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ABSTRACT 

Many mathematical models have been developed to describe the immunological 

response to infection with human immunodeficiency virus (HIV-1).  The models have 

been used to predict the evolutions of HIV-1   in vivo and in- vitro dynamics. This 

study looked into an HIV-1 in-vivo dynamics in the presences of antiretroviral 

(ARVs) using delay differential equations. The delay is used to account for latent 

period of time that elapsed between exposure of a host cell to HIV-1 and the 

production of infectious virus from this host cell. This is the time needed to enable 

HIV-1 to reproduce within the host cell in sufficient number to become infectious. 

The model has four variables: healthy CD4+T-cells (T), infected CD4+T-cells (T*), 

infectious virus (virus not affected by treatment with ARV) (VI) and finally 

noninfectious virus (virus affected by treatment with ARV) (VNI). Stability analysis of 

disease free equilibrium (DFE) of the model and endemic equilibrium point (EEP) of 

the model were studied. The effects of time delay on the stability of equilibrium 

points were also considered. The study revealed that the stability of equilibrium points 

are affected by delay and efficacy of the drug. Analytical results showed that DFE is 

stable for all	� > 0. Similarly, there is a critical value of delay	�� > 0, such that for 

all	� > ��, the EEP is stable and unstable for	� < ��. When the value of delay(�) is 

equal to the critical value��, the HIV-1 in vivo dynamics undergoes a Hopf 

bifurcation and remains stable for all values � > �� as confirmed by the transversality 

condition.  Numerical simulations show that this stability is achieved at the drug 

efficacy of 0.79 and �� = 0.65 days, or approximately 16 hours. This verifies the fact 

that if CD4+T cells remain inactive for long periods � > �� the HIV-1 viral materials 

will not be reproduced, and the immune system together with treatment will have 

enough time to clear the viral materials in the blood and thus the EEP is maintained. 
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CHAPTER ONE 

INTRODUCTION 

 1.0 Background Information 

Mathematical modeling has proven to be valuable in understanding the dynamics of 

HIV-1 infections. (Xinyu and Shuhan 2005).Such models provide an understanding of 

the underlying mechanism that influence the spread and control of HIV-1 infection. 

The model formulation process clarifies assumptions, variables and parameters of the 

models to be formulated.  Mathematical analysis of such model provides conceptual 

results on thresholds like reproductive number of HIV-1 infection. 

Computer simulations of mathematical models are useful experimental tools for 

building and testing theories, assessing qualitative conjectures, answering specific 

questions on the disease dynamics, determining sensitivities to changes in parameter 

values and estimating key parameter(s) from data. 

Understanding transmission characteristic of any infectious diseases in a community, 

region or county can lead to better approaches to decreasing the transmission of these 

infectious diseases in the community, region or county, thus reducing or eliminating 

the burden of these diseases. 

Mathematical models can be discrete or continuous, depending on whether you want 

to examine theoretical changes in a population as a smooth continuous process or in 

chunks of discrete steps.  It can be deterministic if it is not subject to chances or 

stochastic if it incorporates randomness into the equations. 

This study confines itself to deterministic models and considers the delay and 

chemotherapy as variable parameters of the model under study, since their effects on 
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DFE (Disease Free Equilibrium) and EEP (Endemic Equilibrium Point) stabilities 

were investigated. 

In applications, the future behavior of many phenomena is assumed to be described by 

the solutions of an ordinary differential equation. Implicit in this assumption is that 

the future behavior is uniquely determined by the present and is independent of the 

past. In differential difference equations, or more generally functional differential 

equations, the past exert its influences in a significant manner upon the future and 

cannot be ignored. With this in mind the study uses functional differential equations 

to model HIV-1in vivo dynamics. The major reason is that HIV-1in vivo dynamics 

have the so called latent period. The latent period being the time elapsed between 

exposure of a host cell to HIV-1 and the infectiousness of this host cell. This is the 

time needed for HIV-1 to reproduce within the infected host cell in significant number 

to become infectious to other cells. 

1.1 Mathematical Background on Infectious Diseases 

The confidence that the infectious diseases would soon be eliminated was created by 

improved sanitations, effective antibiotics and vaccinations programs in the 1960s 

(Peilin and Lingzhen 2012), but this confidence is no longer there. Human and animal 

invasions of new ecosystems, global warming, environmental degradations, and 

increased international travels are some of the factors that have fueled the spread and 

eruptions of infectious diseases. In the recent past, new infectious diseases have 

emerged for example Human Immunodeficiency Virus (HIV), Severe Acute 

Respiratory Syndrome (SARS), EBOLA and many more have caused terrible 

suffering and mortality to the infected persons, and suffering to human populations at 

large. Some eliminated diseases are reemerging since the infectious agents have 
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evolved and adapted to the environment. Consequently infectious diseases are 

receiving more and more attentions in both developed and developing nations. 

Emerging and reemerging infectious diseases have been studied by many researchers 

in different science disciplines. Mathematicians have studied infectious diseases by 

developing and analyzing mathematical epidemiological models. Mathematical 

models of infectious diseases are important tools to analyze the spread and control of 

infectious diseases. Hethcotes (2000) gives a review on the mathematics of infectious 

diseases. 

Most models that have been developed and studied by mathematicians are based on 

the pioneering work of Kermark and Mckerdrick  (1927) model on  Susceptible-

Infectious-Removed (SIR) model, in which vital dynamics due to demographic 

factors (birth and death) are negligible for infectious diseases having a short 

incubation period. 

For any mathematical model of an infectious disease, thresholds are obtained which 

determine whether the disease die out or break out. The existence and stability of 

equilibrium points are usually investigated for each model. Two equilibrium points: 

diseases free equilibrium (DFE) and endemic equilibrium points (EEP) are considered 

in any model. 
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1.1.1 Deterministic SIR Epidemic Model 

 
The simplest general mathematical model for the dynamical processes of epidemics is 

the SIR model developed by Kermack and Mckendrick. This model divides a 

population under study into three classes: susceptible, infected (assumed to be 

infective) and recovered (assumed to be immune) or removed (those who die through 

infection) with numbers or densities represented at time � by continuous variables 

�	(�)	,�	(�)	 and �(�)  respectively. 

At the  heart of the original Kermack-Mckendrick model is the transmission function 

���, with transmission parameter � > 0, which arises from the assumption that the 

rate at which susceptible become infected is proportional to the densities or numbers 

of susceptible and infected population, that is transmission is a mass action process. 

The assumptions made on Kermack and Mckendrick model are 

1) Individual are infectious immediately they become infected, that is there is no 

latent period. 

2) Infectious individuals are removed from the population at a rate � to enter the 

removed class of size �(�) (those recovered or dead). 

 

With these two assumptions, the model equations have the following form: 
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��(�)

��
= −��� 

��(�)

��
= ���− �� 

��(�)

��
= �� 

Ambiguity however arises from the above model in that, in the �	(�) class, the 

number of individual recovered and those who are dead are not explicitly known. To 

avoid this ambiguity, the �(�) class is further split into two subclasses: �(�)  and 

�(�) subclasses, where �(�) subclass comprises of the entire individual who are 

recovered and immune (naturally vaccinated) and �(�) subclass consists of individual 

who are dead. The flow from the I(t) class is �� and ��   for the �(�) and �(�) 

subclasses respectively (Wayne  and Lioyd-Smith, 2005). Immunity is life-long for 

small subclasses of diseases such as measles or chickenpox.  Thus for generality, it is 

further assumed that the individual in the �(�) subclass loss their immunity at a rate 

� > 0	(also known as relapse rate) to return to the �(�) class. Under the modified 

assumption the model equations takes the following form; 

 

��(�)

��
= −���+ �� 

��(�)

��
= ���− (�� + ��)� 

��(�)

��
= ���− �� 

��(�)

��
= ��� 

In the above model, it can be noted that the total density of the individual who are 

alive at time t is given by 	� (�)= �(�)+ �(�)+ �(�). The sum  �(�)+ �(�)= �� +

�� + �� throughout the epidemic since the model above does not include demographic 
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processes, assumed to be operating at larger time scales than the epidemic itself. An 

epidemic occurs if the number of infected individuals increases with time, that is     

	��

��
> 0. 

 From the model above it can easily be shown that		�� >
�

�
 where (� = �� + �� ) is 

threshold population density needed for the disease to invade the susceptible 

population for a disease with a mass-action transmission term. This threshold 

population is often expressed in a more general threshold criterion  �� > 1, where �� 

is the basic reproduction number defined  in section 1.5  in this thesis. 

For the ���		model above     �� = 	
���

�
, and it is clear that  �� > 1  for the disease to 

invade the susceptible population. 

1.2 Pathogen Transmission Process 

At the core of any mathematical model formulation, is the pathogen transmission 

process which in the above ��� model, it is assumed to be a mass-action process. This 

assumption ignores certain aspect of the pathogen transmission process. In more 

refined models, the transmission process considers two important aspects: 

transmission probability and contact process. Contact process considers the rate at 

which susceptible individual encounter infected individuals. While the transmissions 

probability is the probability a susceptible individual will become infected per 

susceptible-infected contact. 

1.3 Basic Facts and Concepts 

 
In this section, we introduce   basic facts and concepts that the study used. The basic 

concepts like reproduction number and its computation, equilibrium points and their 

stability for the HIV-1 in-vivo mathematical model.  
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1.3.1 Facts on HIV-1 Infections 

 
HIV-1 is a type of HIV which is virulent and more widely spread in the world than 

HIV-2 (WHO). Since it is virulent and more widely spread we choose to study it. 

HIV-1 affects the immune system which would normally fight it. The major targets of 

HIV-1 infection are a class of lymphocytes or white blood cells known as CD4+T-

cells, which are the most abundant white blood cells of the immune system. It is 

thought that HIV-1, although attacking many different cells, wreak the most havoc on 

the CD4+ T-cells by causing their destruction and decline thus decreasing the body’s 

ability to fight infection. HIV-1 is an RNA virus. However when it infects a cell, the 

enzyme reverse transcriptase which it carries, makes a DNA copy of its RNA 

genome. The DNA copy is then integrated into DNA of the infected cell. The viral 

DNA, call the provirus is then duplicated with the infected cell every time the cell 

divides. Thus once infected, the cell remains infected for life. Inside an infected cell, 

the provirus can remain latent giving no sign of its presences for months or years. 

