
Asia Pac. J. Math. 2020 7:16

ON CLASSIFICATION OF PERMUTATIONS
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Abstract. Some researchers in combinatorics have developed permutation algorithms using
different approaches. We contribute to this area by developing a formula for generating per-
mutations whereby, starting with an identity permutation, each succeeding permutation is a
composition on the preceding one. We also determine the conditions by which the resulting
permutations form a group.
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1. Introduction

In this paper, we develop an algorithm for generating permutations whereby the initial
permutation is the identity permutation and a composition rule is derived for computing
the succeeding permutations. In the second section, we review permutations and show that
the set of all permutations is a group under permutation multiplication. In section three, we
present some developed permutation algorithms while in section four we present our results
on permutation algorithm. In section five we give some algebraic properties of the generated
permutations.

2. Permutations

A bijection is a mapping that is both one-to-one (hereby called an injection) and onto (hereby
called a surjection). A permutation of a finite set X is a function α : X → X such that α is a
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bijection. For example, if X = {1, 2, 3}, then a mapping α : X → X such that 1α = 3, 2α = 1

and 3α = 2 is a permutation of X , and is written as:

α =

 1 2 3
3 1 2

 , or simply α =
(

3 1 2
)

In lemma 2.1, we show that composition of two permutations is a binary operation.
Lemma 2.1 LetX be a finite set and let αi, αj be any two permutations onX . Then their composition,

written as αiαj , is another permutation on X .
Proof

Indeed, αiαj is an injection, for if x1(αiαj)=x2(αiαj), that is, if (x1αi)αj=(x2αi)αj , then
x1αi=x2αi (since αj is one-to-one). But this implies that x1 = x2 since αi is also a bijection.
Next, αiαj is a surjection since whenever x3 ∈ X , then there must exist an x2 ∈ X for which
x2αj = x3 (since αj is onto X). Also, since αi is onto X , then there exists an x1 ∈ X such that
x1αi = x2. Thus, x2αj = (x1αi)αj = x3, or x1(αiαj) = x3, and therefore, whenever x3 ∈ X
there must exist an x1 ∈ X for which x1(αiαj) = x3, and so αiαj is onto. Since αiαj is both
one-to-one and onto, we then conclude that it is a bijection and, consequently, is a permutation
on X . �

The binary operation in the above lemma is called permutation multiplication. As an example,
if

αi =

 1 2 3
2 3 1

 and αj =

 1 2 3
3 2 1

,

are two permutations on X , then αiαj is the permutation obtained as follows:

αiαj =

 1 2 3
2 3 1

 1 2 3
3 2 1

 =

 1 2 3
2 1 3

.

If X has n elements, then there are n! unique permutations on X .
In theorem 2.2, it is shown that the set of all permutations on a set X is a group under

permutation multiplication.
Theorem 2.2 [1]. Let X be a non-empty set. Then the collection of all permutations on X is a

group under permutation multiplication.

Proof

We have seen in lemma 2.1 that permutation multiplication is a binary operation. Thus, if
we denote the set of all permutations on X by P , then P is closed under this operation.

Now, permutation multiplication is defined as function composition, which is known to be
associative. Next, there is a permutation α0 ∈ P for which xα0 = x for all x ∈ X . α0 acts as the
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identity in P . Finally, for a permutation αi ∈ P, the inverse function α−1i is the permutation
that reverses the direction of the mapping αi. Thus, xα−1i is the element x′ of X for which
x′αi = x. The existence of exactly one such an element xi is a consequence of the fact that, as a
function, α−1i is a bijection. Thus, every member of P has an inverse in P . Since P satisfies all
the group axioms, we then conclude that it is a group. �

The above group is called the symmetric group onX and we shall denote it by Sn. This group
is non-abelian.

In the ongoing example with X = {1, 2, 3}, S3 has 3! = 6 members. These are given below:

α0 =

 1 2 3
1 2 3

; α1 =

 1 2 3
2 3 1

; α2 =

 1 2 3
3 1 2

;

α3 =

 1 3 2
3 2 1

; α4 =

 1 2 3
3 2 1

; α5 =

 1 2 3
2 1 3

.

Thus, (S3, ◦) is a groupwhereS3 = {α0, α1, α2, α3, α4, α5}withα0 as the identity permutation
and ◦ denote the permutation multiplication. This group is non-abelian. The group table for
(S3, ◦) is given below:

Table 1. (S3, ◦) Group Table

◦ α0 α1 α2 α3 α4 α5

α0 α0 α1 α2 α3 α4 α5

α1 α1 α2 α0 α4 α5 α3

α2 α2 α0 α1 α5 α3 α4

α3 α3 α5 α4 α0 α2 α1

α4 α4 α3 α5 α1 α0 α2

α5 α5 α4 α3 α2 α1 α0

Theorem 2.3 [1]. Every group is isomorphic to a group of permutations.
A relation between non-empty sets E and F is a subset R of E × F . We read (e, f) ∈ R as “e

is related to f” and write eRf .
If X is a non-empty set, an equivalence relation on X is a subset ∼ of X ×X which satisfies

the following properties for all x, y, z ∈ X :
i. Reflexive: x ∼ x

ii. Symmetry: x ∼ y =⇒ y ∼ x

iii. Transitive: x ∼ y and y ∼ z =⇒ x ∼ z
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An example of equivalence relation is the congruence modulo n for a positive integer n . If
n ∈ N+, define a relation ∼ : Z × Z =⇒ Z by h ∼ k(modn) if and only if h − k = nt for
some t ∈ Z. Then h ∼ h(modn) since h − h = n(0) and 0 ∈ Z. Thus ∼ is reflexive. Next, if
h ∼ k(modn), then h− k = nt for some t ∈ Z. But this shows that k − h = n(−t) and −t ∈ Z

