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The African catfish Clarias gariepinus (Burchell, 1822) is 
an important food resource for local livelihoods in Kenya. 
Larvae provide seeding material for pond-based aquacul-
ture, and also serve as bait in the Lake Victoria Nile perch 
Lates niloticus longline fishery. In Kenya, C. gariepinus 
is second only to Nile tilapia Oreochromis niloticus as a 
preferred finfish species in aquaculture. In smallholder 
production systems, C. gariepinus is grown in polycul-
ture with O. niloticus to control the prolific recruitment 
of O. niloticus (Musa et al. 2012). The current product-
ivity of catfishes is potentially diminished by uncontrolled 
crossbreeding, while their future is threatened by overfishing 
(Aloo 2003), habitat degradation and the introduction of 
exotic species (Goudswaard and Witte 1997). 

Crossbreeding can result from several actions. Clarias 
propagation at major hatcheries in Kenya is based on the 
indiscriminate collection of males from wild habitats, which 
are often from different drainage basins (JEB pers. obs.). 
These males are sacrificed for their pituitary glands for 
injection into brooders, a practice that leads to a shortage 
of male brood stock. This could lead to unintended 

mixing of populations and affect the genetic distinct-
ness of catfish resources in the lake basin of Kenya. This 
is especially important because from 2011 to 2012 the 
number of catfish hatcheries in Kenya increased signifi-
cantly from five to 29, through the government-funded fish 
farming enterprise productivity programme, to boost food 
security and incomes among communities. Out-crossing 
is also done intentionally by many hatcheries to restore 
genetic variation in stocks after having been maintained 
at a hatchery for many generations. In this regard, van 
der Bank et al. (1992) and Wachirachaikarn et al. (2009) 
confirmed that out-crossing of a hatchery population of 
C. gariepinus with an unrelated population increases 
genetic variation of the hatchery population. While this is 
beneficial in the short term, the introduction of new individ-
uals to the hatchery may alter the local catfish gene pool 
and potentially result in out-breeding depression (Edmands 
2006). Consequently, such brood stock may show lowered 
productivity in aquaculture, as seen for example in the 
lower survival of larval catfish. The genetic distinctness of 
wild populations may also be compromised by escapee 
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The African catfish Clarias gariepinus is an important species in the rapidly expanding aquaculture industry in 
East Africa. Most Kenyan catfish farmers use stocks with unknown genetic characteristics, with uncertified seeds 
and inter-basin exchange of brood stocks threatening the genetic distinctness of wild populations. Using 346 base 
pairs of D-loop sequence variation, genetic diversity and gene flow between C. gariepinus populations from Lake 
Victoria and its satellite, Lake Kanyaboli, were explored. A total of 17 haplotypes were identified in 52 individuals 
sampled, with the two populations sharing four haplotypes, and one haplotype being the most frequent (50%) 
in both populations. Catfish from Lake Victoria showed marginally higher genetic variation compared to those 
from Lake Kanyaboli, reflected in the higher number of haplotypes, singletons, polymorphic sites and haplotype 
and nucleotide diversities. Yet neither population showed signs of significant loss of diversity compared to other 
wild populations of the species. Clarias gariepinus from Lakes Victoria and Kanyaboli clustered into one clade, 
showing low population structuring and with a between-population FST value of 0.026, which was not indicative 
of significant (p ≥ 0.05) differentiation between the two lakes. Nevertheless, each population contained 60–64% 
of unique haplotypes. Inter-basin transfer of Clarias populations and human impact on Lake Kanyaboli should be 
controlled to conserve the unique Clarias genetic resources in the lake basin of Kenya.
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farmed catfish, or the human-mediated inter-basin transfer 
of catfish populations. Introgression of exotic catfish 
genetic material into native catfish genomes interrupts 
locally-adapted gene complexes, which compromises the 
evolutionary potential of the local population (Rhymer and 
Simberloff 1996). 

Overutilisation is evident from the fact that a total of three 
million catfish baits are required daily by fishermen on the 
Kenyan side of Lake Victoria (National Frame Surveys 
Working Group 2006). The attractiveness of C. gariepinus 
fry as baits for L. niloticus is because of its higher survival 
on hooks, enabling the re-use of baits, and its artificial 
propagation at hatcheries reduces pressure on natural 
populations. At the price of about US$0.12 per bait, consid-
erable opportunities exist for catfish farmers to improve their 
livelihoods. However, the large demand for catfish seeds in 
the lake basin is not met by hatchery or farm propagation of 
Clarias, forcing bait traders to collect larvae from the wild, a 
practice that is unsustainable. 

