even permutations
of X is a subgroup of S, of order .

The subgroup of S,, described in theorem 2.7 is called the alternating group on X and is
denoted by A,,.

3. PERMUTATIONS ALGORITHMS

Let @ = {¢1, ¢, .., ¢»—1} be a sequence such that ¢; = +1 or ¢; = —1. A permutation with
signature () is a permutation a = z1, 29, ..., ,, of the integers 1,2, ...,n such that x; < z;44
ifq1 =+lorax; > x;41if ¢ = —1foralli = 1,2,...,n — 1. An alternating permutation is a
permutation with signature @ = (+1,—1,..., (=1)""! ..).

Some researchers have worked on the problem of enumerating permutations with a given
signature. The problem of generating all permutations with a given signature is equivalent to
the problem of generating all topological sorting of a poset whose Hasse diagram is a path.

D. Roulants and F. Ruskey [2] in 1992 presented the first constant average time algorithm
for generating all permutations with a given signature.

G. Sypro [3] in 2001 presented a new derivation of an enumeration formula for permutations
of a given signature. They used random number sequences which mimic the permutations, in
the sense that they rise and fall as determined by the permutation’s signature.

A permutation a = (1o, 2¢, ..., na) of n integers 1, 2, ..., n is said to have a rising sequence if
i < (i+1)a < ... < (i + k). A falling sequence is defined similarly.

H. O. Foulkes [4], in 1970 described a method by which the enumeration of permutations
of 1,2, ...,n with a prescribed sequence A of rises and falls, or a prescribed sequence B of
inversions of orders, or with both A and B, is effected in terms of numbers derived from the
representation theory of the symmetric group.

N. Dershowitz [5], in 1975 presented an algorithm for generating permutations that generate
the next permutation by reversing a certain suffix of its predecessor. A large number of

generating functions for permutation statistics can be obtained by applying homomorphisms
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to simple symmetric function identities. In particular, a large number of generating functions
involving the number of descents of a permutation « , denoted des(«), arises in this way.

F. Breuti [6],in 2000 introduced and studied a class of symmetric functions that depend on
a parameter g, which include symmetric functions.

For a given finite set A of positive integers, ]. Rammel and M. Riehl [7] in 2010 developed a
method to produce similar generating functions for the set of permutations of the symmetric
group A, whose descent set contains A.

The literature in this section motivates us to develop a permutation generating algorithm as

a way of contributing to this topic. Our results are contained in sections four and five.

4. DEVELOPMENT OF U}, -PERMUTATIONS

In this section, a class of permutations is obtained by first coming up with a mapping on a
finite set. It is then proved that this mapping is a bijection and hence it is a permutation. Some
examples of permutations are then provided.

Let N be a finite set of ordered objects, say N = {z1, 23,3, ...,2,} for some n € N. Fix
ap = (1 2 23 ... x,). For some ¢ € N and such that ¢ divides n, partition NV into ¢ cells, that
is, C1, (s, ..., Cy, whereby z; € C; if and only if i = j(modg). Let the partition of NV allocates
members of NN into the cells C; for j = 1,2, ..., ¢ in a manner that their relative positions in NV
is preserved.Therefore, we obtain a partition P} = {C; : x; € C; if and only if i = j(modq)}

For a fixed 7, € N, the union | J;, of the cells in P}, is obtained as follows:

Uz, [Pi] = Uj—1{C; : C is at fixed position ¢ if 2}, € C,},
where t = 1,2, ..., ¢. Again, the union of the cells C; for j = 1,2, ..., ¢ are such that the relative
positions of the cells in P} are preserved.

Let U, [Pa,] = 1. Repeat the above process in succession to obtain as, as.... etc. We thus
obtain a mapping |J, : N — N such that:

Uz, [Nl =

Uz, [Fe] = s

Theorem 4.1 The mapping | J; : N — N described above is a permutation in N.
Proof
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We need to show that | J;, is a bijection on N. First, | J; is one-to-one for if z;, z; € N with
U, (zi) = U, (x;), then z; = x; necessarily for there are no instances where distinct members
of IV are mapped to identical members of N under |J; . Thus |J, is one-to-one.

Next, [ J;, isonto N since every member of NV is some | J;, -image of a member in N. Therefore,
we conclude that [ J7, is a permutation on N. O

Notation 4.2: We shall denote the set of all such permutations on N by N;' and call them
the |, -permutations.

