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Abstract
Key message  Analysis of the genetic architecture of MCMV and MLN resistance in maize doubled-haploid popula-
tions revealed QTLs with major effects on chromosomes 3 and 6 that were consistent across genetic backgrounds and 
environments. Two major-effect QTLs, qMCMV3-108/qMLN3-108 and qMCMV6-17/qMLN6-17, were identified as 
conferring resistance to both MCMV and MLN.
Abstract  Maize lethal necrosis (MLN) is a serious threat to the food security of maize-growing smallholders in sub-Saharan 
Africa. The ability of the maize chlorotic mottle virus (MCMV) to interact with other members of the Potyviridae causes 
severe yield losses in the form of MLN. The objective of the present study was to gain insights and validate the genetic 
architecture of resistance to MCMV and MLN in maize. We applied linkage mapping to three doubled-haploid populations 
and a genome-wide association study (GWAS) on 380 diverse maize lines. For all the populations, phenotypic variation for 
MCMV and MLN was significant, and heritability was moderate to high. Linkage mapping revealed 13 quantitative trait loci 
(QTLs) for MCMV resistance and 12 QTLs conferring MLN resistance. One major-effect QTL, qMCMV3-108/qMLN3-108, 
was consistent across populations for both MCMV and MLN resistance. Joint linkage association mapping (JLAM) revealed 
18 and 21 main-effect QTLs for MCMV and MLN resistance, respectively. Another major-effect QTL, qMCMV6-17/qMLN6-
17, was detected for both MCMV and MLN resistance. The GWAS revealed a total of 54 SNPs (MCMV-13 and MLN-41) 
significantly associated (P ≤ 5.60 × 10−05) with MCMV and MLN resistance. Most of the GWAS-identified SNPs were within 
or adjacent to the QTLs detected through linkage mapping. The prediction accuracy for within populations as well as the 
combined populations is promising; however, the accuracy was low across populations. Overall, MCMV resistance is con-
trolled by a few major and many minor-effect loci and seems more complex than the genetic architecture for MLN resistance.
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GP	� Genomic prediction
JLAM	� Joint linkage association mapping
LD	� Linkage disequilibrium
MAF	� Minor allele frequency
MCMV	� Maize chlorotic mottle virus

Communicated by Antonio Augusto Franco Garcia.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0012​2-019-03360​-x) contains 
supplementary material, which is available to authorized users.

 *	 Boddupalli M. Prasanna 
	 b.m.prasanna@cgiar.org

 *	 Manje Gowda 
	 m.gowda@cgiar.org

1	 International Maize and Wheat Improvement Center 
(CIMMYT), P.O. Box 1041‑00621, Village Market, 
Nairobi 00621, Kenya

2	 International Maize and Wheat Improvement Center 
(CIMMYT), El Batan, Texcoco, DF, Mexico

3	 Department of Plant Breeding and Biotechnology, University 
of Eldoret (UoE), P.O. Box 1125, Eldoret 30100, Kenya

4	 International Maize and Wheat Improvement Center 
(CIMMYT), 12.5 km Peg Mazowe Road, Mount Pleasant, 
P.O. Box MP163, Harare, Zimbabwe

http://orcid.org/0000-0003-4434-6364
http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-019-03360-x&domain=pdf
https://doi.org/10.1007/s00122-019-03360-x


2382	 Theoretical and Applied Genetics (2019) 132:2381–2399

1 3

MLN	� Maize lethal necrosis
MLM	� Mixed linear model
QTL	� Quantitative trait locus

Introduction

Maize chlorotic mottle virus (MCMV) is one of the most 
destructive pathogens, and it interacts synergistically with 
many members of the Potyviridae family: the potyviruses 
sugarcane mosaic virus (SCMV), maize dwarf mosaic virus 
(MDMV), and wheat streak mosaic virus (WSMV), result-
ing in maize lethal necrosis (MLN) (Wangai et al. 2012; 
Braidwood et al. 2018; Redinbaugh and Lucy 2018). MCMV 
is member of the genus Machlomovirus in the family Tom-
busviridae (Stenger and French 2008) and closely related 
to members of the genus Carmovirus (Wang et al. 2017; 
Redinbaugh and Lucy 2018). MCMV was first identified in 
Peru in 1974 and thereafter was reported in the USA, Brazil, 
Argentina, Mexico, Thailand, Hawaii and Colombia (Nelson 
et al. 2011).