whenever t ∈ Z. So k ∼ h(modn) and this shows that ∼ is symmetric. Finally, let h ∼ k(modn)

and k ∼ l(modn). Then h− k = ns and k− l = nt for some s, t ∈ Z. Adding the two equations
we obtain h− l = n(s+ t) and s+ t ∈ Z whenever s, t ∈ Z. Therefore, h ∼ l(modn) and this
shows that ∼ is transitive. So we conclude that ∼ is an equivalence relation on Z.
The equivalence relation in the above example is denoted by ” ≡ ”, that is, h ≡ k(modn) if

and only if h− k = nt for some t ∈ Z. It is employed in developing a permutation algorithm
in section four.
Each permutation α on a set X determines a natural partition of X into cells with the

property that xi, xj ∈ X are in the same cell if and only if xj = xiα
n for some n ∈ Z. This

partition is established by the following equivalence relation:
For each xi, xj ∈ X , let xi ∼ xj if and only if xj = xiα

n for some n ∈ Z. Then ∼ is clearly an
equivalence relation on X . Indeed, we have;
Reflexivity: xi ∼ xi since xi = xi I = xiα

0

Symmetry: If xi ∼ xj , then xj = xiα
n. But this implies that xi = xjα

−n and −n ∈ Z whenever
n ∈ Z. Thus, xj ∼ xi.
Transitivity: Suppose that xi ∼ xj and xj ∼ xk. Then xi = xjα

n and xj = xkα
m for some

m,n ∈ Z. Therefore, xi = (xkα
n)αm = xkα

m+n and m + n ∈ Z whenever m,n ∈ Z. Thus,
xi ∼ xk.
If α is a permutation of X , then the equivalence classes in X determined by the above

equivalence relation are the orbits of α.
A permutation α ∈ Sn is a cycle if it has at most one orbit containing more than one element.

The length of a cycle is the number of elements in its orbit. A cycle of length 2 is called a
transposition.

Theorems 2.4, 2.5 and 2.6 below give some properties of permutations.
Theorem 2.4 [1]. Every permutation of a non-empty set is a product of disjoint cycles.

Corollary 2.5 [1]. Any permutation of a finite set of at least two elements is a product of transposi-

tions.
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Theorem 2.6 [1]. No permutation in Sn can be expressed both as a product of an even number of

transpositions and as a product of an odd number of transpositions.
A permutation of a finite set is even or odd according to whether it can be expressed as a

product of an even number of transpositions or a product of an odd number of transpositions
respectively.

Theorem 2.7 [1]. If n ≥ 2 is the number of elements in X , then the group of all even permutations

of X is a subgroup of Sn of order n!
2
.

The subgroup of Sn described in theorem 2.7 is called the alternating group on X and is
denoted by An.

3. Permutations Algorithms

Let Q = {q1, q2, ..., qn−1} be a sequence such that qi = +1 or qi = −1. A permutation with
signature Q is a permutation α = x1, x2, ..., xn of the integers 1, 2, ..., n such that xi < xi+1

if q1 = +1 or xi > xi+1 if q1 = −1 for all i = 1, 2, ..., n − 1. An alternating permutation is a
permutation with signature Q = (+1,−1, ..., (−1)i+1, ...).

Some researchers have worked on the problem of enumerating permutations with a given
signature. The problem of generating all permutations with a given signature is equivalent to
the problem of generating all topological sorting of a poset whose Hasse diagram is a path.
D. Roulants and F. Ruskey [2] in 1992 presented the first constant average time algorithm

for generating all permutations with a given signature.
G. Sypro [3] in 2001 presented a new derivation of an enumeration formula for permutations

of a given signature. They used random number sequences which mimic the permutations, in
the sense that they rise and fall as determined by the permutation’s signature.

A permutation α = (1α, 2α, ..., nα) of n integers 1, 2, ..., n is said to have a rising sequence if
iα < (i+ 1)α < ... < (i+ k)α. A falling sequence is defined similarly.
H. O. Foulkes [4], in 1970 described a method by which the enumeration of permutations

of 1, 2, ..., n with a prescribed sequence A of rises and falls, or a prescribed sequence B of
inversions of orders, or with both A and B, is effected in terms of numbers derived from the
representation theory of the symmetric group.

N. Dershowitz [5], in 1975 presented an algorithm for generating permutations that generate
the next permutation by reversing a certain suffix of its predecessor. A large number of
generating functions for permutation statistics can be obtained by applying homomorphisms
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to simple symmetric function identities. In particular, a large number of generating functions
involving the number of descents of a permutation α , denoted des(α), arises in this way.

F. Breuti [6],in 2000 introduced and studied a class of symmetric functions that depend on
a parameter q, which include symmetric functions.

For a given finite set A of positive integers, J. Rammel and M. Riehl [7] in 2010 developed a
method to produce similar generating functions for the set of permutations of the symmetric
group An whose descent set contains A.

The literature in this section motivates us to develop a permutation generating algorithm as
a way of contributing to this topic. Our results are contained in sections four and five.