1.4 Delay Differential Equation 

Delay differential equations (DDEs) are a class of differential equations in which 

some unknown functions at the present time are dependent on the values of the 

functions at previous times. Mathematically, a general delay differential equation for 

( )x t  nR  takes the form: 

),(
)(

txtf
dt

tdx
 ,  where tx  ( )tx   and  .0   

It is noted that ��( ) with  0     represents a portion of the solution trajectory 

in a recent past. Here f  is a functional operator that takes the inputs of time and a 



8 
 

 

continuous function )(tx  with 0     and generates a real number 








dt

tdx )(
as its 

output. A well known example of delay differential equation is the Hutchinson 

equation, 

( )
1

x t
x rx

k

    
 

,        (1.1) 

which can be put in the form: 

 
( )

ln 1
x t

x r
k

    
 

.       (1.2) 

This equation can be solved using the method of step for � in the interval –� ≤ � ≤ 0 

DDEs such as:
0

( ) ( ) 1 ( ) /asx t rx t a e x t s ds k


 
    

 


  (1.3)

 

are in fact systems of ordinary differential equations (ODE’s) in disguise. This can be 

seen by letting 

dsstxety as





0

)()( And noting that  ' ( ) ( ) ( )y t a x t y t   which yield a system of 

ODEs: 
( )

( ) ( ) 1
y t

x t rx t
k

    
 

 ;       (1.4) 

 ( ) ( ) ( )y t a x t y t   .       (1.5) 

In fact, an integral-differential equation of the form 

0

( ) ( , ( )) ( ) ( ( ) )x t f t x t k s g x t s ds


   
     (1.6) 
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with initial condition ��(�) with −∞ ≤ � ≤ 0 is equivalent to a system of ODEs with  

initial condition if k is a linear combination of the functions ���,����,�����,…,����� 

where �  is a real number and � is a positive integer. 

Numerically solving most delay differential equations or systems is almost as similar 

as solving ODEs. The popular MATLAB based DDE23 solver developed by 

Shampine and Thompson for DDE is well tested and user-friendly. 

1.5 Basic Reproduction Number R0 

 
Basic reproduction number is the number of newly infected cells produced by one 

infected cell during its life time, assuming all other cells are susceptible (Heffernan 

et.al., 2005). From this definition, it is immediately clear that when 	�� < 1	each 

infected individual cell produces, on average less than one new infected cell, and 

therefore we predict that the infection will be cleared from the population, or the 

micro parasites will clear from the infected individual. 

If			��	 > 1, the pathogen is able to invade the susceptible population. This threshold 

behavior is the most important aspect of ��		concept. In endemic infection, we can 

determine which control measures and at what magnitude would be most effective in 

reducing �� below one, thus providing guidance for public health initiatives. 

1.5.1 Computation of Basic Reproduction Number 

 
 We computer basic reproduction number �� following the next generation matrix 

operator approach by Dickmann et.al., (1990), Van den Dreische and Watmough 

(2002). 
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The approach involves the use of infective classes of the model system. Define � as 

the matrix whose elements represents the rate of change of new infections, or the rate 

of appearance of new infections but not including the terms that  describe the transfer 

of infective from one compartment to another. Also let the matrix � denote the rate of 

change of cell populations through other means, that is the elements of  � denotes the 

rate of transfer of individuals by other means. Then the difference � − �  gives the 

total rate of change of individual populations in all the four compartments. 

The next generation matrix ���� is formed by evaluating the partial derivatives of � 

and � at the fixed points, that is 

� = �
���(��)

���
� ,			� = �

���(��)

���
�       (1.7) 

Given  	�= 1,2,3,….,�, where  �  is the dimension of the matrix and �� is the fixed 

point(s) of model system and  ��, are the variables of system model. 

The entries of the matrix  ���� gives the rate at which infected cells produces new 

infective.  �� is the dominant eigenvalue (the spectral radius) of the matrix 	����. 

Using this approach, we compute the basic reproduction ratio as, 

�� = �(��
��)                                                                           (1.8) 

1.6 HOPF Bifurcation 

Most differential equations depend on parameters. Depending on the values of these 

parameters, the qualitative behavior of the systems solutions can be quite different. 

The change in the stability of a system of equations as the parameters of the systems 

are changed is called bifurcation. The parameter that brings about this change is call 

bifurcation parameter(s). 
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Hopf  bifurcation ( also called Poincare-Andronov-Hopf bifurcation ) is a type of 

bifurcations in which the characteristics equations of Jacobian matrix of the system 

equation has a complex eigen-value and cross the imaginary axis as the bifurcation  

parameter is changed with nonzero speed.   

1.7 Statement of the Problem 

The interaction between HIV-1, the human immune system and chemotherapy is a 

highly dynamical and multifactor process and as a result it is essential to base 

therapeutic interventions and preventions on more solid theoretical grounds than it has 

been the case until now.  Previous studies have considered different aspects on models 

of HIV-1, namely: effects of mutations, cellular HIV-1 infection, intra-cellular time 

delays due to incubation period, just to mention but a few. For HIV-1 in vivo dynamic 

models to be more realistic effect of time delay on CD4+T-cells infection and 

production of HIV-1 infectious virus together with treatment on the infection of T-

cells should be incorporated. Actually, there is time delay between infection of a cell 

and its infectiousness. This time delay is called latency period. Antiretroviral (ARVs) 

treatment also causes a change  in the population of CD4+ T-cells due to the recovery  

of these cells as a result of  treatment. The treatment also causes production of virus 

cells that are non- infectious. 

The effects of these time delays and chemotherapy are therefore important factors in 

the HIV-1in vivo dynamics. It is for this reason that this study sought to formulate a 

mathematical model with delay to study the effects of time delay on the dynamics of 

HIV-1 infections.  
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1.8 Objective of the Study 

1.8.1 General Objectives of the Study 

The main objective   of this work was to formulate a mathematical model of HIV-1 in 

vivo dynamics using delay differential equations and then examine the effects of time 

delays and drug therapy on the stability of Disease Free Equilibrium (DFE) point and 

Endemic equilibrium point (EEP) of the model formulated. 

1.8.2  Specific Objectives of the Study 

i. To formulate a well posed mathematical model with delay for the HIV-1 

infection with chemotherapy. 

ii. To compute the DFE and investigate the effects of drug efficacy and delay on 

the model stability. 

iii. To compute the EEP and examine the effects of drug efficacy and delay on the 

model stability. 

iv.  To perform numerical simulations of the model to justify analytic results and 

determine the threshold values that leads to the control of HIV-1 pandemic. 
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1.9 Significance of the Study 

The results of this study is useful to the following parties 

1) Drug manufacturers: manufacture of ARVs by different pharmaceutical 

companies will benefit from the results of this study in two ways; cost saving 

and manufacture of effective drugs. The optimal efficacy levels of the ARVs 

has been provided by this study for combinational ARVs therapy of persons 

infected by HIV-1, the drugs company can therefore concentrate on drugs of 

this efficacy levels thus reducing cost on trials and making effective drugs for 

HIV-1 treatment.  

2) The government: HIV-1 infection has been a major concern to government 

agencies due to its detrimental effects on productivity of persons infected with 

the virus. The government work tirelessly to find lasting solutions to HIV-1 

infections and its effects among its citizens. The result of this study has 

provided insight of HIV-1 in vivo dynamics in the presences of treatment. The 

government can therefore design cost effective treatment strategies like STI 

which are more cost effectives; thus saving cost of treatment and increasing 

productive of persons living with HIV-1 infections which is a double gain to 

the government in its economic development agenda. The results from this 

study can also be used in the development of better intervention and 

prevention strategies using DFE stability analysis.     

3) Medics: medics can use results from stability analysis of EEP to design 

clinical trial that are more efficient in the evaluation of STI treatment strategy 

thus providing a more reliable ARV treatment of persons infected by HIV-1 

which will save the cost of treatment and lower the toxicity of the treatment of 
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persons infected by HIV-1 virus since ARV treatment is live long. The medics 

can also better provide prevention of infection on persons exposed to HIV-1 

by providing post exposure prophylaxis within the save widow period as 

provided by the DFE stability analysis.  

4) Infected persons: since HIV-1 infection has no cure at the moment and also 

because it has proved difficult to tackle, the result of this study can be used 

meanwhile to control the adverse effects of the virus to the immune system 

thus helping to prolong the life of persons infected by the virus while research 

on treatment and other higher levels of eradications of the infections is carried 

out. 

5) The public: the results of this study provides information to pharmaceutical 

companies on efficacy of ARV combinational treatment therapy, this provides 

guidelines to administration of drugs to HIV-1 infected persons in a manner to 

produce better results. The public thus get better services from public officers 

infected by HIV-1. 
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CHAPTER TWO 

LITERATURE REVIEW 

Culshaw et.al., (2000) studied a delay-differential equation model of HIV infection of 

CD4+ T-cells using   three compartments: the healthy CD4+ T-cells infected CD4+ T-

cells and the free virus. The study examines the effects of time delay on the stability 

of endemically infected equilibrium. Numerical simulation to illustrate the effects   of 

time delay is presented by the study. 

They found out that the infected steady state was stable for all � ≥ 0	.They also found 

out that under certain assumption for large values of � , the effect of delay is not 

strong as for small � . 

This work has not considered effects of chemotherapy on the in vivo dynamics of 

HIV nor does it examine the effect of time delay on the disease free equilibrium. 

Perelson et.al., (1992) studied the dynamics of HIV infection of CD4+T cells, using 

ODE model with four compartments: uninfected CD4+T cells, latently infected 

CD4+T cells , actively infected CD4+T cells and the free infectious virus. Their study 

reveals that, there is a critical number of virus released from infected cells for stability 

of DFE. Numerical simulations of the model reveals the number as 774. DFE is stable 

for � < 774 and unstable for � > 774.  At	� = 774, Hopf Bifurcation occurred via 

oscillations of solution. The study gives the conditions for the stability of DFE. The 

study gives the parameters which affects the EEP, which depends on uninfected cells 

and the number of free virus. Though the study discussed various scenarios including 
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the effects of AZT on HIV virus dynamics, effects of time delay on chemotherapy or 

on infection of CD4+ T cells is not considered. 

Nelson  and Perelson, (2002) developed  a mathematical analysis of delay differential 

equation model of HIV-1 infection. This study considered delay in reference to 

protease inhibitor only. The study therefore has not considered time delay on HIV-1in 

vivo dynamics in the present of both protease and reverse transcriptase inhibitors or in 

absent of treatment. 

Khalid and Noura, (2011) examined a delay differential equation model of HIV with 

therapy and cure rate. In their study, it was shown that the basic reproduction number 

at disease free and endemic equilibriums, depends on efficacy, cure and delay. In this 

study, the numerical value for efficacy of the therapy is not given. The study has also 

not explicitly shown the bound of delay for stability of the equilibrium points. Issues 

like bifurcations  is not study in this paper. 

Xinyu and Shuhan, (2005) examined a delay-differential equation model of HIV 

infection of CD4+T-cells using a three compartment model : healthy CD4+T-cells , 

infected CD4+T-cells and the free virus. The work provided restriction on the number 

of viral particles per infected cell in order for infection to be sustained. Under the 

restriction, the system has a positive equilibrium called the infected steady state. The 

study also provided the conditions on parameter values for the infected steady state to 

be stable using numerical analysis. The study further established the condition on 

delay for the stability of the steady states. 