Since 2010, MCMV has emerged at several locations 
around the world including China (Xie et al. 2011), Tai-
wan (Deng et al. 2014), Ecuador (Quito-Avila et al. 2016), 
and Spain (Braidwood et al. 2018). In sub-Saharan Africa 
(SSA), MCMV as one of the causal agents of MLN was first 
reported in Kenya (Wangai et al. 2012). Subsequently, both 
MCMV and MLN were reported in Tanzania, the Demo-
cratic Republic of Congo (Lukanda et al. 2014), Rwanda 
(Adams et al. 2014), Ethiopia and Uganda (Mahuku et al. 
2015), resulting in significant yield loss and affecting the 
food security and livelihoods of smallholder farmers in east-
ern and central Africa. In eastern Africa, MCMV was found 
in co-infections with SCMV that cause MLN (Gowda et al. 
2015; Beyene et al. 2017).

Understanding the genetic architecture of MCMV and 
MLN resistance is crucial in developing improved maize 
varieties with MLN resistance in SSA. Genome-wide asso-
ciation study (GWAS) and linkage-based mapping are two 
of the widely used approaches for identification of genomic 
regions influencing target traits in maize. Linkage-based 
mapping utilizes recombination events and marker–trait 
associations in biparental populations. This approach is pow-
erful in capturing major genes with large-effect loci and rare 
alleles (Holland 2007; Semagn et al. 2010). However, resolv-
ing small-effect QTLs is challenging and the mapping reso-
lution is comparatively low and typically produces large con-
fidence intervals (Zhu et al. 2008; Li et al. 2010). In contrast, 
GWAS explores historical recombinations and functional 
variations within a huge set of individuals (Zhu et al. 2008; 
Yan et al. 2011). This is achieved through linkage disequilib-
rium (LD) analysis. Association mapping offers better reso-
lution and greater ability to identify the favorable genetic 

loci responsible for the trait of interest (Flint-Garcia et al. 
2005; Yu and Buckler 2006; Soto-Cerda and Cloutier 2012). 
GWAS is cost-effective and time-efficient because there is 
no need to generate a specific mapping population. GWAS 
has been successfully applied to identify genomic regions 
conferring resistance to important diseases of maize, such as 
Fusarium ear rot (Zila et al. 2013; Chen et al. 2016), maize 
rough dwarf disease (Chen et al. 2015), gray leaf spot (Shi 
et al. 2014), head smut (Wang et al. 2012; Li et al. 2015), 
northern corn leaf blight (Ding et al. 2015), southern corn 
leaf blight (Kump et al. 2011), maize lethal necrosis (Gowda 
et al. 2015) and tar spot complex (Cao et al. 2017). Associa-
tion mapping has shown great potential, but the detection 
power is fairly low and the method is prone to the discovery 
of false-positive QTLs (Cao et al. 2017). Combining the two 
mapping approaches to identify candidate QTLs for complex 
diseases is more powerful due to increased statistical power 
and improved mapping resolution. This combined approach 
has been applied to study the genetic architecture of complex 
traits, including several diseases of maize, such as gray leaf 
spot (Mammadov et al. 2015), head smut (Li et al. 2015) and 
tar spot complex (Mahuku et al. 2016).