4. Development of ∪nxk-Permutations

In this section, a class of permutations is obtained by first coming up with a mapping on a
finite set. It is then proved that this mapping is a bijection and hence it is a permutation. Some
examples of permutations are then provided.
Let N be a finite set of ordered objects, say N = {x1, x2, x3, ..., xn} for some n ∈ N. Fix

α0 = (x1 x2 x3 ... xn). For some q ∈ N and such that q divides n, partition N into q cells, that
is, C1, C2, ..., Cq, whereby xi ∈ Cj if and only if i ≡ j(modq). Let the partition of N allocates
members of N into the cells Cj for j = 1, 2, ..., q in a manner that their relative positions in N
is preserved.Therefore, we obtain a partition P n

α0
= {Cj : xi ∈ Cj if and only if i ≡ j(modq)}

For a fixed xk ∈ N , the union ⋃n
xk

of the cells in P n
α0

is obtained as follows:⋃n
xk

[P n
α0

] =
⋃q
j=1{Cj : Cr is at fixed position t if xk ∈ Cr},

where t = 1, 2, ..., q. Again, the union of the cells Cj for j = 1, 2, ..., q are such that the relative
positions of the cells in P n

α0
are preserved.

Let ⋃n
xk

[P n
α0

] = α1. Repeat the above process in succession to obtain α2, α3.... etc. We thus
obtain a mapping⋃n

xk
: N → N such that:⋃n

xk
[N ] = α1⋃n

xk
[P n
α1

] = α2

...⋃n
xk

[P n
αs−1

] = αs
...
Theorem 4.1 The mapping⋃n

xk
: N → N described above is a permutation in N .

Proof
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We need to show that ⋃n
xk

is a bijection on N . First,⋃n
xk

is one-to-one for if xi, xj ∈ N with⋃n
xk

(xi) =
⋃n
xk

(xj), then xi = xj necessarily for there are no instances where distinct members
of N are mapped to identical members of N under⋃n

xk
. Thus⋃n

xk
is one-to-one.

Next,⋃n
xk

is ontoN since everymember ofN is some⋃n
xk
-image of amember inN . Therefore,

we conclude that⋃n
xk

is a permutation on N . �

Notation 4.2: We shall denote the set of all such permutations on N by Nn
xk

and call them
the ⋃n

xk
-permutations.

Corollary 4.3 The set of all
⋃n
xk
-permutations on N is a subset of Nn, the set of all permutations on

N .

Proof

Now, from theorem 4.1, if α ∈ Nn
xk

then α is a permutation on N and hence α ∈ Nn, the set
of all permutations on N . �

Three categories of permutations are considered for construction, that is, when n = 9, n = 12

and n = 15. To obtain the first category of permutations, we consider q = 3, k = 4 n = 9 and t
is the middle position.

Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Note that here xk = x4 = 4. Then
α0 =

(
1 2 3 4 5 6 7 8 9

)
Therefore,

α0 =

 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9


When N is mapped the first time, the first permutation denoted by α1 is obtained as shown
below:
α0 =

(
1 2 3 4 5 6 7 8 9

)
C1 = {1, 4, 7}, C2 = {2, 5, 8}, C3 = {3, 6, 9}

Then,
P 9
α0

= {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}

Taking the union,we obtain⋃9
4[P

9
α0

] = {3, 6, 9, 1, 4, 7, 2, 5, 8}

Therefore

α1 =

 1 2 3 4 5 6 7 8 9
3 6 9 1 4 7 2 5 8


A mapping of α1 yields the second permutation denoted by α2. This is possible after

partitioning it into three cells as follows:
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α1 =
(

3 6 9 1 4 7 2 5 8
)

C1 = {3, 1, 2}, C2 = {6, 4, 5}, C3 = {9, 7, 8}

Then,
P 9
α1

= {{3, 1, 2}, {6, 4, 5}, {9, 7, 8}}

Taking the union, we obtain⋃9
4[P

9
α1

] = {3, 1, 2, 6, 4, 5, 9, 7, 8}

Therefore

α2 =

 1 2 3 4 5 6 7 8 9
3 1 2 6 4 5 9 7 8


From the first category, we obtain three unique permutations, that is;
N9

4 = {α0, α1, α2}.
Constructing the second category of permutations, we consider n = 12, k = 4, q = 3, t

is the middle position, and N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Again, xk = x4 = 4. Since
N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, then we have

α0 =

 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12


WhenN is mapped for the first time, the first permutation denoted by α1 is obtained as follows;
α0 =

(
1 2 3 4 5 6 7 8 9 10 11 12

)
C1 = {1, 4, 7, 10}, C2 = {2, 5, 8, 11}, C3 = {3, 6, 9, 12}

Then,
P 12
α0

= {{1, 4, 7, 10}, {2, 5, 8, 11}, {3, 6, 9, 12}}

Taking the union,we obtain⋃12
4 [P 12

α0
] = {3, 6, 9, 12, 1, 4, 7, 10, 2, 5, 8, 11}

Therefore

α1 =

 1 2 3 4 5 6 7 8 9 10 11 12
3 6 9 12 1 4 7 10 2 5 8 11


The next permutation denoted by α2 is obtained when N undergoes the second permutation
as follows;
α1 =

(
3 6 9 12 1 4 7 10 2 5 8 11

)
C1 = {3, 12, 7, 5}, C2 = {6, 1, 10, 8}, C3 = {9, 4, 2, 11}

Then,
P 12
α1

= {{3, 12, 7, 5}, {6, 1, 10, 8}, {9, 4, 2, 11}}

Taking the union,we obtain
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4 [P 12