As a strategy to conserve the native cichlids of the Lake 
Victoria Basin, Kaufman and Ochumba (1993) suggested 
the artificial propagation of C. gariepinus to provide baits, 
instead of using cichlids. Low survival of C. gariepinus 
larvae is a common problem in tropical aquaculture (de 
Graaf et al. 1995; Sulem et al. 2006). This has been attrib-
uted to poor diets and predators (Nyina-Wamwiza et al. 
2010; Chepkirui-Boit et al. 2011), and poor water quality, 
occasioning a critical shortage of seeds and the underdevel-
opment of aquaculture (Sulem et al. 2006; Musa et al. 2012). 
However, the use of C. gariepinus brood stock of admixed 
ancestry may also be contributing to the lower survival of 
larvae. Average production of C. gariepinus may potentially 
increase if farmers use brooders of higher genetic diversity. 
Similarly, higher genetic diversity in C. gariepinus may be 
applied in a genetic improvement programme targeting 
commercially important traits such as the survival of larvae, 
growth rate or fecundity, to increase output by farmers. 

Competition to C. gariepinus arose from the introduc-
tion of exotic Nile perch L. niloticus into Lake Victoria in 
the 1950s and 1960s, which caused the decline of indige-
nous catfish species through intense predation pressure 
(Goudswaard and Witte 1997). Although the population 
of the ecologically dominant C. gariepinus still exists in 
the lake, and has even recently shown signs of recovery 
(Njiru et al. 2002), smaller indigenous clariid species such 
as Clarias liocephalus and Clarias alluaudi were extirpated 
by L. niloticus predation (Goudswaard and Witte 1997), 
and are no longer landed on the Kenyan side of the lake. 
A reduction in the population size of a species is known 
to lower genetic variation through the bottleneck effect 
(Frankham 1996). 

The current study investigated genetic variation, popula-
tion structure and gene flow among conspecific populations 
of C. gariepinus from Lakes Victoria and Kanyaboli, Kenya. 
In light of the human activities that threaten indigenous 
fish species in the Lake Victoria Basin (Aloo 2003) and the 
decimation of clariid catfishes of Lake Victoria by L. niloticus 
predation (Goudswaard and Witte 1997), there is a need to 
document extant genetic variation in C. gariepinus to inform 
conservation measures and aquaculture ventures. Here, 

we report on the use of mitochondrial D-loop sequences to 
study variation in African catfish. 

Materials and methods

Study sites and sample collection
Samples of C. gariepinus were collected from Lakes 
Kanyaboli (LKG; 00°04′30′′ N, 34°09′36′′ E) and Victoria 
(LVG – Kobala beach, Kendu Bay; 34°38′ E, 0°21′ S) 
(Figure 1). The sample sizes of the fish collected were 24 
and 28 for the LVG and LKG populations, respectively. All 
the sampled fish were adults, with LVG samples ranging 
from 15.2 to 56.0 cm in length and 47.3 to 510.6 g in body 
weight. The LKG samples ranged from 28.5 to 56.7 cm in 
length, and 141 to 850 g in weight. Lake Kanyaboli (surface 
area 10.5 km2) is a satellite of Lake Victoria (69 000 km2) 
and is the most remote of that lake’s three satellites (Mavuti 
1992). Dense papyrus swamps and sand pits inhibit faunal 
exchange between the two lakes (Abila et al. 2008). No 
records of L. niloticus have been documented in Lake 
Kanyaboli, supporting the notion that the lake has been 
completely separated from Lake Victoria at least since 
the 1950s, when L. niloticus was first introduced into Lake 
Victoria. We also sampled individuals of C. liocephalus from 
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Figure 1: Map of lake basin of Kenya showing sampling sites for 
Clarias gariepinus in Lakes Victoria (Kobala beach) and Kanyaboli 
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Lake Kanyaboli, to serve as an outgroup for phylo genetic 
analysis. Fish samples were collected from both lakes by 
gillnetting. Identification keys for field studies (Witte and 
van Densen 1995) were used for species identification. 
Fin clips were collected as sources of DNA, and immedi-
ately preserved in 95% ethanol in clean cryovial tubes until 
laboratory genetic studies were done. 