Genomic prediction (GP) has the capacity to improve 
breeding efficiency and increase the rates of genetic gains 
of the quantitative traits (Crossa et al. 2013; Beyene et al. 
2015). GP uses markers that cover the whole genome to 
predict the breeding values of individuals by capturing the 
effect of both major and minor genes. In GP, the effect of all 
markers is estimated simultaneously from a training popula-
tion that has been both phenotyped and genotyped. A model 
training population is used to calibrate the prediction model, 
and selections are made based on these predictions. Using 
this model, genomic breeding values are computed as the 
sum of marker effects for untested genotyped lines (Meuwis-
sen et al. 2001). GP of complex diseases like Northern corn 
leaf blight resistance (Technow et al. 2013), MLN (Gowda 
et al. 2015) and tar spot (Cao et al. 2017) clearly demon-
strated its potential in improving quantitative disease resist-
ance. Thus, linkage mapping, association mapping in segre-
gating populations, and GWAS, combined with an extensive 
array of genomic resources and genotyping technologies, 
have increased the power and accuracy to dissect complex 
traits and identify alleles associated with QTLs for impor-
tant traits (Ingvarsson and Street 2011). In the present study, 
we combined linkage mapping with three doubled-haploid 
(DH) populations and GWAS in a global collection of 380 
diverse tropical/subtropical maize inbred lines in conjunc-
tion with GP using genotyping-by-sequencing (GBS) SNPs. 
The objectives of this study were (1) to evaluate a diverse 
array of tropical and subtropical maize lines and DH popula-
tions for their responses to MCMV and MLN under artificial 
inoculation; (2) to conduct individual population-based QTL 
mapping and joint linkage association mapping (JLAM) to 
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dissect the genetic architecture of MCMV and MLN resist-
ance; (3) to validate the genomic regions through GWAS; 
and (iv) to assess the potential of GP for MCMV and MLN 
resistance in maize.

Materials and methods

Three DH populations (DH pop1-CML550xCML504, 219 
lines; DH pop2-CML550xCML511, 110 lines; DH pop3-
CML550xCML494, 229 lines) developed from four parents 
were used for linkage mapping and JLAM. In addition, one 
association mapping panel—the IMAS (improved maize for 
African soil; Wen et al. 2011; Gowda et al. 2015) panel 
comprising 380 inbred lines constituted by the International 
Maize and Wheat Improvement Center (CIMMYT) was used 
to evaluate the genetic architecture of MCMV and MLN 
resistance.

DH lines from three different populations and the IMAS 
association panel were evaluated for MCMV in a large 
screenhouse to avoid any mixing with other viruses and for 
MLN in a quarantined field site using artificial inoculation, 
undertaken at the MLN Screening Facility at the Kenya 
Agriculture and Livestock Research Organization (KALRO, 
https​://mln.cimmy​t.org) Research Center at Naivasha (lati-
tude 0°43′S, longitude 36°26′E, 1896 m asl), Kenya. All 
the trials were evaluated for three seasons between 2014 
and 2016, except the IMAS panel under MLN, which was 
evaluated in 2013 and 2014. For all the trials, each experi-
mental unit consisted of 3-m-long single-row plots arranged 
in an α-lattice design with two replications. To ensure a uni-
form number of plants per germplasm entry, two seeds were 
planted per hill and thinned to a single plant per hill 3 weeks 
after emergence. Standard agronomic practices were fol-
lowed for each trial.

Viral inoculum, artificial inoculation 
and phenotyping

The SCMV and MCMV isolates used in this study for arti-
ficial inoculation of the germplasm entries with MLN were 
initially collected and isolated from infected maize fields in 
MLN hotspot areas in Kenya. The amplified isolates used 
were verified as SCMV and MCMV isolates via an enzyme-
linked immunosorbent assay (ELISA). To maintain their 
purity, both SCMV and MCMV inoculums were maintained 
on the susceptible maize hybrid H614 under isolated green-
house conditions at the Naivasha MLN Screening Facil-
ity until inoculation of germplasm entries in the MCMV 
screenhouse and MLN field trials. Plants used for inoculum 
increase were inoculated at the 4–5-leaf stage, and leaves 
from inoculated plants were used as an inoculum source. 
The MCMV inoculum for the screenhouse trials and the 

MLN inoculum for field trials were prepared by following an 
optimized protocol (Mahuku et al. 2015; Gowda et al. 2018).