Corollary 4.3 The set of all | J, -permutations on N is a subset of N,,, the set of all permutations on
N.

Proof

Now, from theorem 4.1, if « € N;! then « is a permutation on N and hence o € N,,, the set
of all permutations on V. O

Three categories of permutations are considered for construction, thatis, whenn = 9, n = 12
and n = 15. To obtain the first category of permutations, we consider ¢ = 3,k =4n =9and ¢
is the middle position.

Let N = {1,2,3,4,5,6,7,8,9}. Note that here =, = 4 = 4. Then

w=(1234567809)

Therefore,
123456789

123456789
When N is mapped the first time, the first permutation denoted by «; is obtained as shown

Qg =

below:

w=(1234567809)

C, ={1,4,7},Cy ={2,5,8},C3 = {3,6,9}
Then,

Py ={{1,4,7},{2,5,8},{3,6,9}}
Taking the union,we obtain

ULIP2 ] = {3,6,9,1,4,7,2,5,8}

Therefore
1234561789

3691472538
A mapping of o, yields the second permutation denoted by a,. This is possible after

Q] =

partitioning it into three cells as follows:



Asia Pac. J. Math. 2020 7:16 8 of 22

ai=(3691472538)

Cy ={3,1,2},C, = {6,4,5},C5 = {9,7,8}
Then,

Py ={{3,1,2},{6,4,5},{9,7,8}}
Taking the union, we obtain

UiP2 ] = {3,1,2,6,4,5,9,7,8}

Therefore
1234561789

3126459738
From the first category, we obtain three unique permutations, that is;

N} = {ag, a1, as}.

g =

Constructing the second category of permutations, we consider n = 12, k =4, ¢ = 3, ¢
is the middle position, and N = {1,2,3,4,5,6,7,8,9,10,11,12}. Again, z;, = x4 = 4. Since
N =1{1,2,3,4,5,6,7,8,9,10,11, 12}, then we have

123456789 10 11 12

123456789 10 11 12
When N is mapped for the first time, the first permutation denoted by «; is obtained as follows;

ao=(12345678910111z)

Cy = {1,4,7,10},Cy = {2,5,8,11}, Cs = {3,6,9, 12}
Then,

P2 = {{1,4,7,10},{2,5.8,11}, {3,6,9,12}}

Qo =

Taking the union,we obtain
VP2 ={3,6,9,12,1,4,7,10,2,5,8,11}

Therefore
123 4 567 8 9 10 11 12

36912147 102 5 8 11
The next permutation denoted by « is obtained when /N undergoes the second permutation

a1 =

as follows;
Oé1=<369121471025811>
¢y ={3,12,7,5},Cs = {6,1,10,8},C5 = {9,4,2,11}
Then,
Polf ={{3,12,7,5},{6,1,10,8},{9,4,2,11}}

Taking the union,we obtain
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VP2 =1{6,1,10,8,9,4,2,11,3,12,7,5}

Therefore
12 3 4567 8 9 10 11 12

6110 8 9 4211312 7 5
When N undergoes the next permutation, we obtain a3 as follows:

Oé2=<611089421131275>

Cy =16,8,2,12},Cy = {1,9,11,7},C3 = {10,4, 3,5}
Then,

P2 = {{6,8,2,12},{1,9,11,7},{10,4,3,5}}

Qg —

Taking the union,we obtain
SR ={1,9,11,7,10,4,3,5,6,8,2, 12}

«

Therefore
12 3 4 5 6 7 8 9 10 11 12

19117 10 4356 8 2 12
The fourth permutation is obtained as follows:

a3=(191171043568212)

Cy = {1,7,3,8),Cy = {9,10,5,2}, Cs — {11,4,6,12}
Then,

P = {{1,7,3,8},{9,10,5,2}, {11,4,6,12}}

3 =

Taking the union,we obtain
P2 ={9,10,5,2,11,4,6,12,1,7,3,8}
Therefore
1 2 34 5 67 8 9 10 11 12

9 10 52 11 4 6 12 1 7 3 8
When N undergoes the fifth permutation, we obtain «; as follows;