DNA extraction
Genomic DNA was extracted from approximately 25 mg 
of fin clip tissue, using the Invitrogen PureLink genomic 
DNA mini kit (cat. no. K1820-02), used according to the 
manufacturer’s instructions. The purity and concentration of 
eluted DNA was determined by spectrophotometry using a 
Nanodrop Spectrophotometer 2000. The DNA was stored at 
20 °C until required for further analysis.

PCR amplification 
The mitochondrial D-loop was PCR amplified in a thermal 
cycler (ABI 9700) using the following primers: forward primer 
L16473 (5′-CTAAAAGCATCGGTCTTGTAATCC-3′); reverse 
primer H355 (5′-CCTGAAATGAGGAGGAACCAGATG-3′) 
(Nazia et al. 2010). The control region has a high rate of 
base substitution and changes in the genome are accumu-
lated here faster, making the region suitable for addressing 
questions of population genetic variation (Meyer 1994). The 
PCR reactions were done using AccuPower® PCR premix 
(Bioneer Corporation), in a 20 μl volume containing 10 μM 
each of forward and reverse primers, and 50 ng DNA. The 
PCR conditions were as described by Nazia et al. (2010) 
and PCR success was confirmed by 1.6% agarose gel 
electrophoresis of PCR products. The PCR products were 
purified by ethanol precipitation (Uthice and Benzie 2003). 
Precipitated DNA was washed once with 70% ethanol, 
air-dried for 20 min, resuspended in 20 μl of distilled water 
and stored at 20 °C. The D-loop forward- and reverse 
primers yielded sequences of closely comparable quality 
and length, and the reverse primer H355 was randomly used 
to sequence the PCR product of the D-loop region. The 
BigDye terminator premix sequencing kit (cat. no. 4336911; 
Applied Biosystems | Life Technologies) was used for 
sequencing reactions, following the manufacturer’s protocol. 
Products of sequence reaction were cleaned by precipita-
tion in absolute alcohol, resuspended in Hi DiTM formamide, 
and BigDye terminator premix, and run on an Applied 
Biosystems 3730xl automated sequencer with a capillary 
length of 50 cm. 

Data analysis
The DNA sequences were aligned, assembled and trimmed 
using BioEdit software v. 7.0.9 (Hall 2005). Duplicate 
haplotypes were identified using DNASP (version 5) 
(Librado and Rozas 2009). Genetic diversity within popula-
tions was determined as the number of distinct haplotypes, 
haplotype frequencies and nucleotide diversities, using 
DNASP and ARLEQUIN (v. 3.5) (Excoffier et al. 2005). 
The ARLEQUIN software was also used to determine 
genetic differentiation between groups, expressed as FST 
(Wright 1965). A maximum likelihood tree, with C. lioceph-
alus as outgroup, was drawn using MEGA v. 6.0.6 (Tamura 

et al. 2007), with 1 000 bootstrap repeats. Modeltest 3.7 
(Posada and Crandall 1998) was used to choose the most 
likely model of evolution for the Clarias mtDNA dataset. 
A minimum spanning network showing the relationship 
between haplotypes was drawn using Network 4.56, with a 
median-joining approach (Bandelt et al. 1999).

Results

After sequence alignment and trimming of ambiguous 
sequenced areas, a 346 base pair length of the D-loop 
region was consistently available for statistical analysis. 
A total of 17 distinct haplotypes based on 25 polymor-
phic sites were identified in 52 individuals of C. gariepinus 
sampled. These sequences were submitted to the GenBank 
database (accession numbers KC 594181–594232).

Genetic diversity
Nucleotide diversity was slightly higher in the Lake Victoria 
population than in the Lake Kanyaboli population (0.008 
compared to 0.005) (Table 1). Similarly, LVG had slightly 
more haplotypes (11) than LKG (10), translating into a 
marginally higher haplotype diversity of 0.754 in LVG 
compared to LKG, which had 0.741. Four haplotypes 
(haplotypes 1, 4, 6 and 9) were shared between the two 
populations; with a total of 13 singletons out of the 17 
haplotypes detected in the two populations of C. gariepinus 
(7 singletons in LVG and 6 in LKG).