Inoculum for the MLN field trial was prepared by follow-
ing an optimized combination of the SCMV and MCMV 
viruses (ratio of 4:1). The infected leaves were weighed, 
chopped and homogenized in 0.1 M potassium phosphate 
buffer in a 1:10 dilution at pH 7.0. The inoculum was sieved 
through a nylon mesh paint strainer and 0.02 g/ml of Celite 
was added. MCMV inoculum for the screenhouse trials 
and MLN inoculum for field trials were applied mechani-
cally by using a motorized, backpack mist blower (Solo 
423 Mist Blower, 12 L capacity). An open-nozzle (2-in. 
diameter) was used to deliver inoculum spray at a pres-
sure of 10 kg/cm2. Inoculation was done twice in 1-week 
intervals to ensure uniform inoculation. Across all trials, 
any symptomatic plants observed before inoculation were 
discarded. The presence of MCMV alone in the screenhouse 
trials and both viruses (MCMV and SCMV) in the field tri-
als was confirmed by ELISA. MCMV and MLN disease 
severity (DS) were visually scored on each plot in an ordinal 
scale of 1 (highly resistant, with no disease symptoms) to 
9 (highly susceptible, leading to necrosis and death). Data 
were recorded at 10-day intervals, beginning from 10 days 
after the second inoculation for up to five observations. For 
the DS analyses, after analyzing each time score, we used a 
third score (40 days post-inoculation) which also had high 
heritability compared to other scores. The area under the 
disease progress curve (AUDPC) was calculated for each 
plot to provide a measure of the progression of MCMV and 
MLN severity across time (Jones et al. 2007) by using SAS 
9.4 (SAS Institute Inc 2015).

Phenotypic data analyses

Analysis of variance was conducted for DS (40 dpi) and 
AUDPC data for MCMV and MLN. Analyses were carried 
out for each DH population and the IMAS association map-
ping panel across environments by using the PROC MIXED 
procedure with the restricted maximum likelihood (REML) 
option in SAS 9.4 (SAS Institute 2015) with the following 
statistical model:

where Yijko is the phenotypic observation for the ith geno-
type at the jth environment in the oth incomplete block of 
the kth replication, μ is an intercept term, Gi is the genetic 
effect of the ith genotype, Lj is the effect of the jth environ-
ment, (GL)ij is the interaction effect between genotype and 
environment, R(L)kj is the effect of the kth replication at the 
jth environment, B(R.L)ojk is the effect of the oth incomplete 
block in the kth replication at the jth environment, and eijko 
is the residual. The effect of genotype, genotype X envi-
ronment interaction and incomplete blocks was treated as 

Yijko = � + Gi + Lj + (GL)ij + R(L)kj + B(R.L)ojk + eijko,

https://mln.cimmyt.org
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random to estimate their variances and the residual error 
variance.

For each phenotypic observation, a mixed linear model 
(MLM) was fitted by using MEATA-R software (http://hdl.
handl​e.net/11529​/10201​) to obtain both the best linear unbi-
ased estimate (BLUE) and the best linear unbiased predictor 
(BLUP) for each genotype across environments. For JLAM, 
combined analyses of the three DH populations were carried 
out to calculate both BLUEs and BLUPs and total variance 
components by using MEATA-R software (http://hdl.handl​
e.net/11529​/1020). Heritability (h2) for the DS and AUDPC 
values of MLN and MCMV was estimated on a progeny 
mean basis as: H2 = σG

2/(σG
2 + σ2

GXE/L + σe
2/LR), where σG

2, 
σ2

GXE, σe
2 referred to the genotypic, genotype X environment 

interaction and error variances, and L and R indicated the 
number of environments and replications, respectively.