044:(910521146121738>

C1=149,2,6,7},Cy = {10,11,12,3},C3 = {5,4,1,8}
Then,

P2 = {{9,2,6,7},{10,11,12,3},{5,4,1,8}}

ay =

Taking the union,we obtain

P2 ={10,11,12,3,5,4,1,8,9,2,6,7}

87

Therefore
1 2 3 45 6 7 8 9 10 11 12

10 11 12 3 541 8 9 2 6 7

af =
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When N is mapped for the sixth time, the sixth permutation denoted by o4 is obtained as
follows;

0;=(10 11 1235418926 7)

Cy ={10,3,1,2},Cy = {11,5,8,6},C5 = {12,4,9,7}
Then,

P2 = {{10,3,1,2},{11,5,8,6}, {12,4,9,7}}
Taking the union,we obtain

VP2 ={11,5,8,6,12,4,9,7,10,3,1,2}

Therefore
1 234 5 67 8 9 10 11 12

11 58 6 12 4 9 7 10 3 1 2
The next permutation denoted by a7 is obtained when N undergoes the seventh permutation

Qg =

as follows;
as=(115861249710312)
Cy ={11,6,9,3},Cy = {5,12,7,1},C5 = {8,4, 10,2}
Then,
P2 = {{11,6,9,3},{5,12,7,1},{8,4,10,2}}
Taking the union,we obtain
P2 = {5,12,7,1,8,4,10,2,11,6,9, 3}

Therefore
1 2 3456 7 8 9 10 11 12

512 7 18 4 10 2 11 6 9 3
When N undergoes the next permutation, we obtain g as follows;

a7=(512718410211693)
C) = {5,1,10,6},Cy = {12,8,2,9}, Cy — {7, 4, 11,3} Then,
P2 = {{5,1,10,6}, {12.8,2, 9}, {7,4, 11,3} }

Qy =

Taking the union,we obtain
P2 ={12,8,2,9,7,4,11,3,5,1,10,6}

«

Therefore
1 23 456 7 89 10 11 12

12829741 35 1 10 6

The ninth permutation is obtained as follows:
a8:<128297411351106)
Cy = {12,9,11,1},Cy = {8,7,3,10}, Cs = {2,4,5,6})

ag =
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Then,
P12 = {{12,9,11,1},{8,7,3,10},{2,4,5,6}
Taking the union,we obtain
CIP2) = {8,7,3,10,2,4,5,6,12,9,11, 1}

Therefore
123 4 567 8 9 10 11 12

8 73 10 2 456 12 9 1 1
When N undergoes the tenth permutation, we obtain o, as follows;

aw=(87310245612911)
C1 =1{8,10,5,9},Cy, = {7,2,6,11},C5 = {3,4,12,1}
Then,
P2 ={{8,10,5,9},{7,2,6,11},{3,4,12,1}}
Taking the union,we obtain

P2 ={7,2,6,11,3,4,12,1,8,10,5,9}

Qg =

Therefore
1 2 3 4 56 7 8 9 10 11 12

7 12 6 11 3 4 12 1 8 10 5 9
When N undergoes the eleventh permutation, we obtain «; as follows;

a=(7126 11 3 41218105 9)

Cy = {7,11,12,10}, Gy = {2,3,1,5}, Cy — {6,4,8,9}
Then,

P2 — ({7,11,12,10},{2,3, 1,5}, {6,4,8,0}}

@10

10 =

Taking the union,we obtain

P[P2]=1{2,3,1,5,6,4,8,9,7,11,12,10}

Therefore
1234567 89 10 11 12

23156489711 12 10
From the second category of permutations, we obtain twelve unique permutations, that is,

11 =

N2 = {ap, a1, as, as, a4, a5, ag, a7, g, g, 1o, Q11 }-
The third category of permutations is obtained, when we consider k = 4, ¢ = 3, t is the middle
position and

N:{123456789101112131415}

Therefore,
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1234567 89 10 11 12 13 14 15

123456789 10 11 12 13 14 15
When N undergoes the first permutation, we obtain «; as shown below:

Oéo=<123456789101112131415)