This work did not considered effects of chemotherapy on the in vivo dynamics of 

HIV. The noninfectious virus that could result from incomplete protease action on the 

provirus has not also been considered in this study. 
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Kirschner and Webb, (1996) worked on a model for treatment strategy in the 

chemotherapy of Aids. The study looked at the interaction of HIV-1 and the immune 

system using a system of ODEs. A mechanistic description of chemotherapy was 

studied by age structuring of CD4+T-cells. The effects of chemotherapy in this study 

was modeled using a scalar function which was assumed to be on during treatment 

and of during off treatment. Two types of models were considered: age structured 

model and the other without age structure. 

The results of the study were: one, periodicity of treatment during a given day does 

not reveal a significant difference in the overall effect, quantitatively or qualitatively. 

This means that whether one receives a 500mg dose once a day or 100mg dose five 

times a day, the overall result is the same.  This is because the treatment serves only 

to perturb the system of Aids into steady state. Two, chemotherapy should begin only 

after the second decline of CD4+T-cells. Although this study looked at various aspects 

in chemotherapy of AIDs, effects of time delay is not considered in the HIV-1 in vivo 

dynamics. 

Kouche et.al., (2010) developed  a mathematical model of HIV-1 infection including 

the saturation effect of healthy cell proliferation. The study assumed that the infection 

rate between healthy and infected cell is a saturating function of cell concentration. 

Numerical simulation and stability analysis of the model was carried. The study 

revealed through simulation that, if less than 7.7% of infected cells survive the 

incubation period, the system converges to its healthy equilibrium. If between 7.7% 

and 30% of infected cells survive the incubation period, then system stabilize at 

infected equilibrium, and if more than 30% of infected cells survive the incubation 

period, periodic oscillation of cell concentration was observed. Qualitatively under 

realistic parameter regimes, the model exhibits two Hopf bifurcation and the infected 
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steady state is locally asymptotically stable either when the average delay is high or 

small. The study has also reported that for other delays the model exhibited stable 

periodic solutions due latently infected cells. Though the study looked at various 

scenarios on delay effects, effects of chemotherapy is not mention in the study. 

Elaiw (2012) worked on  a global dynamics of an HIV infection model with two 

classes of target cells and distributed delays. The study investigated the global 

dynamics of an HIV-1infection with CD4+T-cells and macrophages. The incidence 

rate is modeled by a saturation functional response. Two types of distributed delays 

describing the time needed for infection of target cells and virus replication has been 

considered. Lyapunov functional was constructed to establish the global stability of 

infected and uninfected steady states of the model. In this study numerical 

investigation is not done nor the specific effect of time delay investigated. 

Elaiw et.al., (2012) examined a global dynamics of an HIV infection model with two 

classes of  target  cells and distributed delay . In the first of the model, delay ODEs 

are used to describe the dynamics of the interaction of HIV with two classes of target 

cells, CD4+T-cells and macrophages taking into account the saturation infection rates. 

The second model is a generalization of the first one by assuming that the infection 

rate is given by Bennington-DeAngelis functional response. Two time delays are used 

in each of the models to describe the time periods between viral entry into the two 

classes of target cells and the production of new virus particles. The study used 

Lyapunov functional and Lasalle-type theorem for DDEs to establish the global 

asymptotic stability of the uninfected and infected steady states of the HIV infection 

models. A deep study of the effects of the time delays nor the effects of chemotherapy 

has not been considered by this study. 
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2.1 HIV-1 in Vivo Model with Delay 

We  modify HIV-1 in vivo  chemotherapy model without delay  used by Khalid 

Hattaf et.al.,  (2012) which  has the following variables: uninfected CD4+T cells (T), 

infected CD4+T cells (T*), infectious virus VI and noninfectious virus VNI. 

2.1.1 Assumptions of the Model 

The uninfected CD4+T cells (T) is produced at a rate s , die at a rate d  and become 

infected at a rate  . Infected CD4+T cells (T*), die at a rate a  and are cured of virus 

due to therapy at a rate r .  Free virus is produced by infected cells at a rate k and 

cleared at a rate    . The control function 1u represents the efficiency of drug therapy 

in blocking new infection, so that infection in the presence of drug is   1(1 )u   . The 

control function 2u represents the efficiency of drug therapy to inhibit viral production 

such that the viral production rate under therapy is   2(1 )u k . With these parameters 

and variables, the delay differential equation model we propose will take the 

following form: 

*
1

( )
( ) (1 ) ( ) ( ) ( )I

dT t
s dT t u V t T t rT t

dt
        

 

*
* *

1

( )
(1 ) ( ) ( ) ( ) ( )I

dT t
u V t T t aT t rT t

dt
       

    (2.1) 
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1 2
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dt
    
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0  Is the time lag, which is the time required for host cell to produce infectious 

virus. It will also represent the time needed for the infected cells to be cured by 

chemotherapy. 
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CHAPTER THREE 

METHODOLOGY 

This chapter is divided into three sections: introduction (background information of 

HIV-1 infection, HIV-1 drug therapy and HIV-1 life cycle), model assumption and 

formulation, and finally model analytical analysis. 

3.1 Introduction 

In this section we provide a short overview of what is known about HIV-1 infection 

and HIV-1 drug therapy. In addition we describe how HIV-1 behaves at cellular level. 

This basic background information is essential in order to understand how to construct 

the phenomenological models governed by delay differential equations. The 

information helps place the mathematical model in a biological context. Since the 

models are described by delay differential equations, we also provide a brief 

background on solution of delay differential equations. 

3.1.1 HIV-1 Infection 

Infection by human immunodeficiency virus-type-1 (HIV-1) has many puzzling 

quantitative features. One of these features is an average lag of nearly 10 years 

between infection and the onset of AIDS in adults. The reason for this time lag 

remains largely unknown, although it seems tied to changes in the CD4+T-cells 

Immediately after infection by HIV-1, the amount of virus detected in the blood rises 

dramatically. Along with the rise in the virus, flu-like symptoms tend to appear. After 

a few weeks to months, the symptoms disappear and the virus concentration falls to a 

lower level. An immune response to the virus occurs and antibodies against the virus 
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are detectable in the blood. A test to detect the antibodies in the blood is used to 

determine if one has been exposed to HIV-1 or not. If the antibodies are detected, the 

person is said to be HIV-1 positive otherwise the person is HIV-1 negative. 

The viral levels “primary infection” falls to a set-point. The viral concentration 

deviates little from this set-point level for many years; however, the concentration of 

CD4+T cells measured in blood slowly declines. This period in which the virus 

concentration stays relatively constant but in which the CD4+T cells count slowly falls 

is typically a period in which the infected person has no symptoms. The asymptomatic 

period (window period) can last as long as 10 years. 

HIV infects cells that carry the CD4 cell proteins on the surface as well as other 

receptors called co- receptors. Cells that are susceptible to HIV infections are called 

target cells. After infection such cells can produce new HIV particles. 

The major target of HIV-1 infection is a class of lymphocytes or white blood cell 

called CD4+T cells. These cells secrete growth and differential factors that are 

required by other cell populations in the immune system, and hence these cells are 

also called helper T cells. Because of the central role of CD4+T cells in the immune 

regulation; their depletion has widespread deleterious effects on the function of the 

immune system as a whole and leads to immunodeficiency that characterizes   HIV-1 

infection. 

3.1.2 HIV-1 Live Cycle 

HIV-1 belongs to the class of viruses called retroviruses, which carry their genetic 

information in the form of RNA. HIV-1 infects T cells that carry the CD4 antigen on 

their surface. The infection of the virus requires fusion of the viral and cellular 



23 
 

 

membranes, a process that is mediated by the viral envelope glycoprotein (gp120, 

gp41) and the CD4 receptor on CD4+T target cell. As virus enters the target cell, its 

RNA is reverse-transcribed to DNA by virally encoded enzyme the reverse-

transcriptase (RT). The viral DNA is transported into the cell nucleus, where it is 

integrated into the genetic material of the cell by a second virally encoded enzyme, 

the integrase enzyme and stays latent. Activation of the host cell results in the 

transcriptions of viral DNA into messenger RNA, which is then translated into viral 

proteins.HIV protease, the third virally encoded enzyme, is required in this step to 

cleave a viral poly-proteins precursor into individual mature proteins. The viral RNA 

and the viral proteins assemble at the cell surface into new virions which then bud 

from the cell and are released to infect another cell. The extensive cell damage from 

the destruction of the host genetic system to budding and release of virions leads to 

the death of the infected cell. 
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3.1.2.1 HIV Structure 

An HIV virus particle is spherical and has a diameter of about 1/10,000 mm. Like 

other viruses, HIV does not have a cell wall or a nucleus.  See Figure 3.1 below.  

 
 

 
 
 

Source: http://www.itg.be/internet/e-learning/written_lecture_eng/1_hiv 

_structure.html  

  

Figure 3.1  Anatomy of Aids virus 
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Source: http://www.itg.be/internet/e

HIV attaches to and penetrates host T cells, then releases 

the host cell. HIV reverse transcriptase copies viral RNA as proviral DNA. Proviral 

DNA enters the host cell's nucleus, and 

integration into the host's DNA. 

The host cell then produces 

into HIV virions and budded from the cell surface. 

proteins, converting the 

igure 3.2 Infection Life cycle of HIV-1 Virus

http://www.itg.be/internet/e-learning/written_lecture eng/1_hi

structure.html  

attaches to and penetrates host T cells, then releases HIV RNA and enzymes into 

reverse transcriptase copies viral RNA as proviral DNA. Proviral 

DNA enters the host cell's nucleus, and HIV integrase facilitates the

integration into the host's DNA.  

The host cell then produces HIV RNA and HIV proteins. HIV proteins are assembled 

virions and budded from the cell surface. HIV protease cleaves

the immature virion to a mature, infectious virus.
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It takes around 1.5 days for an HIV virus to complete its life-cycle. The life-cycle can 

be summarized into the following 6 stages with the responsible enzyme given in 

brackets; 

Stage1: Binding and fusion a protein, glycoprotein120 (gp120). 

Stage2: Conversion of single stranded RNA to a double strand DNA.  The 

enzyme required for this stage is the Reverse transcriptase (RT). 

Stage3: Integration of HIV DNA to host cell DNA. 

Stage4: Transcription after a signal activates the host cell. 

Stage5: Assembling of HIV mRNA chain proteins to form a new virus the  

enzyme responsible for this stage is called Protease (P). 

Stage6: Budding. 

3.1.2.2 Other Cells Affected by Virus 

HIV also infects nonlymphoidmonocytic cells (e.g., dendritic cells in the skin, 

macrophages, brain microglia) and cells of the heart and kidneys, causing disease in 

the corresponding organ systems. HIV strains in several compartments, such as the 

central nervous system (CNS) and genital tract fluid (e.g. semen), can be genetically 

distinct from those in plasma. Thus, HIV levels and resistance patterns in these 

compartments may differ from those in plasma. 