Genotyping and linkage mapping

Four parental lines and their DH progenies, and the inbred 
lines in the IMAS panel were genotyped with high-density 
markers using GBS at the Institute for Genomic Diver-
sity, Cornell University, Ithaca, USA, as per the procedure 
described in earlier studies (Elshire et al. 2011; Glaubitz 
et al. 2014; Gowda et al. 2015). For the three DH popula-
tions, the GBS data were filtered with a minor allele fre-
quency (MAF) of > 0.05 and a minimum count of 90% 
of the sample size. Further, the number of SNPs in each 
population was reduced by selecting only homozygous and 
polymorphic markers between the two parents in each popu-
lation. Linkage maps in all the three DH populations were 
constructed using QTL IciMapping, version 4.1 software 
(http://www.isbre​eding​.net). Highly correlated SNPs, which 
cannot provide additional information in each population, 
were removed by an inbuilt tool called BIN implemented 
in QTL IciMapping. The remaining high-quality SNP data 
were used to construct genetic linkage maps using the MAP 
function (Meng et al. 2015), which uses stepwise regres-
sion to select the most significant markers and a likelihood 
ratio test to calculate the logarithm of odds (LOD) scores 
for each marker by a criterion of > 3.0 LOD and a maximum 
distance of 30 cM between two loci. Three steps are involved 
in building a linkage map: grouping, ordering and rippling. 
Grouping was done with a LOD score of > 3.0, the REcom-
bination Counting and ORDering (RECORD) algorithm was 
used for ordering markers, and the Sum of adjacent criterion 
(SAD) ripple was performed to confirm the marker order. 
Recombination frequencies between two linked loci were 
transformed into cM using the Kosambi (1944) mapping 
function.

For each population, BLUPs across environments for DS 
and AUDPC values for both MCMV and MLN were used to 
detect QTLs based on inclusive composite interval mapping 

(ICIM). For QTL analysis, the probability in the stepwise 
regression was set at 0.01 and the scanning step was 1 cM. A 
threshold LOD score of > 3.0 was set by using 1000 permuta-
tions and a P value ≤ 0.05 to determine QTL significance. The 
phenotypic variation explained (PVE) by each QTL and across 
all QTLs for each trait was estimated (Tuberosa et al. 2002). 
The origin of the favorable allele for MCMV and MLN resist-
ance was identified based on the sign of the additive effects of 
each QTL. In the QTL naming the letter “q” indicates QTL, 
and the abbreviation of the trait name, the chromosome and 
the marker position follow this.

Joint linkage association mapping

Three DH populations that were genotyped with GBS were 
used for JLAM. For quality screening, SNPs that were either 
monomorphic between any of the two parental lines, or had 
missing values of > 5% and a minor allele frequency of < 0.05 
were discarded from the analysis. After these quality checks, 
8000 high-quality GBS SNPs were retained for further analy-
ses across populations. These high-quality SNPs were used 
to construct an integrated linkage map where markers are 
arranged based on their physical position by using IciM map-
ping, version 4.1 software. BLUPs calculated across popula-
tions and environments were used in the JLAM studies. A 
biometric model, which performs well compared to other 
models for association mapping in multiple biparental popula-
tions (Würschum et al. 2012), was used to conduct the JLAM. 
This model incorporates population effect to control the dif-
ferences in population means, cofactors to control the genetic 
background, and a marker effect across populations (Liu et al. 
2011). This model is explained in detail by Liu et al. (2011) 
and Würschum et al. (2012). In brief, with this model, a two-
step procedure was followed to find the QTL. First, there was a 
selection of cofactors based on the Schwarz Bayesian Criterion 
(SBC, Schwarz 1978) by including a population effect and 
cofactors. PROC GLM SELECT implemented in the statistical 
software SAS 9.4 (SAS Institute Inc 2015) was used to select 
the cofactors. In the second step, P values for the F-test were 
calculated by using a full model (including SNP effect) versus 
a reduced model (without SNP effect). Genome-wide scans for 
QTLs were implemented in R version 3.2.5 (R Development 
Core Team 2015). The model used in the present study was 
as follows:

where Y is a N × 1 column vector of the BLUP values of 
phenotypic data of N DH lines (N = 558) coming from D 
populations (D = 3); l is a N × 1 column vector containing 
the constant 1; μ is the intercept; �� ( �� ) is a N × 1 column 
vector containing the SNP types (delegated by 0-1-2) of each 

� = �� + ���� + ��bq +
∑

c≠q

��bc + �,

http://hdl.handle.net/11529/10201
http://hdl.handle.net/11529/10201
http://hdl.handle.net/11529/1020
http://hdl.handle.net/11529/1020
http://www.isbreeding.net
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individual at marker q (cofactor c); bq ( bc ) is the expected 
substitution effect of marker q (cofactor c); �� is a N × D 
matrix whose elements were 0 or 1 according to whether or 
not a progeny i belonged to population D; �� is a D × 1 vec-
tor of population effects; and ε is the vector of the residuals 
of the model. The Bonferroni–Holm procedure (Holm 1979) 
was used to detect markers with significant (P < 0.05) main 
effects and was controlled for multiple testing. The total 
proportion of PVE by the detected QTLs was calculated by 
fitting all significant SNPs simultaneously in a linear model 
to obtain an adjusted R2 (Utz et al. 2000).