Cy = {1,4,7,10,13},C, = {2,5,8,11,14},C3 = {3,6,9,12, 15}
Then,

PY% = {{1,4,7,10,13},{2,5,8,11,14},{3,6,9,12,15}}

@Q

Qo =

Taking the union,we obtain
LIPY] = {3,6,9,12,15,1,4,7,10,13,2,5,8, 11, 14}

Therefore
123 4 5 6 7 8 9 10 11 12 13 14 15

3691215147 1013 2 5 8 11 14
When N undergoes the next mapping we obtain permutation o, as shown below;

0412(369121514710132581114)

C1 =1{3,12,4,13,8},Cy = {6,15,7,2,11},C3 = {9,1,10, 5, 14}
Then,

PP = {{3,12,4,13,8},{6,15,7,2,11},{9, 1,10, 5,14} }

] =

Taking the union,we obtain
PIPY] = {9,1,10,5,14,3,12,4,13,8,6,15,7,2, 11}

Therefore
12 3 4 5 6 7 8 9 10 11 12 13 14 15

91 10 5 14 3 12 4 13 8 6 15 7 2 11
N undergoes the third permutation, we obtain a3 as shown below;

042=<911051431241386157211)

¢y ={9,5,12,8,7}, Cy = {1,14,4,6,2}, C5 = {10,3,13,15,11}
Then,

Poltg’ = {{9, 9,12, 8, 7}, {1, 14, 4, 6,2}7 {10, 3,13, 15, 11}}

g =

Taking the union,we obtain
CIPY) ={9,5,12,8,7,1,14,4,6,2,10,3,13,15,11}

Therefore
12 3 456 7 8 9 10 11 12 13 14 15

951287114 46 2 10 3 13 15 11
The fourth permutation denoted by o is obtained when N undergoes the fourth permutation

g3 =

as shown below;
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a3:(951287114462103131511)
Cy ={9,8,14,2,13}, Cy = {5,7,4,10,15},Cs = {12,1,6,3,11}
Then,
PY ={{9,8,14,2,13},{5,7,4,10,15},{12,1,6,3,11}}
Taking the union,we obtain
C[PY] ={9,8,14,2,13,5,7,4,10,15,12,1,6,3, 11}

Therefore
12 3 4 5 6 7 8 9 10 11 12 13 14 15

9 8 14 2 1357 410 1512 1 6 3 11
When N goes through the fifth permutation, we obtain a; as shown below;

a4=(981421357410151216311)

Ch=1{9,2,7,15,6},Cy = {8,13,4,12,3},Cy = {14,5,10,1,11}
Then,

P> ={{9,2,7,15,6},{8,13,4,12,3},{14,5,10, 1,11} }
Taking the union,we obtain

VPP =1{9,2,7,15,6,8,13,4,12,3,14,5,10, 1,11}

ay =

Therefore
123 4 56 7 8 9 10 11 12 13 14 15

927 156 8 13 412 3 14 5 10 1 11
The sixth permutation oy is obtained when the N undergoes the sixth mapping as shown

af =

below;
0452(927156813412314510111)
Cy = {9,15,13,3,10},Cy = {2,6,4,14,1},Cy = {7,8,12,5,11}
Then,
P! = {{9,15,13,3,10},{2,6,4, 14,1}, {7,8,12,5,11}}
Taking the union,we obtain
VPP ={9,15,13,3,10,2,6,4,14,1,7,8,12,5,11}

Therefore
1 2 3 4 5 67 8 9 10 11 12 13 14 15

9 15 13 3 10 2 6 4 14 1 7 8 12 5 11
The seventh permutation denoted by a7 is obtained when N undergoes the seventh permuta-

Qg =

tion as shown below;

a6=(915133102641417812511)
¢y ={9,3,6,1,12}, C, = {15,10,4,7,5}, C5 = {13,2,14,8,11}
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Then,
P> ={{9,3,6,1,12},{15,10,4,7,5},{13,2,14,8,11}}
Taking the union,we obtain
CIPY) ={9,3,6,1,12,15,10,4,7,5,13,2, 14,8, 11}

Therefore

Qr =

93 6112 15 10 4 7 5 13 2 14 8 11
From the third category of permutations, we obtain eight unique permutations, that is,

1234 5 6 789101112131415)

NP = {ag, a1, az, as, ay, as, ag, a7 b

Three categories of permutations have been generated in this section. Using the equivalence
relation introduced in section 2 we can present these permutations in terms of their cycles as
shown below:

When n = 9, the following permutations are obtained;

ao = (1)(2)(3)(4)(5)(6)(7)(8)(9)

ai=(139854)(267)

ww=(132)(465)(7938)

When n = 12, we have 12 permutations whose cycles are as follows;
ap = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

139264121 81°5)(7)
16481 72)(31012509)
J(29647311)(5108)(12)

9)(2 107 64)(3511)(8 12)

10211 64)(5)(8)(9)
11)(2512)(387910)(46)
5821237 1064)(911)
12649571 10)(283)
864109 12)(275)(3)(11)
(17 1298)(2)(364115)(10)
an=(123)(456)(789)(1011 12)

When n = 15, there are 8 permutations and their cycles are given below;
ap = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)
or=(13910 138741251514 11 2 6)
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5. ALGEBRAIC STRUCTURE OF THE Uzk -PERMUTATIONS

Here, we consider the Uzk -permutations with ¢ = m, where m is the middle position among
the n positions in set IV, and n € N is a product of two primes. In the next result, we prove
that this category of permutations form a group under permutation multiplication.

Theorem 5.1 Let n € N be a product of two primes and let N = {z1,xs, ..., z,}. Let m be the
element in the middle position of set N. Then for t = m, the set N} of all the | J;, -permutations on N
is a group under permutation multiplication. This group is abelian.

Proof

Clearly, N;! is closed under permutation multiplication for if o;, a; € N , then o, is
another permutation in N} .

Next, N is associative under permutation multiplication for if a;, o, cp, € N , then
ai(ajag) = (o) ay

Also, the permutation oy € N and is the identity permutation in N’ .

Finally, for every a; € N} , there must be a permutation o’ € NV, +. with ;0 = ap. That is,
every permutation in V! has an inverse in N . Thus, N is a group. This group is abelian
for we have o;a; = ajo; Vay, o € N . O

Corollary 5.2 The group N} is a subgroup of the group N,, of all permutations on N.

Proof

We have seen in theorem 2.2 that NV, is a group under permutation multiplication. we have
seen from corollary 4.3 that V]! is a subset of N,,,the set of all permutations on N. Also, we
have seen in theorem 5.1 that N is a group. Thus, we conclude that N is a subgroup of
N,. 0.

Three categories of permutations were considered for this category, that is, when n = 9,

n=15and n = 21.When ¢ = 3,m = 5and n = 9, then, z,, = x5 = 5. In this case we have:
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123456789

123456789
When N is mapped the first time, the first permutation denoted by «; is obtained as shown

Qo =

below;

w=(1234567809)

Cy ={1,4,7},Cy = {2,5,8},C5 = {3,6,9}
Then,

Pag0 ={{1,4,7},{2,5,8},{3,6,9}}
Taking the union,we obtain

UslPY] = {1,4,7,2,5,8,3,6,9}

Therefore
B 1 234567 89

] =
147258369
The set N = {a, 1} is a group whose group table is

TasLe 2. NY Group Table

Note that we have:
1234567809 1234567809
1=
l14725836 09 1472583609
(1234567809
1234567809
:ao

Clearly,this group is isomorphic to (Zs, +), for if we define a function ® : N — Z, by ®(o;) =i
for some i = 0, 1, then @ is clearly an isomorphism for we have ®(ay) = 0 and ®(ay) = 1. Note

that the cayley table for (Z,, +) is given by:
TasLE 3. Table for (Z,, +)
+]0 1

0]0 1
111 0
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When we consider m = 8, p = 3, x,,, = mg = 8 and n = 15, we obtain
N = { 12 3 4 5 6 7 8 9, 10, 11, 12, 13, 14, 15 }

Therefore,
1 23456 7 8 9 10 11 12 13 14 15

123456789 10 11 12 13 14 15
N undergoes the first permutation, we obtain the permutation «; as shown below.

ao=(123456789101112131415)

Cy={1,4,7,10,13},C, = {2,5,8,11,14},C5 = {3,6,9,12, 15}
Then,

Pollg’ ={{1,4,7,10,13},{2,5,8,11,14},{3,6,9,12, 15} }

Qo =

Taking the union,we obtain
s [P ={1,4,7,10,13,2,5,8,11,14,3,6,9,12, 15}

Therefore
123 4 5 67 8 9 10 11 12 13 14 15

147 10 13 2 5 8 11 14 3 6 9 12 15
When N undergoes the next permutation we obtain a; as shown below;