Disease progression: Antibodies to HIV are measurable usually within a few weeks 

after primary infection; however, antibodies cannot fully control HIV infection 
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because mutated forms of HIV that are not controlled by the patient's current 

antibodies are generated. 

3.1.3 HIV-1 Drug Therapy 

Antiretrovirals (ARVs) are powerful life saving drugs that control the spread of HIV 

in vivo in those who are HIV positive. ARVs are not a cure, but they can add many 

years to the life of those who take them ones infected by HIV.  The goal of HIV-1 

drug therapy is to reduce the amount of virus in a person’s body and prevent 

destructions of the immune system. ARVs can also allow the immune system to 

recover thus reducing incidence of opportunist infections. This will then reduce 

morbidity and mortality of infected persons. 

As mentioned before, HIV attaches itself to the cells in the body using special 

chemicals that are found in CD4 receptors. Once inside the CD4+T cell, HIV use a 

special enzyme called reverse transcriptase to change itself from viral RNA to viral 

DNA. It is at this point that reverse transcriptase inhibitor ( RTI) works. It works by 

blocking the process whereby viral RNA is converted to viral DNA. By blocking this 

process, the HIV is unable to transform from RNA to DNA and it dies. 

If the HIV is successfully converted from RNA to DNA, HIV needs another special 

protein called protease (P) that assembles the viral protein so that new copies of HIV 

are formed and can bud out of the cell. It is at this point that protease inhibitor (PI) 

works. It works by blocking the protease enzyme thus the newly formed HIV cannot 

bud out of the cell and so they die. In other words protease inhibitors cause infected 

cells to produce noninfectious virus. Thus in the presence of protease inhibitors, we 

have two types of virus: Infectious virus produce by cells not affected by therapy and 

noninfectious virus produced by cells affected by protease inhibitor. It is also 



28 
 

 

important to note that PI acts on infected active cells, which in our model was infected 

at an earlier time t . 

In summary, current drug therapies for patients infected with HIV involves inhibiting 

either Reverse Transcriptase Enzyme (RTE) or HIV protease enzyme. If RTE is 

inhibited, HIV can enter a cell but will not successfully infect it, a DNA copy of the 

viral genome will not be made and the cell will not make viral proteins or virus 

particles. The virus RNA that enters the cell is not stable and will degrade. If on the 

other hand HIV protease enzyme is inhibited, cleavage of the viral polyprotein will 

not occur, and the viral particles will be made that lack functional reverse 

transcriptase, protease and Integrase enzymes. The net effects of blocking HIV 

protease enzyme is that defective or noninfectious viral particles are made. 

The third viral enzyme Integrase is also another potential target of drug therapy, and 

many pharmaceutical companies are trying to develop Integrase inhibitors 
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3.1.4 Method of Steps for Delay Differential Equations  

Discussing properties of solutions to our model requires an understanding of the 

method of steps. 

The method of steps for solving a DDE involves converting the DDE into an ODE on 

a given interval using the history of the function on this interval. The resulting 

equation is then solved and the process of converting a DDE to an ODE is repeated 

for the next interval with the newly found solution serving as the history function for 

the next interval. 

Let us illustrate this method with a simple DDE; 

'
1 2( ) ( ) ( ) ( )y t a t a t y t     for  ,0t     (3.1) 

)()( tpty   for  0,t       (3.2) 

We solve this system of equations in the following steps: 

 Step 1: On the interval  0, , the function  )(ty  is known there, it is the given 

function )(tp . Thus the system is solved for the interval  0,   call the solution in 

this interval )(0 ty . 

Note that when  0,  t  ,  ,  0t     and so )( ty becomes )(0 ty on  0,  .  

Step 2: In the interval 0,   , the system (3.1) and (3.2) becomes: 

1 2 0'( ) ( ) ( ) ( ) ( )y t a t y t a t y t       On   ,0t  

)()( opoy           (3.3) 
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Equation (3.3) is an ODE and not a DDE because )(0 ty  is know; it is simply

)( tp . Thus we solve this ODE on  ,0  using  )()( opoy   as our initial 

condition. Denote by )(1 ty   this solution on the interval  ,0 . 

Note 1: solving (3.3) may be accomplished by treating it as a non homogeneous 

equation, 

'
1 2 0( ) ( ) ( ) ( ) ( )y t a t y t a t y t       On   ,0t  

)()( opoy           (3.4) 

System (3.4) will then be solved for a closed form solution using an integrating factor 

  dtta
e

)(1

. 

Step 3: on the interval  ,  2   the system becomes 

'
1 2 1( ) ( ) ( ) ( ) ( )y t a t y t a t y t       On   ,  2t    

)()( 1  yy           (3.5) 

This is again an ODE. We solve this system using the initial condition at   and get a 

solution )(2 ty  for system on  ,  2  . These steps may be repeated for subsequent 

interval. This scheme is what is applied in MATLAB DDE23 solver. 

3.2 Model Assumption and Formulation 

We begin by stating the assumptions of our models then formulate the models which 

describes the dynamics of �-cells populations in response to HIV-1 infections. The 

model has four state variables namely:  uninfected CD4+T-cells (�), productively 

infected CD4+T- cells (�∗), infectious virus (��) and noninfectious virus (���). 



31 
 

 

In order to formulate our model, the following assumptions are made: 

1) CD4+T cells are depleted by lyses’ and natural death. Lyses leads to 

production of HIV-1 viral materials but natural death does not produce HIV-1 

viral materials. 

2) An antiretroviral effect involves preventions of infections and inhibitions of 

viral replications through inhibition of the functions of reverse transcriptase 

and protease enzymes which are virally encoded. 

3) There are limited mutations of viral genes which would lead to production of 

drug resistant strain of the virus. 

4) There is no cell-to-cell infections of   CD4+T cells, infections are only by free 

virus. 

5) There is no proliferation of existing CD4+T cells, CD4+T cells are only from 

source (thymus). 

6) Some CD4+T cells recover on drug therapy. 

3.2.1 Model Parameters 

The model will be formulated using the above assumptions together with the 

following parameters that will be used in the model and their descriptions. 

k :  Production rate of infectious and non-infectious free virus from infected CD4+ 

cells. 

s:  Production rate of uninfected CD4+T cells (T). 

  :  Infection rate of uninfected CD4+T cells (T). 
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i : �= �,�∗,��,���  Death rate of uninfected CD4+T cells, Infected CD4+T cells, 

free infectious virus and free noninfectious virus. 

1u :  Efficiency of reverse transcriptase inhibition 

2u  :  Efficiency of protease inhibition 

r : Rate of recovery of infected T cells due to treatment. 

 : Time delay from infection of the cell to production of new infectious viruses 
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3.2.2 Model Flow Chart 

Using compartmental model, the parameters described above represents the dynamics 

of populations from one compartment to another as shown in the flow chart in Figure 

3.3 and Figure 3.4 below. 

 

  Figure 3.3 Flow-Chart showing progression of infection and viral production 
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Figure 3.4 Flow chart showing T-cell compartments and viral 
compartments 
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3.2.3 Model Equations 

The model parameters and the model assumptions above, together with the flow 

charts in Figure 3.3 and Figure 3.4 will lead to the following system of delay 

differential equations for the combinational therapy. 
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  (3.6) 

 

In this model, time delay has been incorporated to describe the time between infection 

of a CD4+T-cell and the emission of viral particles on cellular level. We do not 

consider the proliferation of target cells since our goal is to simplify the model to get 

more insight about the effects of intracellular delays and chemotherapy on HIV-1 in 

vivo dynamics. The model includes the completely recovered cells when they loss all 

covalently closed circular DNA (cccDNA) from their nucleus at a rate	�, (a recovery 

rate of those responding to treatment��) as a result of chemotherapy. 
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3.3 Model Preliminary Analysis 

3.3.1 Properties of Solutions of the Model 

Before we can do analysis of our model, we need to look at the positivity and 

boundedness of solutions of our model. Because this model describes the evolution of 

a cell population, the cell numbers should remain non-negative and bounded. These 

properties imply global existence of the solutions. 

Let   4,0 ,  C C R   be a Banach space of continuous functions mapping the interval 

]0,[   into 4R  with the topology of uniform convergence. 

By the fundamental theory of differential equations, it can be shown that there exists a 

unique solution )),(),(),(),(( * tVtVtTtT NII of system (3.6) with initial data 

 *(0) 0, (0) 0, (0) 0, (0) 0 .T T V V CI NI          (3.7) 

In addition, for biological reasons, we assume that the initial data for system (3.6) 

satisfies: 

*
( ) 0,  ( ) 0,  ( ) 0,  ( ) 0,    [ , 0

0 0 0 0
]T s T s V s V s s

I NI
         (3.8) 

The following theorem establishes the positivity and boundedness of solutions of 

equation (3.6) with initial functions satisfying (3.7) and (3.8). 
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Proposition 3.1 Let  ( ), , ( ), ( )*( )T t T V t V tI INt  be the solutions of system (3.6) 

satisfying conditions (3.7) and (3.8). Then ( ),  ,  ( )
*

( ) ,tT t T V t
I

 and ( )V tIN  are all non-

negative and bounded for all  0t   at which the solutions exists. 

Proof 

Note that from (3.6) we have 

�(�)= �(0)��∫ ����(����)���(���)���
�
�

+ � [����
∗(�)+ �]�

�∫ ����(����)���(���)���
�
� ��

�

�

, 

�∗(�)= �∗(�)��∫ ���∗�������
�
� + � [(1 − ��)���(� − �)�(�)]�

�∫ ���∗�������
�
� ��,

�

�

 

��(�)= ��(0)�
�∫ �����

�
� + � [(1 − ��)(1 − ��)��

∗(� − �)]
�

�

�
�∫ �����

�
� �� 

and 

���(�)= ���(0)�
�∫ ������

�
� + � [(1 − ��)����

∗(� − �)]
�

�

�
�∫ ������

�
� �� 

Positivity immediately follows from the above integral forms and (3.7) and (3.8). 

For boundedness, we define  * 2

2

(1 )
( ) ( ) ( ) ( ) ( )I NI

u
N t T t T t V t V t

u


     and 

*
2

2

1
min , , ,

IT V NIT

u

u
    

  
    

  
then 

* 2

2

(1 )
( ) ( ) ( ) ( ) ( ).I NI

ud d d d d
N t T t T t V t V t

dt dt dt dt u dt


     Thus 

( ) ( ).
d

N t s N t
dt

   

Which implies that ( )N t is bounded, and so are *( ), ( ), ( ), ( )I NIT t T t V t V t  this completes 

the proof of proposition 3.1. 
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3.4 Equilibrium Points and their Stability 

We analyze equation (3.6) by first finding the equilibrium points of the system and 

then studying their stability. An equilibrium point is obtained by setting the right hand 

side of each equation of system (3.6) to zero, then solving each equation algebraically 

for the constant solutions. 