α1
] = {6, 1, 10, 8, 9, 4, 2, 11, 3, 12, 7, 5}

Therefore

α2 =

 1 2 3 4 5 6 7 8 9 10 11 12
6 1 10 8 9 4 2 11 3 12 7 5


When N undergoes the next permutation, we obtain α3 as follows:
α2 =

(
6 1 10 8 9 4 2 11 3 12 7 5

)
C1 = {6, 8, 2, 12}, C2 = {1, 9, 11, 7}, C3 = {10, 4, 3, 5}

Then,
P 12
α2

= {{6, 8, 2, 12}, {1, 9, 11, 7}, {10, 4, 3, 5}}

Taking the union,we obtain⋃12
4 [P 12

α2
] = {1, 9, 11, 7, 10, 4, 3, 5, 6, 8, 2, 12}

Therefore

α3 =

 1 2 3 4 5 6 7 8 9 10 11 12
1 9 11 7 10 4 3 5 6 8 2 12


The fourth permutation is obtained as follows:
α3 =

(
1 9 11 7 10 4 3 5 6 8 2 12

)
C1 = {1, 7, 3, 8}, C2 = {9, 10, 5, 2}, C3 = {11, 4, 6, 12}

Then,
P 12
α3

= {{1, 7, 3, 8}, {9, 10, 5, 2}, {11, 4, 6, 12}}

Taking the union,we obtain⋃12
4 [P 12

α3
] = {9, 10, 5, 2, 11, 4, 6, 12, 1, 7, 3, 8}

Therefore

α4 =

 1 2 3 4 5 6 7 8 9 10 11 12
9 10 5 2 11 4 6 12 1 7 3 8


When N undergoes the fifth permutation, we obtain α5 as follows;
α4 =

(
9 10 5 2 11 4 6 12 1 7 3 8

)
C1 = {9, 2, 6, 7}, C2 = {10, 11, 12, 3}, C3 = {5, 4, 1, 8}

Then,
P 12
α4

= {{9, 2, 6, 7}, {10, 11, 12, 3}, {5, 4, 1, 8}}

Taking the union,we obtain⋃12
4 [P 12

α4
] = {10, 11, 12, 3, 5, 4, 1, 8, 9, 2, 6, 7}

Therefore

α5 =

 1 2 3 4 5 6 7 8 9 10 11 12
10 11 12 3 5 4 1 8 9 2 6 7
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When N is mapped for the sixth time, the sixth permutation denoted by α6 is obtained as
follows;
α5 =

(
10 11 12 3 5 4 1 8 9 2 6 7

)
C1 = {10, 3, 1, 2}, C2 = {11, 5, 8, 6}, C3 = {12, 4, 9, 7}

Then,
P 12
α5

= {{10, 3, 1, 2}, {11, 5, 8, 6}, {12, 4, 9, 7}}

Taking the union,we obtain⋃12
4 [P 12

α5
] = {11, 5, 8, 6, 12, 4, 9, 7, 10, 3, 1, 2}

Therefore

α6 =

 1 2 3 4 5 6 7 8 9 10 11 12
11 5 8 6 12 4 9 7 10 3 1 2


The next permutation denoted by α7 is obtained when N undergoes the seventh permutation
as follows;
α6 =

(
11 5 8 6 12 4 9 7 10 3 1 2

)
C1 = {11, 6, 9, 3}, C2 = {5, 12, 7, 1}, C3 = {8, 4, 10, 2}

Then,
P 12
α6

= {{11, 6, 9, 3}, {5, 12, 7, 1}, {8, 4, 10, 2}}

Taking the union,we obtain⋃12
4 [P 12

α6
] = {5, 12, 7, 1, 8, 4, 10, 2, 11, 6, 9, 3}

Therefore

α7 =

 1 2 3 4 5 6 7 8 9 10 11 12
5 12 7 1 8 4 10 2 11 6 9 3


When N undergoes the next permutation, we obtain α8 as follows;
α7 =

(
5 12 7 1 8 4 10 2 11 6 9 3

)
C1 = {5, 1, 10, 6}, C2 = {12, 8, 2, 9}, C3 = {7, 4, 11, 3} Then,
P 12
α7

= {{5, 1, 10, 6}, {12, 8, 2, 9}, {7, 4, 11, 3}}

Taking the union,we obtain⋃12
4 [P 12

α7
] = {12, 8, 2, 9, 7, 4, 11, 3, 5, 1, 10, 6}

Therefore

α8 =

 1 2 3 4 5 6 7 8 9 10 11 12
12 8 2 9 7 4 11 3 5 1 10 6


The ninth permutation is obtained as follows:
α8 =

(
12 8 2 9 7 4 11 3 5 1 10 6

)
C1 = {12, 9, 11, 1}, C2 = {8, 7, 3, 10}, C3 = {2, 4, 5, 6}}
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Then,
P 12
α8

= {{12, 9, 11, 1}, {8, 7, 3, 10}, {2, 4, 5, 6}

Taking the union,we obtain⋃12
4 [P 12

α8
] = {8, 7, 3, 10, 2, 4, 5, 6, 12, 9, 11, 1}

Therefore

α9 =

 1 2 3 4 5 6 7 8 9 10 11 12
8 7 3 10 2 4 5 6 12 9 1 1


When N undergoes the tenth permutation, we obtain α10 as follows;
α9 =

(
8 7 3 10 2 4 5 6 12 9 1 1

)
C1 = {8, 10, 5, 9}, C2 = {7, 2, 6, 11}, C3 = {3, 4, 12, 1}

Then,
P 12
α9

= {{8, 10, 5, 9}, {7, 2, 6, 11}, {3, 4, 12, 1}}

Taking the union,we obtain⋃12
4 [P 12

α9
] = {7, 2, 6, 11, 3, 4, 12, 1, 8, 10, 5, 9}

Therefore

α10 =

 1 2 3 4 5 6 7 8 9 10 11 12
7 12 6 11 3 4 12 1 8 10 5 9


When N undergoes the eleventh permutation, we obtain α11 as follows;
α10 =

(
7 12 6 11 3 4 12 1 8 10 5 9

)
C1 = {7, 11, 12, 10}, C2 = {2, 3, 1, 5}, C3 = {6, 4, 8, 9}

Then,
P 12
α10

= {{7, 11, 12, 10}, {2, 3, 1, 5}, {6, 4, 8, 9}}

Taking the union,we obtain⋃12
4 [P 12

α10
] = {2, 3, 1, 5, 6, 4, 8, 9, 7, 11, 12, 10}

Therefore

α11 =

 1 2 3 4 5 6 7 8 9 10 11 12
2 3 1 5 6 4 8 9 7 11 12 10


From the second category of permutations, we obtain twelve unique permutations, that is,