Oé1=(147101325811143691215)

¢y = {1,10,5,14,9}, C, = {4,13,8,3,12}, C5 = {7,2,11,6, 15}
Then,

P! ={{1,10,5,14,9},{4,13,8,3,12},{7,2,11,6,15} }

] =

Taking the union,we obtain
s [P ={1,10,5,14,9,4,13,8,3,12,7,2,11,6, 15}

Therefore
1 2 3 4 56 7 89 10 11 12 13 14 15

1105 14 9 413 83 12 7 2 11 6 15
N undergoes the next permutation and we obtain a3 as shown below;

OzQ:(l10514941383127211615>g

Cy ={1,14,13,12,11},Cy, = {10,9,8,7,6},C5 = {5, 4, 3,2, 15}
Then,

PY = {{1,14,13,12,11},{10,9,8,7,6}, {5,4,3,2,15}}

Qg =

Taking the union,we obtain
s [PY] ={1,14,13,12,11,10,19,8,7,6,5,4, 3,2, 15}

Therefore
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1 2 3 4 5 6 7 89 10 11 12 13 14 15

1 14 13 12 11 10 9 8 7 6 5 4 3 2 15
The fourth permutation denoted by a4 is obtained when N undergoes the next permutation

3 =

as shown below.
op=(114 1312 11 10 9 8 7 6 5 4 3 2 15 )
Cy = {1,12,9,6,3},Cy = {14,11,8,5,2}, C3 = {13,10,7,4, 15}
Then,
PY = {{1,12,9,6,3},{14,11,8,5,2},{13,10,7,4,15}}
Taking the union,we obtain
s [P ={1,12,9,6,3,14,11,8,5,2,13,10,7,4, 15}

Therefore

gy =

1 2 345 6 789101112131415)

112 9 6 3 14 11 8 5 2 13 10 7 4 15
When N goes through the fifth permutation we obtain «; as shown below;

a4:(112963141185213107415)
Cy ={1,6,11,2,7},Cy, = {12,3,8,13,4},C5 = {9, 14, 5,10, 15}
Then,
P ={{1,6,11,2,7},{12,3,8,13,4},{9,14,5,10,15}}
Taking the union,we obtain
$ [P ={1,6,11,2,7,12,3,8,13,4,9,14,5,10, 15}

Therefore

5=

123456789101112131415)

16 11 2 7 12 3 8 13 4 9 14 5 10 15
The set Ng® = {a, a1, s, a3, au, a5} is a group whose cayley table is as shown by Table 4

below:

Clearly, this group is isomorphic to (Zg, +), for if we define a function ® : Ng° — Zg by
®(a;) =i forsomei =0,1,2,3,4,5, then ® is clearly an isomorphism for we have ®(ay) =0,
Do) = 1 P(ag) = 2, P(ag) = 3, P(oy) = 4 and P(as) = 5. Note that the cayley table for
(Zg,+) is as shown in Table 5 below:

When m = 11, ¢ = 3 and n = 21, we obtain
N ={1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15, 16,17, 18,19, 20, 21}

Therefore,
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TaBLE 4. Ng° Group Table

O | g Y Qo (3 Q4 Op

Qo | g x;p Qg (3 Qg Q5
a1 |y o Q3 g4 G5 Qg
Qo | Qg (3 g Q5 Qo Q1
Q3| 3 g Q5 Qp ] Qo

Qg | g 05 Qo Q1 Qg O3

Q5 | 5 Qo Q1 Qg Q3 Oy

TaBLE 5. (Zg, +)

+/0 12 3 45
0/01 23 45
111 23 450
212 3 4501
3134501 2
41450123
5/50123 4

123456789 10 11 12 13 14 15 16 17 18 19 20 21

12345678910 11 12 13 14 15 16 17 18 19 20 21
N undergoes a permutation we obtain «; as shown below.