There are usually two important equilibrium points to consider in mathematics of 

infectious diseases. These equilibriums points are the Disease Free Equilibrium 

Point(s) (DFE) and the Endemic Equilibrium Point(s) (EEP). 

3.4.1 Disease Free Equilibrium Point(S) (DFE) 

The disease free equilibrium point(s) is the set of point(s) of system (3.6) in the 

absence of the virus. For our system, the disease free equilibrium (DFE) is the set of 

points  0 *0 0 0, , , ,  0,  0,  0I NI

T

s
T T V V



 
  
 

, corresponding to the maximal level of 

CD4+T-cells. 

3.4.1.1 Stability of Disease Free Equilibrium 

Local asymptotic stability of nonlinear system about equilibrium is governed by the 

stability of the linearized system about the equilibrium. The zero solution of the 

nonlinear system is asymptotically stable if and only if the zero solution of the linear 

system is asymptotically stable. The eigen-values of the linearization matrix, is used 

in determining the stability of the linear system obtained from the nonlinear system. If 

all the eigen-values of the linearization matrix have negative real parts, then the 

system is stable. If any one of these eigen-values is having a positive real part, the 

system will be unstable. 
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Letting  ��,�= 1,2,3,4  be the sub-equations 1, 2, 3 and 4 of model equation (3.6), 

we can obtain the linearization matrix � of our model at DFE as, 

� =
�(��,��,��,��)

�(�,�∗,��,���)
DFE      (3.9) 

         

Which simplify to the following for our model at DFE without delay,  

  *

1

1
1

1 2

1 2

1(1 )
0

(1 )
0 0

0 (1 )(1 0

0 (1 )

)

0

I

NI

T

T

T
T

V

V

u s
ru

u s
ruM

u k

u u k

















  
 

 
 

   
 
   
 
   

  (3.10) 

The two eigen-values associated with the above matrix can easily be computed to 

obtain, T 1 , and
4 NI    both of which are negative since the death rate are 

positive quantities. The other two remaining eigen-values are computed from the 

following 2x2 matrix; 

*

2

1

1

1

1

(1 )

(1 )(1 )
I

T

V

T

u s
ru

M

u u k








 
  

  
    

 

The characteristics polynomial associated with matrix � � is 

2
2

1 1
2 1(1 ) (1

( ) )
)

( 0
I IVT

T

V T

u u ks
ru ru


     



 
      

 

This characteristics polynomial can be solved to obtain 

2 1 2
2,

2

13 1 1

(1 ) (1 )1
( ) ( ) 4 ( )

2 I I IV T V T V T

T

u u ks
ru ru ru


      



   
              
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For both roots of the above equations to be negative, we have that 

1
2

2
1(1 ) (1 )

( ) 0
IV T

T

u u ks
ru


 



  
   

   

or 
*

2

1

1 2(1 ) (1 )
1

( )
IT V T

u u ks

ru



  

  
   

 

This condition can be written as �� < 1 where �� is defined as 

*

2

0
1 2

1

(1 ) (1 )

( )
IT V T

u u ks
R

ru



  

 



       (3.11) 

Clearly the condition 10 R  must be satisfied for DFE to be stable in absence of 

delay. 

3.4.1.2 Effects of Delay on Stability of DFE 

We can check the effect of delay on DFE by considering the Jacobian (linearization) 

matrix of model equation (3.6) at DFE with delay. This would lead us to the following 

linearization matrix at DFE with delay, 

⎝

⎜
⎜
⎛
−�� ��� −

(����)���
���

��
0

0 − ��∗ − ���
(����)���

���

��
0

0 (1 − ��)(1 − ��)��
��� − ��� 0

0 (1 − ��)����
��� 0 − ���⎠

⎟
⎟
⎞

   (3.12) 

The eigen-values of matrix (3.12) can easily be found as T 1  and 4 NIV    

with the remaining two eigen-values obtain from the following transcendental 

equation, 

�� + ���∗ + ��� + ����� + ���(��∗ + ���)−
(����)

�(����)����
����

��
= 0  (3.13) 
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�� + ���∗ + ��� + ����� + ���(��∗ + ���)�1 −
(1 − ��)

�(1 − ��)����
����

�����(��∗ + ���)
� = 0 

�� + ���∗ + ����� + �����∗

+ ����� + ������ �1 −
(1 − ��)

�(1 − ��)����
���

�����(��∗ + ���)
�� ���� = 0 

�� + ���∗ + ����� + �����∗ + ����� + �������1 − ���
��������� = 0 

or 

�� + �� + � + (�� + �)���� + ℎ����� = 0    (3.14) 

where � = ���∗ + ����,			� = �����∗,� = ���,� = ������,ℎ = �������� 

We seek the distribution of the roots of the second order transcendental polynomial 

equation (3.14) where the parameters �,			�,�,�,ℎ and   are real numbers and �	and 

satisfy the following two assumptions (ShanShan et. al., 2013) 

A1:		�	 cannot be zero 

A2:   cannot be zero. 

The two assumptions above ensures that we always have a second order 

transcendental polynomial equation to deal with it also mean that recovery rate cannot 

be zero in a chemotherapy model of HIV-1 in vivo dynamics. We also fix the 

parameters �,			�,�,�	and	ℎ and vary    since we are interested on the effect of   on 

the stability of diseases free equilibrium. 

By linearization theorem, DFE is asymptotically stable if all the eigen-values of (3.14) 

have negative real part. 
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Using the approach described by (Chen et.al., 2013) set i    . We then seek 

conditions on   such that Re( ) changes from a negative number to a positive number.  

By continuity, if Re( )    changes from Re( ) 0    to a value such that

Re( ) 0a   , as  increases from zero, there must be some value of say 0  at which 

Re )( 0 = 0( )  =0. In other words, the characteristics equation (3.14) must have a 

pair of purely imaginary roots 0i .  If that be the case then equation (3.14) becomes 

2 2( ) 0i iai b ci d e he                (3.15) 

If ,
2 2

j j
 

    and 
2

tan


   then   




i

i
e i






1

1
. 

Separating the real and imaginary parts, then    satisfies the following two equations 

2 2 2( ) 2b d h a b d h            

)()222()( 22  cahbac      (3.16) 

Denote 





















)(222)(

2
2

22

achbac

hdbahdb
M  

2

2 2

2

( ) 2 2 2

b d h a
M

c a b h

 

 

    
  

    
 

2

3 2

2

( ) 2 2 2

b d h a
M

c a b h

 

 

    
  

       

and 

2

4 2

2

( ) 2 2 2

b d h a
M

c a b h

 

 

    
  

    
 



43 
 

 

and define 

1( ) et( )D D M  , 3( ) et( )E D M  , 4( ) et( )F D M  . 

If, 0)( D then (3.16) can be solved to get: 

  

2 ( )
     

( )

E

D





 ,         

)(

)(






D

F
  . 

From which we get that 2( ) ( ) ( ) 0D E F    .Therefore by simple algebraic 

manipulations we see that   satisfies the following 8th order polynomial equation for

( ) 0D   . 

8 6 4 2
1 2 3 4s s s s              (3.17) 

Where 

2 2
1 2 4s a b c    

2 2 2 2 4 2 2 2 2
2 6 2 4 2 2s b h ba d a a c c b hc         

2 2 2 3 2 2 2 2 2 2 2 2 2 2 2
3 2 4 2 2 4 2 4 2s d b a d b b a c b bc h acdh d h bh h a c h            

4 2 2 2 2 2 2 2 4 2 2 2
4 2 2 ( ) ( )s b d b b h bd h d h h b h d b h              (3.18) 

and 2  is a positive root of 

4 3 2
1 2 3 4z s z s z s z s           (3.19) 

If	�� =
�

�
+ ��,� ∈ �then 	� = �	and 	� = � + ℎ − �, hence	�(�)= �(�)= 0. So 

�� is still a positive root of equation (3.19).From this  analysis the following lemma 

can be stated. 
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Lemma 3.1 

If  ±��	(� > 0) is a pair of purely imaginary roots of equation (3.14) then ��  is a 

positive root of Equation (3.19)  for �� for 1 ≤ �≤ 4 are given in equation (3.18). 

The converse of Lemma 3.1 does not always hold. The conditions for which the 

converse of this lemma holds has been very well established in ( ShanShan et.al., 

2013) . 

Lemma 3.2 

If equation (3.19) has a positive root 2
N  ( 0N  ) and ( ) 0ND    , then equation 

(3.15) has a unique root 

( )

( )
N

N

N

F

D





 when N  . Hence (3.14) has a pair of purely imaginary roots Ni

when 

2arctan 2
,j N

N

N

j
j

 
 




  Z 

        (3.20) 

Proof 

If ( ) 0ND     then   

2

( ) ( )

( ) ( )
N N

N N

E F

D D

 

 

 
  
 

.   Consequently (3.15) has a real root   

N   and       hence (3.14) has a pair of purely imaginary roots  Ni  when j
N    

has define in (3.20) 

If the root �� of equation (3.19) and the root 	� of equation (3.15) are solved, then the 

corresponding � − value is always solved from the relation 
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 
2arctan 2

, 3.21j j
j

 
 




  Z                                                                               

  Since � = tan
��

�
, if is restricted to be positive, then � ∈ ℕ  or � ∈ ℕ⋃{0}  

depending on � 

There is one except to this statement, which is a limit case in the sense that � = ∞,

�� = � and arctan � =
�

�
 . 

3.4.1.3 Transversality Condition 

Suppose that (3.19) has a positive root 	��(� > 0), (3.15) has a real root 	� with this 

	� and 	� = ��	(� ∈ ℤ). 