N12
4 = {α0, α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11}.

The third category of permutations is obtained, when we consider k = 4, q = 3, t is the middle
position and
N =

{
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

}
Therefore,
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α0 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


When N undergoes the first permutation, we obtain α1 as shown below:
α0 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

)
C1 = {1, 4, 7, 10, 13}, C2 = {2, 5, 8, 11, 14}, C3 = {3, 6, 9, 12, 15}

Then,
P 15
α0

= {{1, 4, 7, 10, 13}, {2, 5, 8, 11, 14}, {3, 6, 9, 12, 15}}

Taking the union,we obtain⋃15
4 [P 15

α0
] = {3, 6, 9, 12, 15, 1, 4, 7, 10, 13, 2, 5, 8, 11, 14}

Therefore

α1 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 6 9 12 15 1 4 7 10 13 2 5 8 11 14


When N undergoes the next mapping we obtain permutation α2 as shown below;
α1 =

(
3 6 9 12 15 1 4 7 10 13 2 5 8 11 14

)
C1 = {3, 12, 4, 13, 8}, C2 = {6, 15, 7, 2, 11}, C3 = {9, 1, 10, 5, 14}

Then,
P 15
α1

= {{3, 12, 4, 13, 8}, {6, 15, 7, 2, 11}, {9, 1, 10, 5, 14}}

Taking the union,we obtain⋃15
4 [P 15

α1
] = {9, 1, 10, 5, 14, 3, 12, 4, 13, 8, 6, 15, 7, 2, 11}

Therefore

α2 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 1 10 5 14 3 12 4 13 8 6 15 7 2 11


N undergoes the third permutation, we obtain α3 as shown below;
α2 =

(
9 1 10 5 14 3 12 4 13 8 6 15 7 2 11

)
C1 = {9, 5, 12, 8, 7}, C2 = {1, 14, 4, 6, 2}, C3 = {10, 3, 13, 15, 11}

Then,
P 15
α2

= {{9, 5, 12, 8, 7}, {1, 14, 4, 6, 2}, {10, 3, 13, 15, 11}}

Taking the union,we obtain⋃15
4 [P 15

α2
] = {9, 5, 12, 8, 7, 1, 14, 4, 6, 2, 10, 3, 13, 15, 11}

Therefore

α3 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 5 12 8 7 1 14 4 6 2 10 3 13 15 11


The fourth permutation denoted by α4 is obtained when N undergoes the fourth permutation
as shown below;
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α3 =
(

9 5 12 8 7 1 14 4 6 2 10 3 13 15 11
)

C1 = {9, 8, 14, 2, 13}, C2 = {5, 7, 4, 10, 15}, C3 = {12, 1, 6, 3, 11}

Then,
P 15
α3

= {{9, 8, 14, 2, 13}, {5, 7, 4, 10, 15}, {12, 1, 6, 3, 11}}

Taking the union,we obtain⋃15
4 [P 15

α3
] = {9, 8, 14, 2, 13, 5, 7, 4, 10, 15, 12, 1, 6, 3, 11}

Therefore

α4 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 8 14 2 13 5 7 4 10 15 12 1 6 3 11


When N goes through the fifth permutation, we obtain α5 as shown below;
α4 =

(
9 8 14 2 13 5 7 4 10 15 12 1 6 3 11

)
C1 = {9, 2, 7, 15, 6}, C2 = {8, 13, 4, 12, 3}, C3 = {14, 5, 10, 1, 11}

Then,
P 15
α4

= {{9, 2, 7, 15, 6}, {8, 13, 4, 12, 3}, {14, 5, 10, 1, 11}}

Taking the union,we obtain⋃15
4 [P 15

α4
] = {9, 2, 7, 15, 6, 8, 13, 4, 12, 3, 14, 5, 10, 1, 11}

Therefore

α5 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 2 7 15 6 8 13 4 12 3 14 5 10 1 11


The sixth permutation α6 is obtained when the N undergoes the sixth mapping as shown
below;
α5 =

(
9 2 7 15 6 8 13 4 12 3 14 5 10 1 11

)
C1 = {9, 15, 13, 3, 10}, C2 = {2, 6, 4, 14, 1}, C3 = {7, 8, 12, 5, 11}

Then,
P 15
α5

= {{9, 15, 13, 3, 10}, {2, 6, 4, 14, 1}, {7, 8, 12, 5, 11}}

Taking the union,we obtain⋃15
4 [P 15

α5
] = {9, 15, 13, 3, 10, 2, 6, 4, 14, 1, 7, 8, 12, 5, 11}

Therefore

α6 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 15 13 3 10 2 6 4 14 1 7 8 12 5 11


The seventh permutation denoted by α7 is obtained when N undergoes the seventh permuta-
tion as shown below;
α6 =