Differentiation and phylogenetic relationships between 
populations
The FST value between the two C. gariepinus populations was 
0.026, with an associated p-value that was not indicative of 
significant (p ≥ 0.05) differentiation. Results from Modeltest 
showed that variation in the C. gariepinus sequences is 
best described by the Tamura–Nei model of evolution 
(Tamura and Nei 1993). In the phylogenetic tree constructed 
using the maximum likelihood approach with an outgroup 
(C. liocephalus [accession number KC 594233]), LKG 
and LVG haplotypes clustered into a single clade, and the 
outgroup clustered differently into its own clade (Figure 2). 
Haplotype 1, the most frequent, with a total of 26 (50%) 
individuals of LKG (14 samples) and LVG (12 samples), is 
the most centrally-located in the spanning network, from 
which all the other haplotypes radiate. This shows that 

Population LVG LKG
Sample size 24 28
Nucleotide diversity () 0.008 ± 0.002 0.005 ± 0.001
Number of haplotypes 11 10
Number of singletons 7 6
Haplotype diversity (h) 0.754 ± 0.093 0.741 ± 0.064
Number of polymorphic sites 14 11

Table 1: Nucleotide () and haplotype (h) diversities and number 
of haplotypes, singletons and polymorphic sites in populations of 
Clarias gariepinus from Lakes Victoria (LVG) and Kanyaboli (LKG), 
Kenya. Data based on mitochondrial D-loop region sequence 
analyses (346 bp) of C. gariepinus populations
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0.05

Clarias liocephalus
Hap 17 LVG (1)

Hap 9 LKG/LVG (1/1)
Hap 15 LVG (1)
Hap 7 LKG (3)
Hap 2 LKG (3)

Hap 4 LKG/LVG (1/2)

Hap 5 LKG (1)
Hap 8 LKG (1)

Hap 14 LVG (1)

Hap 11 LVG (1)
Hap 13 LVG (1)

Hap 12 LVG (1)
Hap 3 LKG (1)

Hap 6 LKG/LVG (1/2)

Hap 16 LVG (1)
Hap 1 LKG/LVG (14/12)
Hap 10 LKG (2)

96

99

99

11

74
75

Figure 2: Maximum likelihood tree indicating relationships among mitochondrial D-loop haplotypes of Clarias gariepinus from Lakes Victoria 
(LVG) and Kanyaboli (LKG), with an individual of C. liocephalus as an outgroup. Numbers in parentheses represent the frequency of 
haplotype in samples of LVG and LKG. Numbers at nodes indicate confidence levels, based on 1 000 bootstrap iterations

Key
LVG

LKG

H13

H11

H6 H16 H3
H17 H9

H8

H5 H2

H7

H15

H14

H12
H10

H1

Figure 3: Minimum spanning network showing relationships between haplotypes of Clarias gariepinus from Lakes Victoria (LVG) and 
Kanyaboli (LKG). Circle size proportional to haplotype frequency. Circle fill indicates sampling locations. The shorter cross-lines indicate 
mutational steps, with a single cross-line denoting one mutational step

haplotype 1 is the ancestral variant, to which other haplotypes 
for both populations were connected with one to two substitu-
tions or mutational steps (Figure 3) (Bandelt et al. 1999). 

Discussion

Genetic variation
The level of genetic variation in the Lake Victoria population 

of C. gariepinus was marginally higher compared to the 
level in Lake Kanyaboli, with haplotype diversities of 0.754 
and 0.741, respectively, and nucleotide diversities of 0.008 
and 0.005, respectively. These haplotype diversity values 
were slightly lower than values of 0.904–0.941 reported for 
South African populations of C. gariepinus (Roodt-Wilding 
et al. 2010), but more closely comparable to the nucleo-
tide diversity values of 0.006–0.022 reported by the latter 
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authors. Since the values for the South African popula-
tions were obtained from extensive river systems with 
many tributaries, whereas the Kenyan values are from 
panmictic populations in lakes, the real level of diversity in 
C. gariepinus from the Kenyan lakes and the South African 
populations are probably very similar. This suggests that 
representative levels of diversity in Lakes Victoria and 
Kanyaboli have been largely preserved, despite pressure 
resulting from exploitation and isolation.