For 	� ∈ (−∞,+∞) define the following function; 

  2 2 2, (1 ) 2 (1 ) . 2 (1 ) 2G d h a                   

2 2 2(1 ) 4 . (1 ) 4 (1 ) .c h a c                      (3.22) 

If  , 0G    , then i  is a simple root (3.14) for  j  and there exists 

( ) ( ) ( )i       which is the unique root of (3.14) for ( , )j j       for some 

small 0   satisfying ( ) 0j    and ( )j   . Moreover, 
���{�(�)}

��
�|���� =

�� (�)

��
�|���� > 0,� ∈ ℤ when �(�,�)> 0 

���{�(�)}

��
�|���� =

�� (�)

��
�|���� < 0,� ∈ ℤ when �(�,�)< 0    (3.23) 

For � = ∞ (in the sense that arctan � =
�

�
 ) if 2ℎ − � ≠ 0, then the conclusion in 

lemma 3.1 holds 
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Proof     

2 2( , ) ( )Denote M a b c d e he            
 

Then ( , ) ( , )
M

e P   





       and 

( , ) ( , )
M

e Q    



 

  

where 

2( , ) (2 ) ( ) 2 ,P a e c c d h e              

and
 

2( , ) 2 .Q c d h e         

 For   ( , ),    substituting ,i  j   and tan
2

j
  ( , )P   and ( , ),Q    

leads to 2(1 ) ( , )jP i   2 2 2 2(1 ) 4 (1 ) (1 ) 2 (1 )j ja c d h              
 

2 22 (1 ) 2 (1 ) 4j ji a c h              ’ 

and 

2 2 2 2
(1 ) ( , (1 ) 2 (1- ) ( (1 )) - 4 ).j

Q i d h i c h           )
 

Hence  

2 2(1 ) ( , ) ( , )
j j

IM P i Q i    
 

 
  

2 2(1 ) 2 (1 )d h      
2 2. 2 (1 ) 2 (1 ) 4j ja c h              
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2(1 )) 4 .c h      
2 2(1 ) 4 (1 )a c         

2(1 )) 4 .c h      
2 2(1 ) 2 (1 )j jd h          

2 2(1 ) 2 (1 ) .d h      
22 (1 ) 2a       

2(1 )) 4 .c h      
2 2(1 ) 4 (1 )a c         

( , ).G  
 

Since  

( , ) ( , )
jj j iM

i P i e    





 , 

when ( , ) 0,G     implying that ( , ) 0.jM
i 






  
From implicit function theorem, it 

will implies that i is simple and there exist ( ) ( ) ( )i        which is the unique 

root of equation (3.14) for ( , )j j        .for some small 0  satisfying 

( ) 0j    and ( )i   . Substituting ( )   into (3.14) and taking derivatives with 

respect to   gives 

( , ) ( , ),
d

P Q
d


    




 

and 

Re{ ( )}
0,j

d
j

d  

 

 
 Z when ( , ) 0G    . 

Re{ ( )}
0,j

d
j

d  

 

 
 Z when ( , ) 0G    . 
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Hence the case when     is obtained. 

When   , then a c and 0,b h d   and equation (3.14) has a pair of purely 

imaginary roots i b h d      when
2j j 





 . In this case, 

 Im ( , ) ( , ) 2 (2 - ),.j jP i Q i h d    

This completes the verification of the transversality condition. 

Equation (3.20) implies that 

0 2arctan
 


  Is the critical value of delay for stability of endemic equilibrium 

and
( )

( )

F

D





  

From the above analysis, the following proposition can be stated 

Proposition 3.2: 

(i) If 00    , then the DFE of our model is asymptotically stable. 

(ii) If 0  , then the DFE of our model is unstable. 

(iii) If 0  , then the DFE of our model will undergo a Hopf bifurcation, 

that is a periodic solution bifurcate from 0  .The periodic solution 

exists for 0   and is stable. 

3.4.2 Stability of Endemic Equilibrium in Absence of Delay 

Stability of system equation (3.6) at EEP is determined by the signs of the Eigen-

values of linearization matrix of the system evaluated at EEP. 
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The zero solutions of the nonlinear system equation (3.6) at EEP is asymptotically 

stable if and only if the zero solutions of the linear system obtain from equation (3.6) 

is asymptotically stable. Therefore asymptotic stability of equation (3.6) at EEP is 

established by examining the signs of the Eigen-values of the zero solutions of the 

linearized system. 

From simple algebraic calculations we obtain the values of the endemic equilibrium 

points as; 

�� =
���
��

,			�∗� =
�����(�� − 1)

���
���� − (1 − ��)����

,

��
� =

��(1 − ��)(1 − ��)��(�� − 1)

���
���� − (1 − ��)����

 

and																											���
� =

����∗���(1 − ��)��(�� − 1)

����(���
���� − (1 − ��)����)

																																	(3.21) 

We start by centering the model equation (3.6) at endemic equilibrium 

*( , , , )
ee e e e

I NIE T T V V  by introducing new variables 

1
eW T T  ,    * *

2

e

W T T  ,   
3

e
I IW V V  ,  

4
e

NI NIW V V   

We then rewrite the model equations of system (3.6) in term of the new variables, and 

because  *( , , , )
ee e e e

I NIE T T V V  is an equilibrium point, the constant term cancel. We 

also discard the quadratic terms because their partial derivatives at the origin are zero. 

The system (3.6) with the new variables becomes 

1 1 1 1 1 3( ) ( ) (1 ) ( ( ) ( ) )e e
WW t W t u W t V W t T      

 

22 1 1 1 3 1 2( ) (1 ) ( ( ) ( ) ) ( ) ( )e e
WW t u W t V W t T ru W t       
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33 1 2 2 3( ) (1 )(1 ) ( ) ( )WW t u u kW t W t     
     (3.22)                   

 

44 1 2 2 4( ) (1 ) ( ) ( )WW t u u kW t W t    
 

System (3.22) in matrix form is given by 

1

3

4

1 11

22

33

44

0 ( )( )

0 ( )( )

0 0 ( )( )

( )( ) 0 0

e e
W I

e e
I

w

W

aV ru aT e W tW t

aV b aT e W tW t

ce W tW t

W tW t de























      
             
           









 

where 1(1 )a u   ,   
2 1( )Wb ru   , 1 2(1 )(1 )c u u k   ,    1 2(1 )d u u k  . 

The eigen-values of the above matrix are obtained from evaluating and solving the 

following determinant for  . 

 

*

1 1 1

1 1

1 2

2 2

(1 ) (1 ) 0

(1 ) ( ) (1 ) 0
0

0 (1 )(1 ) 0

0 (1 ) 0

I

IN

e e
T I

e e
I T

V

V

u V ru u T e

u V r e u T e

u u ke

u u ke



 





   

   

 

 



 





     

    


   

  
 

           

(3.23)

  
Matrix (3.23) without delay becomes, 

*

1 1 1

1 1

1 2

2 2

(1 ) (1 ) 0

(1 ) ( ) (1 ) 0
0

0 (1 )(1 ) 0

0 (1 ) 0

I

IN

e e
T I

e e
I T

V

V

u V ru u T

u V r u T

u u k

u u k

   

   

 

 

     

    


   

    (3.24)
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In order to determine stability, we linearize the system equation (3.22) about the 

equilibrium point in equation (3.21) and find the condition for which all the 

eigenvalues of the coefficient matrix are negative. 

Assume a solution of the form		�(�)= ���
���, then linearizing about the origin 

(��,��,��,��)= (0,0,0,0) yields the system 

 

 

⎝

⎛

��
�

��
�

��
�

��
�⎠

⎞ =

⎝

⎜
⎛

−�� − (1 − ��)��
� − � ��� −(1 − ��)��

����� 0

(1 − ��)��
� − (��∗ + ���)− � (1 − ��)��

����� 0

0 (1 − ��)(1 − ��)��
��� − ��� − � 0

0 (1 − ��)��
��� 0 − ���� − �⎠

⎟
⎞
�

��
��
��
��

� 

          (3.25) 
 
Clearly, the fourth eigen-value is negative, that is, �� = − ����and the sign of the 

other three can be determined using Routh Hurwitz criteria. 

The characteristic equation of the reduced 3 × 3	matrix from equation (3.25) is given 

by 

																																															�� + ���� + ��� + �� = 0   (3.26)  

where; 

�� = ��∗ + ��� + ��� + �� + (1 − ��)��
� 

�� = (��∗ + ���)��� + (1 − ��)(1 − ��)���
������ + �(��∗ + ���)+ ����[− �� − (1 − ��)��

�]

− ���(1 − ��)��
�  

and 
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�� = �(��∗ + ���)��� − (1 − ��)�����
�������[− �� − (1 − ��)��

�]− ������(1 − ��)��
�

+ (1 − ��)(1 − ��)(1 − ��)��
���������� 

Routh Hurwitz condition requires that for all eigenvalues to be negative, the 

conditions below must be satisfied. 

�� = �� > 0,			�� = ���� − �� > 0and�� = �� > 0. 

In the absent of delay we clearly see that, �� > 0and �� > 0 if the following 

condition is satisfied; 

Defining
(1 )2 (

1
1 2
( )1

1
*

)u u kT
R

ruT V T

e

I



  

 



, then all eigenvalues are negative if �� > 0 or 

��
� > 0. 

3.4.3 Stability of Endemic Equilibrium with Delay 

 In the presences of delay, the remaining eigen-values are obtained from the following 

3X3 determinant 

0

0

a b ce

d f ce

ge h



















  

  

 

 

where:   (1 )11
e

a u vw     , 1b ru , (1 )1
ec u T  . 

(1 )1
e

d u v  , 12
f ruw  ,  1 2(1 )(1 )g u u k   , 

3wh  . 

 Which simply to the following transcendental equation 

3 2 2 2
1 2 3 4 5 0b b b e b e b                     (3.27) 
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where: 

1b a f h    

2b af ah fh bd     

3b cg   

4 ( )b cbg acg cg b a     

5 ( )b afh bdh h af bd     

The characteristics equation (3.27) compares to the one analysized by Rebecca and 

Shigui, (2000) and we use the approach used in their paper to locate the roots of this 

equation analytically. 

Let ,i    substituting into equation (3.27) and assuming purely imaginary 0,   

we clearly see that i   ( 0)   is the root of equation (3.26) if and only if 

3 2
1 2 3 4 5(cos 2 sin 2 ) (cos 2 sin 2 ) 0i b b i b i i b i b                 

          (3.28) 

Separating the real and imaginary parts, we have that: 

2
1 5 4 3cos 2 sin 2b b b b            (3.29) 

3
2 4 3sin 2 cos 2b b b              (3.30) 

Adding the squares of both sides of these two equations and collecting like terms, one 

gets that: 

6 2 4 2 2 2 2 2
1 2 2 1 5 3 5 4( 2 ) ( 2 ) 0b b b b b b b b              (3.31) 
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Let 2z  , 2
1 22b b   , 2 2

2 1 5 32b b b b     and 2 2
5 4b b    then equation (3.31) 

becomes: 

3 2( ) 0h z z z z              (3.32) 

Let 2( )
3 2 0

dh z
z z

dz
           (3.33) 

If 0  , and 0  then equation (3.32) has no positive real roots. 

 In fact we have that 

2( )
3 2 .

dh z
z z

dz
     Setting 23 2 0z z     (3.34) then the roots of this 

equation can be expressed as 
2

1,2

3
.

3
z

    
  

If 0  ,then 2 23    , that is 2 3    . Hence both roots of equation (3.34) 

are negative. Since (0) 0h   equation (3.32) has no positive roots. 

Proposition 3.3 

Suppose that 

(i) 1 3 5 1 2 4 3 50, 0, ( ) ( ) 0;b b b b b b b b        

(ii) 0   and 0   

Then the EEP is asymptotically stable for 0.   

Proposition 3.3 implies that if the parameters satisfy the conditions (i) and (ii), then 

the EEP of our model is asymptotically stable. However if (ii) is not satisfied, then the 

stability of EEP will depend on the delay value and the delay can induce bifurcations. 

As an example consider the following two cases: 
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 (a) 0  in which case from (3.32) (0) 0h   and lim ( )
z

h z


  . Thus equation (3.32) 

has at least one positive root say 0z . Consequently equation (3.31) has at least one 

positive root, denoted by 0 . 