Genome‑wide association analyses

The IMAS association mapping panel comprises 380 inbred 
lines; detailed information of these inbred lines and their 
genotyping are described in our previous study (Gowda et al. 
2015). TASSEL Ver 5.2 (Bradbury et al. 2007) was used to 
filter raw GBS datasets for SNPs where a minor allele fre-
quency (MAF) of < 0.02, heterozygosity of > 5% and miss-
ing data rates > 5% were excluded from further analyses. 
After these quality checks, 293,106 high-quality SNPs were 
retained for GWAS. The association panel was planted in 
screenhouses for three seasons in 2014 and 2015 to screen 
for MCMV resistance, and the same set of inbred lines were 
also evaluated for MLN in the field under artificial inocu-
lation in Naivasha for three seasons. Details of the MLN 
screening and data scoring are explained in our earlier study 
(Gowda et al. 2015). The BLUP values for DS and AUDPC 
of MCMV and MLN traits across environments were used 
as phenotypes for GWAS.

The principal component analysis (PCA) was carried 
out according to Price et al. (2006), implemented in SNP 
& Variation Suite (SVS) V_8.6.0 (SVS, Golden Helix, Inc., 
Bozeman, MT, www. goldenhelix.com). A two-dimensional 
plot of the first two principal components (PCs) was created 
to visualize the possible population stratification among the 
samples (Supplementary Fig S1). The extent of genome-
wide LD was based on adjacent pairwise r2 values between 
high-quality SNPs from the GBS and physical distances 
between these SNPs (Remington et al. 2001). Nonlinear 
models with r2 as responses (y) and pairwise distances (x) 
as predictors were fitted into the genome-wide LD data using 
the “nlin” function in R (R core team 2015). Average pair-
wise distances in which LD decayed at r2 = 0.2 and r2 = 0.1 
were calculated (Hill and Weir 1988). PCA was calculated 
across all DH population and IMAS association mapping 
panel by using TASSEL, and the first three PCs were plotted 
by CurlyWhirly v1.15 (http://ics.hutto​n.ac.uk/curly​whirl​y/; 
Supplementary Fig S3).

For GWAS, a mixed linear model was used where popula-
tion structure was corrected by using both PCs and kinship 
(K) (Flint-Garcia et al. 2005; Yu and Buckler 2006). The 

kinship matrix was calculated with a centered IBS option 
by using TASSEL ver 5.2 (Bradbury et al. 2007). The first 
three PCs were used to correct for the population structure. 
Genome-wide scans for marker–trait associations were con-
ducted to detect main-effect QTLs. The amount of pheno-
typic variation explained by the model was assessed using 
R2 statistics, calculated by fitting all significant SNPs simul-
taneously in a linear model. Multiple testing correction was 
performed to determine the significance threshold, where 
instead of 293,106 independent tests, the total number of 
tests were estimated based on the average extent of LD at 
r2 = 0.1 (Cui et al. 2016). Based on this, significant associa-
tions were declared when the P values in independent tests 
were less than 5.8 × 10−05. Candidate genes containing or 
being adjacent to the significant SNPs were obtained from 
the B73 gene set in Maize GDB (https​://www.maize​gdb.org/
gene_cente​r/gene).