Oéo=<123456789101112131415161718192021)
Cy = {1,4,7,10,13,11,16,19}, C, = {2,5,8,11,14, 17,20}, C5 = {3,6,9, 12, 15,18, 21}
Then,
P2 = {{1,4,7,10,13,11,16,19}, {2, 5,8, 11, 14, 17,20}, {3,6,9, 12, 15,18, 21}}

Qo=

Taking the union,we obtain
2P = {1,4,7,10,13,11,16,19,2,5,8,11,14,17,20, 3,6,9, 12,15, 18,21}

Therefore
123 4 5 6 7 89 10 11 12 13 14 15 16 17 18 19 20 21

147 10 13 16 19 2 5 8 11 14 17 20 3 6 9 12 15 18 21
When N undergoes the next permutation we obtain a, as shown below;

a1=<147101316192581114172036912151821)

1=
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Cy = {1,10,19,8,17,6,15}, Cy = {4,13,2,11, 20,9, 18}, C5 = {7,16,5, 14, 3, 12, 21}
Then,

P2 = {{1,10,19,8,17,6,15},{4,13,2,11,20,9,18}, {7,16,5, 14, 3,12,21}}
Taking the union,we obtain

2P2 = {1,10,19,8,17,6,15,4,13,2,11,20,9, 18,7, 16, 5, 14, 3,12, 21}

Therefore
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

110 19 8 17 6 15 4 13 2 11 20 9 18 7 16 5 14 3 12 21
When N undergoes the next permutation we obtain a3 as shown below;

042=<110198176154132112091871651431221)
¢y ={1,8,15,2,9,16,3}, Co = {10,17,4,11,18,5, 12}, C5 = {19,6,13, 20,7, 14,21}
Then,
P2 = {{1,8,15,2,9,16,3}, {10,17,4,11,18,5,12},{19,6,13,20, 7, 14,21} }
Taking the union,we obtain

2P ={1,8,15,2,9,16,3,10,17,4,11,18,5,12,19, 6,13, 20,7, 14, 21}

9=

Therefore
12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 8 152 9 16 3 10 17 4 11 18 5 12 19 6 13 20 7 14 21
The set N7l = {ag, a1, oo, a3} is a group whose group is shown below:

3=

TasLe 6. N Group Table

o | g (1 Q9 O3

Qp | g 1 Q9 (O3
Qp |0y G2 a3 Qg

Qg | i (3 (O O

Qg |3 Gy Q1 Q2

Clearly,this group is isomorphic to (Zs, +).

For if we define a function ® : N3 — Z, by ®(a; = i) for some i = 0, 1,2, 3, then ® is clearly
an isomorphism for we have ®(ay) = 0, ®(a1) = 1, (ap) = 2 and ®(c3) = 3. Note that the
cayley table for (Z4, +) is as shown below:

In this section, we have considered a class of permutations forming a group. Three categories
are considered and their cycles are provided below.

When n = 9, there are two permutations. Their cycles are given below:
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TaBLE 7. (Z4,+)

+/01 23
0{01 2 3
111230
212301
313012

ao = (1)(2)(3)(4)(5)(6)(7)(8)(9)

w=(1)(24)(2 7)(5) (s 8)(5)

When n = 15, there are six permutations and their cycles are shown below:

o = (1)(2)(3)(4)(5)(6)(7) (8)(9)(10) (11) (12)(13)(14) (15)

ai=(1)(241014126)(37513911)(8)(15)
wo=(1)(21012)(359)(4146)(71311)(8)(15)
a=(1)(214)(313)(412)(51)(610)(79)(8)(15)
aw=(1)(21012)(359)(4146)(7131)(8)(15)
as=(1)(261214104)(31191357)(8)(15)

When n = 21, there are four permutations and their cycles are shown below:
ap = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)

ai=(1)(24108)(371915)(513179)(616)(11)
(12 14 20 18)(21)
19)(48)(517)(6)(715)(9 13)(11)
)( )

:=(1)(110)(3
(12 20 ) (14 18)
197)(59 17 13)(6 16)(11)

(16
as=(1)(28 10 4)(
)

(7 18 20 14 ) (21

. CoNCLUSIONS AND RECOMMENDATIONS

In sections 4 and 5, two classes of permutations are generated. In section 4, examples of per-
mutations not forming a group are presented while section 5 presents a class of permutations
forming a group. The generated permutations have also been presented in terms of their cycles.
It would be interesting to further analyze these permutations with an aim of determining
more properties like the nature of their signatures among other properties. A study of the

graphs resulting from these permutations may also reveal more of their properties.
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