(b) If 0  then 2 3    and hence one of the roots of equation (3.34) is 

positive and hence equation (3.31) has at least one positive root. This implies that the 

Characteristics equation (3.26) has a pair of purely imaginary roots i has is 

varied. 

Let ( ) ( ) ( )i        be the eigen-value of the characteristic equation (3.26) such 

that 0( ) 0   , 0 0( )   , then we have from (3.29) and (3.30)that 

4 2
3 0 1 4 2 3 0 4 5

2 2 2
0 4 3 0

( )1
arccos

2
j

b b b b b b b j

b b

  


  

   
  

 
0,1, 2....j   

We can also verify that the transversality conditions 

 
1 1

( ) ( ) 0
d d

Re
d d

      
 

  
 
holds, where �� is the critical value of delay for 

stability of endemic equilibrium.  

Differentiating equation (3.26) with respect to   we get that 

2 2 2 2 2
1 2 3 3 4 3 4(3 2 2 2 ) 2 ( )

d
b b b e b e b e e b b

d
   

     


         
 

and therefore
 

1 2 2 2 2
1 2 3 3 4

2
3 4

3 2 2 2

2 ( )

b b b e b e b ed

d e b b

  



   

  

   



     
 

   

or 
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1 2
31 2

3 2
1 2 5 3 4

3 2

2 ( ) 2 ( )

bb bd

d b b b b b

  

       


  

   
     

 

�
��

��
�
��

=
3�� + 2��� + ��

− 2�(�� + ���
� + ��� + ��)

+
��
2���

−
��
�

2��(��� + ��)
−
�

�
(3.33) 

Thus, evaluating equation (3.34) at � = ��� and examining the sign of the real part, 

we have, 

�����
�(���)

��
� = ������� �

��

��
�
��

� 

= ������� �
3�� + 2��� + ��

− 2�(�� + ���
� + ��� + ��)

� + �� �−
��
�

2��(��� + ��)
�� 

= ����
1

2
�
(�� − 3��

�)(�� − ��
�)+ 2��(����

� − ��)

(���� − ��
�)� + (����

� − ��)�
−

��
�

��
� + ��

���
�� 

= �����
�

�
�, 

where, � = (��
� + ��

���
�)[(�� − 3��

�)(�� − ��
�)+ 2��(����

� − ��)]− ��
�[(���� −

��
�)� + (����

� − ��)
�] 

� = (��
� + ��

���
�)[(���� − ��

�)� + (����
� − ��)

�] 

Since ��
� − 2�� > 0,��

�(��
� − 2����)− ��

���
� > ��

�(��
� − 2���� − ��

�)> 0 

 this implies that 

��
(���)

��
�
�	���,			����

> 0. 

 and thus the transversality condition holds and hence Hopf bifurcation occurs 

at	�	 = ��,� = ��. This completes the verification of the transversality condition. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

To bring out the analytic solutions in the previous Chapter clear, we illustrate the 

analytic results with specific numerical examples. We will consider simulation of 

model equation (3.6) and parameters from literature. A complete list of parameters 

and their estimated values that can be used for numerical simulations of the model are 

given in Table 1. The majority of the values have been taken from the data found in 

scholarly articles published in various journals. Much of these parameters were 

adopted from Perelson et.al., (1993), and a complete discussion of their estimation is 

found therein. These data do not depict a strict situation but the parameter range is 

within the plausible and realistic values. 

In the simulation of the model (3.6), the following initial values in each compartment 

at the onset of infection are assumed to apply. 

 ��(0),�∗(0),��(0),���(0)� = 	(1000,0,0.01,0.01)  On the interval [− �		0]. at 

the onset of infection the initial viral population is zero but for simulation purpose, we 

use  ��(0)= 	0.01 and ���(0)= 0 since if ��(0)= 	0 and ���(0)= 0, the graph will 

remain at zero throughout as time grows. 
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Table 1: Table of Parameters and their Values 

Item Parameter description Symbol Value 

1 Production rate of uninfected CD4+T cells (T) � 10 

2 Death rate of uninfected CD4+T cells (T) �� 0.02 

3 Infection rate of uninfected CD4+T cells (T) � 0.00024 

4 Death rate of Infected CD4+T cells (T*) ��∗ 0.26 

5 

Production rate of infectious and non-infectious 

free virus from infected CD4+ cells. 
� 1000 

6 

Clearance rate of free infectious virus from the 

body 
��� 2.4 

7 

Clearance rate of free noninfectious virus from 

the body 
���� 0.3 

8 Efficiency of reverse transcriptase inhibition �� 0 ≤ �� ≤ 1 

9 Efficiency of protease inhibition �� 0 ≤ �� ≤ 1 

10 

Rate of recovery of infected T cells due to 

treatment. 
	� 0.53 

11 

Time delay from infection of the cell to 

production of new infectious viruses 
	� 

To be 

determined 

Source: Perelson et.al., (1993) 
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4.1 Dynamics of CD4+T-Cells and Free Virus Populations for Various Efficacies 

The simulation results for model equation (3.6) for various efficacies of the 

combination chemotherapy are discussed in this section. The illustrations shows the 

simulations of the general dynamics of uninfected CD4+T-cells (�(�)), infected 

CD4+T-cells (�∗(�)), infectious virus(��(�)), and noninfectious virus (���(�)) 

4.1.1 Effects of Efficacy on T-Cells and Free Virus Populations 

In the absence of treatment or with combined chemotherapy of up to 20%, we note 

from the simulations in Figure 4.1 and Figure 4.2 that the level of infectious free virus 

is higher than that of T-cells and noninfectious virus. The two graph shows that 

uninfected CD4+T-cells are below 200mm-3. This value is not good for immune 

system to fight any subsequent infections (see for instance WHO, for the requirement 

of CD4+T-cell level for a strong immune system). 
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Figure 4.1 Graph of HIV-1 in vivo dynamics in the absence of treatment.  

 

In Figure 4.1 above, the illustrations shows that the level of infectious virus rise 

sharply and falls to a stable value as time increases. This can be due to reduction in 

uninfected  CD4+T-cell which make the contact rate of  uninfected  CD4+T-cell and 

infectious virus to be low. A lower contact rate results in a fewer infected CD4+T-cell 

hence a lower number of infections virus since they are determine by the number of 

infected CD4+T-cell. The level of infected CD4+T-cells initially increases because of 

a higher contact rate of uninfected CD4+T-cell and infectious virus which would 

produce a higher number of infected CD4+T-cell. In the absence of treatment 

simulation of system (3.6) predicts a collapse of the immune system, a bad scenario 

for the infected individual. 
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Figure 4.2 Graph of HIV-1 in vivo dynamics at 20% Drug Efficacy. 

In Figure 4.2 the level of uninfected CD4+T-cell is initially higher but falls sharply 

and stabilize at a value below 200mm-3 of plasma, which again is not good for the 

immune system for it to fight secondary infectious. This implies that at efficacy levels 

of up to 20%, the chemotherapy has no benefit to the immune system. 

The same graph gives an interesting dynamics of infected CD4+T-cell, it falls first 

then oscillate and falls to a steady value. This can be attributed to two processes apart 

from death:  

1) Reduced number of uninfected T- cells which would lower the contact rate of 

uninfected CD4+T-cell and infectious virus leading to lower infected T-cells. 

2) Some infected CD4+T-cell are treated by combined chemotherapy thus reducing its 

numbers.  
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Figure 4.3 Graph of HIV-1 in vivo dynamics at 50% Drug Efficacy. 

 

At efficacy of 50%, a simulation of systems (3.6) shows that the cells populations 

almost come to the same levels after around 200 days (Figure 4.3). The level of 

uninfected CD4+T-cells is however still lower, which implies that chemotherapy at 

50%, is still not benefiting the immune system. 
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Figure 4.4 Graph of HIV-1 in vivo dynamics at 80% Drug Efficacy. 

 

At efficacy of 80% and above the combined chemotherapy lowers the free virus to 

very negligible levels (figure 4.4). This is good news for the immune system.  

 

 

 



64 
 

 

 

In Figure 4.5 the threshold efficacy is about 79%. We however need to be careful 

since there are other cells infected by HIV-1 virus which would act as a reservoir for 

another round of infection. This therefore calls for a more structured chemotherapy 

after lowering the plasma virus to negligible levels. 

 

 

 

 

 

Figure 4.5 Graph of 1R against Drug Efficacy showing Efficacy threshold value. 
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                            (a)                                                                                 (b)            

            Figure 4.6 Graph of HIV-1 in vivo dynamics at 79% Drug Efficacy. 

 

In Figure 4.6 we see that a magnification of the lower line in Figure 4.6 (a) shows 

oscillations of the virus populations and infected CD4+T-cells Figure 4.6 (b). The 

oscillation can be attributed to drug concentrations at plasma levels. 
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.

 

Figure 4.7 Graph of  λ	against .  

 

In the Figure 4.7 above, the simulation of eigenvalues of linearization matrix of 

system (3.6) at EEP against the length of time lag (�) is illustrated. Clearly, the time 

delay must be positive, and from the graph, we note that for 0 ≤ � ≤ 0.6515 the 

system is orderly chaotic, starting from two eigenvalues (one positive and the other 

negative) then increase to three, then four (one positive and the other negative). After 

the critical value of delay  �� = 0.6515, the system undergoes Hopf Bifurcation and  

remain stable for all � > ��. This agrees with the transversality condition obtained in 

the analytic results 
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CHAPTER FIVE 

CONCLUSION 

This chapter will revisit the objective of this research outlined in chapter one, discuss 

each of them and draw conclusions. The main objective of the study was to formulate 

an HIV-1 in vivo dynamics using delay differential equations and then study the 

effects of delay and efficacy on the stabilities of EEP and DFE. The effects of these 

two are analyzed analytical and numerical using MATLAB and parameter values 

from literature. 

5.1 Effects of Delay and Efficacy on Disease Free Equilibrium 

The disease free equilibrium in the absence of delay is affected by efficacy of both 

drugs used in our model: protease inhibitor and reverse transcriptase inhibitor since 

reproduction number which determine stability depend on their efficacy. The study 

reveals that a higher efficacy of RTI and a moderate efficacy of PI could easily lower 

reproduction number below one if other factors like death rates are kept constant. 

Numerical simulations using data from literature in the absence of delay puts PI and 

RTI efficacies at 0.79 and 0.79 respectively for reproduction number to go below one 

as earlier as possible. Any values of efficiency above this value for RTI may result in 

no change in the dynamics of DFE, and any value of PI below this value may not be 

as good in reducing reproduction number.  

The delay on the onset of infectious virus production as an effect on DFE in that its 

stability depends on it. The study reveals that there is a critical value �� of delay for 

which the DFE is stable. The value of this delay depends on � and � as define in the 

analysis of DFE in chapter three. 
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 In fact for � < �� the DFE is stable and for � > τ� the DFE is unstable but for � = ��  

there will be stability switch of the Hopf type as reveal by the transversality analysis. 