(
9 15 13 3 10 2 6 4 14 1 7 8 12 5 11

)
C1 = {9, 3, 6, 1, 12}, C2 = {15, 10, 4, 7, 5}, C3 = {13, 2, 14, 8, 11}
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Then,
P 15
α6

= {{9, 3, 6, 1, 12}, {15, 10, 4, 7, 5}, {13, 2, 14, 8, 11}}

Taking the union,we obtain⋃15
4 [P 15

α6
] = {9, 3, 6, 1, 12, 15, 10, 4, 7, 5, 13, 2, 14, 8, 11}

Therefore

α7 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 3 6 1 12 15 10 4 7 5 13 2 14 8 11


From the third category of permutations, we obtain eight unique permutations, that is,

N15
4 = {α0, α1, α2, α3, α4, α5, α6, α7}.
Three categories of permutations have been generated in this section. Using the equivalence

relation introduced in section 2 we can present these permutations in terms of their cycles as
shown below:

When n = 9, the following permutations are obtained;
α0 = (1)(2)(3)(4)(5)(6)(7)(8)(9)

α1 =
(

1 3 9 8 5 4
) (

2 6 7
)

α2 =
(

1 3 2
)
( 4 6 5 )

(
7 9 8

)
When n = 12, we have 12 permutations whose cycles are as follows;
α0 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

α1 =
(

1 3 9 2 6 4 12 11 8 10 5
) (

7
)

α2 =
(

1 6 4 8 11 7 2
) (

3 10 12 5 9
)

α3 =
(

1
)
( 2 9 6 4 7 3 11 ) ( 5 10 8 )

(
12
)

α4 =
(

1 9
)
( 2 10 7 6 4 ) ( 3 5 11 )

(
8 12

)
α5 =

(
1 10 2 11 6 4

)
( 5 ) ( 8 )

(
9
)

α6 =
(

1 11
)
( 2 5 12 ) ( 3 8 7 9 10 )

(
4 6

)
α7 =

(
1 5 8 2 12 3 7 10 6 4

) (
9 11

)
α8 =

(
1 12 6 4 9 5 7 11 10

) (
2 8 3

)
α9 =

(
1 8 6 4 10 9 12

)
( 2 7 5 ) ( 3 )

(
11
)

α10 =
(

1 7 12 9 8
)
( 2 ) ( 3 6 4 11 5 )

(
10
)

α11 =
(

1 2 3
)
( 4 5 6 ) ( 7 8 9 )

(
10 11 12

)
When n = 15, there are 8 permutations and their cycles are given below;
α0 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)

α1 =
(

1 3 9 10 13 8 7 4 12 5 15 14 11 2 6
)
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α2 =
(

1 9 13 7 12 15 11 6 3 10 8 4 5 14 2
)

α3 =
(

1 9 6
)

( 2 5 7 14 15 11 10 )( 3 12 )( 4 8 )
(

13
)

α4 =
(

1 9 10 15 11 12
)

( 2 8 4 )( 3 14 )( 5 13 6 )
(

7
)

α5 =
(

1 9 12 7 5 6 8 4 15 11 14
)
( 2 )

(
3 7 13 10

)
α6 =

(
1 9 14 5 10

)
( 2 15 11 7 6 )

(
3 13 12 8 4

)
α7 =

(
1 9 7 10 5 12 2 3 6 15 11 13 14 8 4

)

5. Algebraic Structure of the⋃n
xk
-Permutations

Here, we consider the⋃n
xk
-permutations with t = m, wherem is the middle position among

the n positions in set N , and n ∈ N is a product of two primes. In the next result, we prove
that this category of permutations form a group under permutation multiplication.

Theorem 5.1 Let n ∈ N be a product of two primes and let N = {x1, x2, ..., xn}. Let m be the

element in the middle position of set N . Then for t = m, the set Nn
xm of all the

⋃n
xm

-permutations on N

is a group under permutation multiplication. This group is abelian.
Proof

Clearly, Nn
xm is closed under permutation multiplication for if αi, αj ∈ Nn

xm , then αiαj is
another permutation in Nn

xm .
Next, Nn

xm is associative under permutation multiplication for if αi, αj, αk ∈ Nn
xm , then

αi(αjαk) = (αiαj)αk

Also, the permutation α0 ∈ Nn
xm and is the identity permutation in Nn

xm .
Finally, for every αi ∈ Nn

xm , there must be a permutation αi′ ∈ Nn
xm with αiαi′ = α0. That is,

every permutation in Nn
xm has an inverse in Nn

xm . Thus, Nn
xm is a group. This group is abelian

for we have αiαj = αjαi ∀αi, αj ∈ Nn
xm . �

Corollary 5.2 The group Nn
xm is a subgroup of the group Nn of all permutations on N .

Proof

We have seen in theorem 2.2 that Nn is a group under permutation multiplication. we have
seen from corollary 4.3 that Nn

xm is a subset of Nn,the set of all permutations on N . Also, we
have seen in theorem 5.1 that Nn

xm is a group. Thus, we conclude that Nn
xm is a subgroup of

Nn. �.
Three categories of permutations were considered for this category, that is, when n = 9,

n = 15 and n = 21.When q = 3,m = 5 and n = 9, then, xm = x5 = 5. In this case we have:
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α0 =

 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9


When N is mapped the first time, the first permutation denoted by α1 is obtained as shown
below;
α0 =