Indigenous clariid catfishes of Lake Victoria, including C. 
gariepinus, suffered dramatic declines in population sizes 
in the 1980s and early 1990s due to predation from the 
exotic L. niloticus (Goudswaard and Witte 1997). Therefore, 
the LVG population could be expected to have a reduced 
level of genetic variation resulting from a possible popula-
tion bottleneck. However, this study reports representative 
genetic variation for LVG. Retention of representative levels 
of high genetic diversity of the LVG population was probably 
boosted by a number of factors. The large size of the Lake 
Victoria water mass, estimated at 69 000 km2 in surface 
area, implies that the LVG population is large, which would 
provide a buffer against any bottleneck, despite predation 
by L. niloticus. Furthermore, the temporary demographic 
dominance of L. niloticus in Lake Victoria coincided with 
substantial changes in ecology of the lake, due to changes 
in land use and intense human pressure in the catchment. 
Increased nutrient input favoured the expansion of water 
hyacinth Eichhornia crassipes (Muggide et al. 2005), 
which created anoxic conditions suitable to C. gariepinus 
but restrictive to L. niloticus (Njiru et al. 2002), leading to a 
decline in biomass of L. niloticus in the lake. The growth of 
exotic water hyacinth mats also provided feeding, breeding 
and nursery grounds for C. gariepinus and also reduced 
fishing pressure, as beach seining could not be carried out 
in hyacinth-mat dominated waters, leading to a resurgence 
of C. gariepinus. At the same time, the stock biomass of 
L. niloticus showed signs of decline (LVFRP 2001), due to 
overfishing (Kayanda et al. 2009) and a market demand 
for small-sized fish (Odada et al. 2004). This decline in 
the abundance of L. niloticus probably reduced predation 
pressure on C. gariepinus in the lake, leading to its 
demographic increase. 

Although sampling for C. gariepinus in Lake Victoria was 
done from only one part of the lake, the resultant levels 
of genetic diversity would be representative of the entire 
population of C. gariepinus in the lake, since the larger 
water mass would harbour a larger population size, with 
relatively higher levels of genetic diversity. A similar study 
on cichlids of the Lake Victoria region sampled some cichlid 
fish species from a single location in the lake (Booton et al. 
1999).

Lake Kanyaboli is recognised as an important refugium 
for the indigenous ichthyofauna of the Lake Victoria Basin 
(Abila et al. 2004, 2008; Angienda et al. 2011), and has not 
been invaded by L. niloticus (Aloo 2003). Clarias gariepinus 
in this lake has therefore not suffered a decline in popula-
tion size induced by predation pressure from L. niloticus. 
However, the genetic diversity of C. gariepinus in this lake 
can be expected to be lower than that of Lake Victoria due 
to fragmentation and population size. At 10.5 km2, Lake 
Kanyaboli is a fraction of the size of Lake Victoria, with a 

catfish population that may be expected to number propor-
tionally less, and to harbour a somewhat lower diversity in 
C. gariepinus haplotypes. This, together with high fishing 
pressure (Aloo 2003), may have led to slightly lower genetic 
variation here than in the Lake Victoria population. Fishing 
pressure is reported to lower genetic variation in fish 
species (Hauser et al. 2002). 

Genetic connectivity
The FST value between LKG and LVG suggested a lack of 
significant genetic differentiation between the two popula-
tions, with a value of 0.026 compared to FST values of 
0.0786–0.901 reported among pairs of South African 
C. gariepinus (Roodt-Wilding et al. 2010) using the same 
gene region. High similarity between LKG and LVG 
was also supported by the maximum likelihood tree for 
haplotypes (Figure 2), in which haplotypes for LKG and LVG 
clustered together into a single clade, and the haplotype 
network. Freshwater fish species often display high levels 
of geographic structuring because of limited dispersal 
abilities (Gyllensten 1985) or the presence of barriers to 
dispersal in freshwater habitats. The absence of signifi-
cant drift reported in this study could be attributed to the 
higher historical dispersal ability of the species, through the 
connection of the two lakes by the Yala swamp, anthropo-
genic translocation of fish samples across streams and 
drainage basins for aquaculture, and the trade in catfish 
baits for use in the L. niloticus longline fishery in Lake 
Victoria (see above). Clariid catfishes usually have high 
dispersal ability because, in nature in flooded conditions, 
they move to floodplains to breed during the rainy season. 
This movement to different habitats is also favoured by 
their ability to breathe atmospheric oxygen, so the species 
even survives in habitats with low dissolved oxygen. We 
hypothesise that this migratory behaviour, together with 
the connection of the two lakes by the Yala swamp, could 
be a source of the gene flow between the LKG and LVG 
populations. Furthermore, the movement of wild live baits 
from Lake Kanyaboli by traders for use in the Lake Victoria 
L. niloticus longline fishery could also be contributing to 
gene flow between the LKG and LVG populations. But this 
hypothesis requires testing. Nazia et al. (2010) reported 
high genetic diversity and a lack of population structuring 
in three populations of C. macrocephalus in Malaysia, and 
suggested human-mediated transfer of populations across 
basins as the possible reason for the lack of structuring.