Numerical solution of the model with delay using MAT LAB DDE23 solver reveals 

that the value of �0 is 0.65 days or 15 hours for EEP to be stable. 

Reproduction number can also be affected by the cure rate of CD4+T-cells, which 

implies that drugs of higher potency are the best in the stability of DFE equilibrium. 

5.2 Effects of Delay and Efficacy on Endermic Equilibrium 

The characteristics equations of the linearization matrix of our model at EEP has both 

delay and recovery rate. The solution of this equation determines the stability of the 

EEP, therefore this two parameters affects EEP stability. The fact that EEP stability is 

affected by recovery rate implies that chemotherapy affect stability of EEP. The 

variable R1 define in the analysis of EEP stability in fact has efficacy of both the drug 

used in the  model under study and determines the signs of the eigen-values has per 

the  Routh Hurwitz condition for stability.  

 In the presences of delay, the EEP stability changes with the change in the value of 

the delay. The analysis reveals that there is a critical value of delay denoted by 1  so 

that stability of EEP is achieved .This critical value depends on (1 5)ib i   and  0  

as define in the text. In fact for 1   the EEP is stable and for 1  the DFE is 

unstable but for 1   there will be stability switch of the Hopf type as reveal by the 

transversality analysis. 

The efficacy threshold on the two drugs in the study is established numerically to be 

0.79 in order for the stability of the DFE. Biologically, stability of DFE means being 

free of infection after a small dose of the virus that comes into the body is cleared by 
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chemotherapy. The finding agrees with the current practice in which prophylaxis is 

administered on suspecting exposure to HIV-1 virus within a small duration after 

exposure. However the efficacy of the drugs is still a moving target for researchers. 

This finding can therefore provide a basis for clinical trials from a stronger theoretical 

foundation. The current duration allowable after exposure is 72 hours or less (see for 

instance CDC and WHO website). This is the period that HIV-1 is thought to require 

before it can multiply to a number able to overcome the body immune system. The 

finding of this research suggest the time as 15hours on the onset of exposure, which is 

again within the allowable time for the administrations of prophylaxis.  The model 

therefore can be used in the predictions of hiv-1 in vivo dynamics. In conjunctions 

with clinical trial, the model can be used in determinations of HIV-1 infection 

parameters like viral death rates, CD4+T-cell turnover rates, viral clearance rate to 

mention a few. 

Biologically, the stability of endemic equilibrium implies the co-existence of HIV-1 

and the CD4+T-cells in the plasma fluids of a person without the virus affecting the 

functioning of the CD4+T-cells. This implies that the person will have HIV-1 and 

don’t become sick due to this presence, very good news for the human populations 

because of the negative impact that HIV-1 sickness has on economic, social and 

political development. The study reveals that drug efficacy and time delays play an 

important role in the stability of EEP. That can also be seen in the analysis of EEP 

that drug potency play a role in lowering Reproduction number and therefore it is not 

only  efficacy of a drug but it potency matters. The model finding again agrees with 

the current practice where post-exposure prophylaxis is administered to perturb HIV-1 

progression in vivo. 
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The facts that delay has an effect on stability of EEP provide a strong theoretical 

foundation of the new practice of ARV treatment called STI (structural treatment 

interference.). This treatment strategy involves a deliberate stopping of ARV 

treatment for some time then recovering the treatment again. The strategy has many 

advantages for instance reduction in cost of treatment and toxicity to mention a few. 

The duration (delay) between treatments is what is important for effective ARV 

treatment of persons infected by HIV-1. This study is a stronger theoretical 

foundation on clinical trial in this treatment regime. The study suggests a delay of 

0.65 days or approximately 6 hours for stability of EEP. 

5.3 Suggestions for Further Research 

 This study has not exhausted all about HIV-1 in vivo dynamics. The effect of an 

individual’s immune response is not captured. The carrying capacity of CD4+T-cells 

and their proliferations is also a possible factor in another research on in vivo 

dynamics of HIV-1. 

Clinical trials on efficacies of ARV treatment can now be carried around the threshold 

suggested by this study. Studies on ARV using STI regime can now be narrowed to 

the value of delays for stabilities of EEP 
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APPENDICES 

MATLAB CODE 

APPENDIX I DYNAMICS OF HIV/AIDS WITH VARIOUS DRUG 

EFFICACIES 

 

function Dynamics of HIV/AIDS with various drug efficacies 
global tau; 
global u1; 
global u2; 
for u2 = 0.8; %RTI drug efficacy 
for u1 = 0.8; %PI drug efficacy 
lag=tau; 
for tau=[12]; 
tspan = [0, 800]; 
sol = dde23(@relag2,lag,@hist2,tspan); 
figure; 
t = linspace(0,800, 10000); 
x = deval(sol,t,1); 
y = deval(sol,t,2); 
z = deval(sol,t,3); 
p = deval(sol,t,4); 
tot=x+y; 
%---------------------------------------------------------- 
%subplot(1,2,1); 
plot(t,x+10,'-b*',t,y,'-g+',t,z,'-rd',t,p,'-ks','LineWidth',1,'MarkerSize',2) 
%subplot(1,2,2); 
%plot(x(:),p(:)) 
%subplot(2,2,3);plot(t,y,t,z) 
%subplot(2,2,4); 
%%plot(x,p,'r','LineWidth',1,'MarkerSize',1) 
%plot(t,x+10,'-b*',t,y,'-g+',t,z,'-rd',t,p,'-ks','LineWidth',1,'MarkerSize',2) 
axis([0 800 0 1400]); 
 
%--------------------------------------------------------- 
title('Cell population dynamics at 80% treatment'); 
xlabel('Time in days') 
ylabel('Cell populations per mm^3') 
legend('T','T^*','V_I','V_{NI}');grid,%hold on; 
end 
end 
end 
%--------------------------------------------------------------------------- 
function IC = hist2(t) 
% Constant history function for DDEX1. 
IC = [1200; 0; 0.001; 0]; 
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%s = [T;  T1;  VI;   VN]; 
% -------------------------------------------------------------------------- 
functiondydt = relag2(t,v,Z) 
% Differential equations function for DDE. 
%Parameters............................................... 
s=15; % recruitment rate of naive CD4, CTL1 and CTL2 
r=0.53; % max recovery rate of treated CD4 
be1=0.024;%infection rate of cd4 by virus 1 and virus 2 
d1=0.015;  %death rates of T 
d2=0.26;% death rates of T and T* 
d3=2.4;  %death rate of infectious virus 
d4=1.7; % death rates of Non-infectious virus 
k = 10; %Burst size Infectious 
 
global u1; 
global u2; 
%........................................................... 
% Model Equations 
vlag1 = Z(:,1);% Delay on exposure of latently infected cells 
dydt = [ s-(1-u1)*be1*v(1)*vlag1(3)-d1*v(1)+r*u1*v(2) 
    (1-u1)*be1*v(1)*vlag1(3)-d2*v(2)-r*u1*v(2) 
    (1-u1)*(1-u2)*k*vlag1(2)-d3*v(3) 
    (1-u1)*u2*k*vlag1(2)-d4*v(4)]; 
%..................................................... 
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APPENDIX II DRUG EFFICACY VERSUS REPRODUCTIVE RATIO 0R  

 
function Drug Efficacy Versus Reproductive Ratio �� 
%Parameters............................................... 
s=15; % recruitment rate of naive CD4, CTL1 and CTL2 
r=0.53; % max recovery rate of treated CD4 
be1=0.024;%infection rate of cd4 by virus 1 and virus 2 
d1=0.015;  %death rates of T 
d2=0.26;% death rates of T and T* 
d3=2.4;  %death rate of infectious virus 
d4=1.7; % death rates of Non-infectious virus 
k = 10; %Burst size Infectious 
%........................................................... 
%Equations 
for u1 = 0:0.001:1 % RTI 
for u2 = [0.2 0.5 0.7 0.79 0.85]; % PI 
     R0 = ((1-u1)^2*(1-u2)*be1*k*s)/(d1*d3*(d2+r*u1)); 
    %plot(u1,R0,'-ro',u1,1,'-b*','LineWidth',2,'MarkerSize',2),hold on  grid 
plot(u1,R0,'-ro',u1,1,'-b*','LineWidth',2,'MarkerSize',2),hold on  grid 
axis([0 1 0 50]) 
    %plot(tau(:),R0(:),'b-*',tau,R1,'r-d','LineWidth',2,'MarkerSize',1),hol 
    %d on  grid 
end 
end 
title('R_0 versus Drug efficacy profile'); 
xlabel('Drug Efficacy') 
ylabel('Reproductive Number R_0') 
legend('R_0','R_1');grid,%hold on; 
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APPENDIX III BOUNDS OF DELAY � FOR STABILITY AND 

BIFURCATION 

function Bounds of Delay � for Stability and Bifurcation 
for la=-5:0.01:5; % lambda eigenvalue 
%Parameters............................................... 
s=10; % recruitment rate of naive CD4, CTL1 and CTL2 
r=0.53; % max recovery rate of treated CD4 
%be1=0.0062;%infection rate of cd4 by virus 1 and virus 2 
be1=0.0062;%infection rate of cd4 by virus 1 and virus 2 
d1=0.0152;  %death rates of T 
d2=0.034;% death rates of T and T* 
d3=0.074;  %death rate of infectious virus 
d4=2.8; % death rates of Non-infectious virus 
k = 5; %Burst size Infectious 
for u1 = 0.69; 
u2 = u1; 
R0 = ((1-u1)^2*(1-u2)*be1*k*s)/(d1*d3*(d2+r*u1)); 
Ve = (d1*(1-u1)*(1-u2)*k*s*(R0-1))/(d1^2*d3-(1-u1)*be1*s*R0); 
Te=(s*R0)/d1; 
a = d1+(1-u1)*be1*Ve; 
b = r*u1; 
c = (1-u1)*be1*Te; 
d = (1-u1)*be1*Ve; 
f = d2+r*u1; 
g = (1-u1)*(1-u2)*k; 
h = d3; 
b1 = a+f+h; 
b2 = a*f+a*h-f*h-b*d; 
b3 = -c*g; 
b4 = c*g*(b-a); 
b5 = h*(a*f-b*d); 
tau = (1/(2*la))*log((la^3+b1*la^2+b2*la*b5)*(la*b3+b4)); 
if tau > 0 
Delay_Lambda = [tau, la] 
elsedisp('Error') 
end 
%delay = tau 
%plot(tau,la,'-r*',tau,R0,'-bo','LineWidth',2,'MarkerSize',2), hold on, grid on 
title('Value of \tau which gives \lambda<0'); 
ylabel('Lambda \lambda') 
xlabel('Delay \tau') 
legend('\tau'),grid on, hold on; 
end 
end 
 

 