(
1 2 3 4 5 6 7 8 9

)
C1 = {1, 4, 7}, C2 = {2, 5, 8}, C3 = {3, 6, 9}

Then,
P 9
α0

= {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}

Taking the union,we obtain⋃9
5[P

9
α0

] = {1, 4, 7, 2, 5, 8, 3, 6, 9}

Therefore

α1 =

 1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9


The set N9

5 = {α0, α1} is a group whose group table is

Table 2. N9
5 Group Table

◦ α0 α1

α0 α0 α1

α1 α1 α0

Note that we have:

α1α1=
 1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

 1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9


=

 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9


= α0

Clearly,this group is isomorphic to (Z2,+), for if we define a function Φ : N9
5 → Z2 by Φ(αi) = i

for some i = 0, 1, then Φ is clearly an isomorphism for we have Φ(α0) = 0 and Φ(α1) = 1. Note
that the cayley table for (Z2,+) is given by:

Table 3. Table for (Z2,+)

+ 0 1
0 0 1
1 1 0
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When we considerm = 8, p = 3, xm = m8 = 8 and n = 15, we obtain
N =

{
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

}
Therefore,

α0 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


N undergoes the first permutation, we obtain the permutation α1 as shown below.
α0 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

)
C1 = {1, 4, 7, 10, 13}, C2 = {2, 5, 8, 11, 14}, C3 = {3, 6, 9, 12, 15}

Then,
P 15
α0

= {{1, 4, 7, 10, 13}, {2, 5, 8, 11, 14}, {3, 6, 9, 12, 15}}

Taking the union,we obtain⋃15
8 [P 15

α0
] = {1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15}

Therefore

α1 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 4 7 10 13 2 5 8 11 14 3 6 9 12 15


When N undergoes the next permutation we obtain α2 as shown below;
α1 =

(
1 4 7 10 13 2 5 8 11 14 3 6 9 12 15

)
C1 = {1, 10, 5, 14, 9}, C2 = {4, 13, 8, 3, 12}, C3 = {7, 2, 11, 6, 15}

Then,
P 15
α1

= {{1, 10, 5, 14, 9}, {4, 13, 8, 3, 12}, {7, 2, 11, 6, 15}}

Taking the union,we obtain⋃15
8 [P 15

α1
] = {1, 10, 5, 14, 9, 4, 13, 8, 3, 12, 7, 2, 11, 6, 15}

Therefore

α2 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 10 5 14 9 4 13 8 3 12 7 2 11 6 15


N undergoes the next permutation and we obtain α3 as shown below;
α2 =

(
1 10 5 14 9 4 13 8 3 12 7 2 11 6 15

)
g

C1 = {1, 14, 13, 12, 11}, C2 = {10, 9, 8, 7, 6}, C3 = {5, 4, 3, 2, 15}

Then,
P 15
α2

= {{1, 14, 13, 12, 11}, {10, 9, 8, 7, 6}, {5, 4, 3, 2, 15}}

Taking the union,we obtain⋃15
8 [P 15

α2
] = {1, 14, 13, 12, 11, 10, 19, 8, 7, 6, 5, 4, 3, 2, 15}

Therefore
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α3 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 14 13 12 11 10 9 8 7 6 5 4 3 2 15


The fourth permutation denoted by α4 is obtained when N undergoes the next permutation
as shown below.
α3 =

(
1 14 13 12 11 10 9 8 7 6 5 4 3 2 15

)
C1 = {1, 12, 9, 6, 3}, C2 = {14, 11, 8, 5, 2}, C3 = {13, 10, 7, 4, 15}

Then,
P 15
α3

= {{1, 12, 9, 6, 3}, {14, 11, 8, 5, 2}, {13, 10, 7, 4, 15}}

Taking the union,we obtain⋃15
8 [P 15

α3
] = {1, 12, 9, 6, 3, 14, 11, 8, 5, 2, 13, 10, 7, 4, 15}

Therefore

α4 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 12 9 6 3 14 11 8 5 2 13 10 7 4 15


When N goes through the fifth permutation we obtain α5 as shown below;
α4 =

(
1 12 9 6 3 14 11 8 5 2 13 10 7 4 15

)
C1 = {1, 6, 11, 2, 7}, C2 = {12, 3, 8, 13, 4}, C3 = {9, 14, 5, 10, 15}

Then,
P 15
α4

= {{1, 6, 11, 2, 7}, {12, 3, 8, 13, 4}, {9, 14, 5, 10, 15}}

Taking the union,we obtain⋃15
8 [P 15

α4
] = {1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15}

Therefore

α5=
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6 11 2 7 12 3 8 13 4 9 14 5 10 15


The set N15

8 = {α0, α1, α2, α3, α4, α5} is a group whose cayley table is as shown by Table 4
below:
Clearly, this group is isomorphic to (Z6,+), for if we define a function Φ : N15

8 → Z6 by
Φ(αi) = i for some i = 0, 1, 2, 3, 4, 5, then Φ is clearly an isomorphism for we have Φ(α0) = 0,
Φ(α1) = 1 Φ(α2) = 2, Φ(α3) = 3, Φ(α4) = 4 and Φ(α5) = 5. Note that the cayley table for
(Z6,+) is as shown in Table 5 below:

Whenm = 11, q = 3 and n = 21, we obtain

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

Therefore,
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Table 4. N15
8 Group Table

◦ α0 α1 α2 α3 α4 α5

α0 α0 α1 α2 α3 α4 α5

α1 α1 α2 α3 α4 α5 α0

α2 α2 α3 α4 α5 α0 α1

α3 α3 α4 α5 α0 α1 α2

α4 α4 α5 α0 α1 α2 α3

α5 α5 α0 α1 α2 α3 α4

Table 5. (Z6,+)

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

α0=
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21


N undergoes a permutation we obtain α1 as shown below.
α0 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