Despite the apparent similarity between the LVG and 
LKG populations, based on traditional FST and various 
methods of tree-building, there is some evidence to 
suggest that contemporary gene-flow may be impeded. The 
presence of six singletons in LKG could be explained by 
the possibility that LKG has genetic diversity that has arisen 
in situ, or has gone extinct in Lake Victoria. Alternatively, 
it could represent sampling error, with these haplotypes 
having simply not been sampled in Lake Victoria. If indeed 
unique, these haplotypes support the hypothesis that Lake 
Kanyaboli is an important refugium for indigenous fish 
species of the Lake Victoria Basin.

The existence of mtDNA haplotypes restricted to the Lake 
Kanyaboli ichthyofauna, compared to that of Lake Victoria, 
has been reported in haplochromine cichlids (Abila et al. 
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2004, 2008) and the African lungfish Protopterus aethiopicus 
(Garner et al. 2006). In their study of population structure 
and genetic diversity of the haplochromine Xystichromis 
phytophagus from Lake Kanyaboli, Abila et al. (2004) 
noted the existence of eight private mtDNA control region 
haplotypes that were absent from the Lake Victoria popula-
tion. These authors attributed this to the possibility of these 
haplotypes having either gone extinct from Lake Victoria due 
to predation pressure by L. niloticus, or having arisen in situ. 

Conclusions

In the current study, various statistical measures support 
arguments both for and against a hypothesis of signifi-
cant connectivity between the C. gariepinus populations of 
Lakes Victoria and Kanyaboli. We conclude that there may 
be temporal differences in the variation measured and that, 
while FST reflects historical gene flow between the two lakes 
(and a core of shared haplotypes), the presence of private 
haplotypes suggests some more recent genetic diversity 
among these populations, based on ongoing demographic 
and evolutionary processes. The presence of singletons 
may also indicate that the populations are undergoing local 
adaptations (Nazia et al. 2010), and these singletons could 
be exploited in selective breeding programmes to improve 
farmed production of the species in this country. There is 
a need to regulate the human-mediated transfer of Clarias 
baits or brood stock from these habitats to waterbodies 
in different basins, to prevent a mixing of populations that 
could destroy extant genetic diversity. Similarly, the ecolog-
ical integrity of Lake Kanyaboli should be maintained by 
avoiding land use changes that reduce the papyrus vegeta-
tion on the lake. 

Apart from reducing pressure on the exploitation of 
wild haplochromines as baits, whose artificial breeding 
techniques are not yet established, baits from the artifi-
cial propagation of C. gariepinus at hatcheries would also 
reduce fishing pressure on wild C. gariepinus, which is 
consistent with the need to conserve the indigenous fish 
species of the Lake Victoria Basin. 

The presence of comparatively high levels of genetic 
diversity in the populations sampled can be exploited 
in aquaculture in two ways. First, the levels of diversity 
observed in this study can be used as benchmark to 
gauge levels of diversity in artificial populations, to prevent 
inbreeding. Furthermore, knowledge on the existence 
of diversity in natural populations can be used for future 
selection programmes, to increase output by farmers. The 
results of this study are only the first step towards achieving 
this goal, and more intensive research to link genetic diversity 
at adaptive loci to growth performance will be needed. 

As suggested by Abila et al. (2008), the conserva-
tion of Lake Kanyaboli should be community-centred, 
because local communities derive their livelihood from 
the lake. However, human activities are currently threat-
ening this important lake through reclamation for settle-
ment and agriculture (Aloo 2003), and through increased 
fish product ion by means of cage culture. Therefore, the 
community should be sensitised to the importance of the 
lake to their livelihood and to the fish resources, so that they 
exploit these resources sustainably. It is equally important 

that the human-mediated introduction of invasive species, 
especially L. niloticus, or the alteration of the ecological 
conditions of the lake that would otherwise permit a natural 
invasion of L. niloticus into the lake from the neighbouring 
Lake Sare, should be avoided so as to safeguard the LKG 
population, as well as other fish species such as C. lioceph-
alus present in the lake.
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