)
C1 = {1, 4, 7, 10, 13, 11, 16, 19}, C2 = {2, 5, 8, 11, 14, 17, 20}, C3 = {3, 6, 9, 12, 15, 18, 21}

Then,
P 21
α0

= {{1, 4, 7, 10, 13, 11, 16, 19}, {2, 5, 8, 11, 14, 17, 20}, {3, 6, 9, 12, 15, 18, 21}}

Taking the union,we obtain⋃21
11[P

21
α0

] = {1, 4, 7, 10, 13, 11, 16, 19, 2, 5, 8, 11, 14, 17, 20, 3, 6, 9, 12, 15, 18, 21}

Therefore

α1=
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 4 7 10 13 16 19 2 5 8 11 14 17 20 3 6 9 12 15 18 21


When N undergoes the next permutation we obtain α2 as shown below;
α1 =

(
1 4 7 10 13 16 19 2 5 8 11 14 17 20 3 6 9 12 15 18 21

)
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C1 = {1, 10, 19, 8, 17, 6, 15}, C2 = {4, 13, 2, 11, 20, 9, 18}, C3 = {7, 16, 5, 14, 3, 12, 21}

Then,
P 21
α1

= {{1, 10, 19, 8, 17, 6, 15}, {4, 13, 2, 11, 20, 9, 18}, {7, 16, 5, 14, 3, 12, 21}}

Taking the union,we obtain⋃21
11[P

21
α1

] = {1, 10, 19, 8, 17, 6, 15, 4, 13, 2, 11, 20, 9, 18, 7, 16, 5, 14, 3, 12, 21}

Therefore

α2=
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 10 19 8 17 6 15 4 13 2 11 20 9 18 7 16 5 14 3 12 21


When N undergoes the next permutation we obtain α3 as shown below;
α2 =

(
1 10 19 8 17 6 15 4 13 2 11 20 9 18 7 16 5 14 3 12 21

)
C1 = {1, 8, 15, 2, 9, 16, 3}, C2 = {10, 17, 4, 11, 18, 5, 12}, C3 = {19, 6, 13, 20, 7, 14, 21}

Then,
P 21
α2

= {{1, 8, 15, 2, 9, 16, 3}, {10, 17, 4, 11, 18, 5, 12}, {19, 6, 13, 20, 7, 14, 21}}

Taking the union,we obtain⋃21
11[P

21
α2

] = {1, 8, 15, 2, 9, 16, 3, 10, 17, 4, 11, 18, 5, 12, 19, 6, 13, 20, 7, 14, 21}

Therefore

α3=
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 8 15 2 9 16 3 10 17 4 11 18 5 12 19 6 13 20 7 14 21


The set N21

11 = {α0, α1, α2, α3} is a group whose group is shown below:

Table 6. N21
11 Group Table

◦ α0 α1 α2 α3

α0 α0 α1 α2 α3

α1 α1 α2 α3 α0

α2 α2 α3 α0 α1

α3 α3 α0 α1 α2

Clearly,this group is isomorphic to (Z4,+).
For if we define a function Φ : N21

11 → Z4 by Φ(αi = i) for some i = 0, 1, 2, 3, then Φ is clearly
an isomorphism for we have Φ(α0) = 0, Φ(α1) = 1, Φ(α2) = 2 and Φ(α3) = 3. Note that the
cayley table for (Z4,+) is as shown below:
In this section, we have considered a class of permutations forming a group. Three categories
are considered and their cycles are provided below.
When n = 9, there are two permutations. Their cycles are given below:
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Table 7. (Z4,+)

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

α0 = (1)(2)(3)(4)(5)(6)(7)(8)(9)

α1 =
(

1
)(

2 4
)(

3 7
)(

5
)(

6 8
)(

9
)

When n = 15, there are six permutations and their cycles are shown below:
α0 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)

α1 =
(

1
)(

2 4 10 14 12 6
)(

3 7 5 13 9 11
)(

8
)(

15
)

α2 =
(

1
)(

2 10 12
)(

3 5 9
)(

4 14 6
)(

7 13 11
)(

8
)(

15
)

α3 =
(

1
)(

2 14
)(

3 13
)(

4 12
)(

5 11
)(

6 10
)(

7 9
)(

8
)(

15
)

α4 =
(

1
)(

2 10 12
)(

3 5 9
)(

4 14 6
)(

7 13 11
)(

8
)(

15
)

α5 =
(

1
)(

2 6 12 14 10 4
)(

3 11 9 13 5 7
)(

8
)(

15
)

When n = 21, there are four permutations and their cycles are shown below:
α0 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)

α1 =
(

1
)(

2 4 10 8
)(

3 7 19 15
)(

5 13 17 9
)(

6 16
)(

11
)

(
12 14 20 18

)(
21
)

α2 =
(

1
)(

1 10
)(

3 19
)(

4 8
)(

5 17
)(

6
)(

7 15
)(

9 13
)(

11
)

(
12 20

)(
14 18

)(
16
)(

21
)

α3 =
(

1
)(

2 8 10 4
)(

3 15 19 7
)(

5 9 17 13
)(

6 16
)(

11
)

(
7 18 20 14

)(
21
)
6. Conclusions and Recommendations

In sections 4 and 5, two classes of permutations are generated. In section 4, examples of per-
mutations not forming a group are presented while section 5 presents a class of permutations
forming a group. The generated permutations have also been presented in terms of their cycles.
It would be interesting to further analyze these permutations with an aim of determining
more properties like the nature of their signatures among other properties. A study of the
graphs resulting from these permutations may also reveal more of their properties.
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