Genomic prediction

GP was carried out with ridge-regression BLUP (RR-BLUP) 
with fivefold cross-validation. BLUEs across location were 
used for the GP analysis. From the GBS data, a subset of 
4000 SNPs distributed uniformly across the genome, with 
no missing values, and minor allele frequency > 0.05 were 
used for GP in each DH population and IMAS panel. Details 
of the implementation of the RR-BLUP model are described 
by Zhao et al. (2012). Three GP approaches differing in the 
composition of the training set were evaluated with respect 
to the prediction accuracy for lines in the testing set: (1) 
“within-population” prediction, where lines within either the 
DH population or IMAS panel were sampled to form both a 
training set and testing set; (2) “combined-population” pre-
diction, where all populations are combined and randomly 
sampled to form both a training set and testing set; and (3) 
“across-population” prediction, where a training set is sam-
pled from one population and a testing population is sampled 
from other population; here, the IMAS association mapping 
panel was used as a training set and each of the DH popu-
lations was used as a different testing set. The prediction 
accuracy was calculated as the correlation between genomic 
estimated breeding values (GEBVs) and the observed pheno-
types divided by the square root of the heritability estimated 
in the respective populations (Dekkers 2007). Sampling of 
the training and validation sets was repeated 100 times for 
each approach.

Results

A considerable variation was observed in the DS and 
AUDPC values of MCMV and MLN in all three DH popu-
lations and in the IMAS panel (Fig. 1, Table 1). Among the 

http://ics.hutton.ac.uk/curlywhirly/
https://www.maizegdb.org/gene_center/gene
https://www.maizegdb.org/gene_center/gene
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four CMLs used as parents of the DH populations, CML550 
and CML494 had mean scores of 3.5 and 4.0 for the DS val-
ues of MCMV (MCMV-DS) and 4 and 5 for MLN (MLN-
DS), respectively. In contrast, CML504 was moderately 
tolerant with mean scores of 4.5 and 6 for MCMV-DS and 
MLN-DS, respectively. CML511 was susceptible with mean 
scores of 6 and 8 for MCMV-DS and MLN-DS, respec-
tively. We observed a wide variation in both MCMV-DS and 

MLN-DS, as well as the respective AUDPC values (Fig. 1). 
The phenotypic means ranged from 2.92 to 7.19 for MCMV-
DS, and from 3.15 to 8.61 for MLN-DS among the three DH 
populations. Combined analyses of the three DH populations 
revealed an average DS of 4.42 and 5.28 for MCMV and 
MLN, respectively. The IMAS association mapping panel 
showed a range of 3.30–5.60 for MCMV-DS and 2.48–7.29 
for MLN-DS (Table 1).

Fig. 1   Phenotypic distribution of disease severity and the AUDPC values for MCMV and MLN on a 1–9 scale in three DH populations, com-
bined DH populations, and the IMAS panel
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Consistent with the phenotypic observations, ANOVA 
across environments revealed significant genotypic vari-
ances for both MCMV-DS and MLN-DS, as well as for 
the AUDPC values in each DH population and across DH 
populations and also for the IMAS panel (Table 1). For 
MCMV-DS, the GxE interaction variance was significant 
in all populations except for DH pop3, whereas for MLN-
DS, the GxE interaction variance was significant only for 
DH pop3, across DH populations and the IMAS panel. 
Heritability (h2) estimates ranged from moderate to high 
with 0.43 in DH pop3 to 0.78 across the DH populations 
for MCMV-DS, and from 0.31 in DH pop2 to 0.82 across 
the DH populations for MCMV-AUDPC. The estimates 
of heritability for MLN-DS and MLN-AUDPC ranged 
from 0.71 in the IMAS panel to 0.89 across the DH popu-
lations and 0.73 in IMAS panel to 0.92 across the DH 
populations, respectively (Table 1). For each population, 
there was adequate expression of the disease to differen-
tiate tolerant and susceptible lines in each environment. 
From phenotypic evaluation of lines for MCMV and MLN 
responses, 12 lines that had a resistance response in all the 
environments were identified as the best (Supplementary 
Table S1).

Linkage maps were constructed for all three DH popula-
tions. The number of progenies, SNPs, map lengths, and 
average genetic distances between SNPs for each popula-
tion are presented in Supplementary Table S2. For MCMV-
DS, in DH pop1 a set of five QTLs were detected, which 
individually explained 1.9–49.9% of the phenotypic vari-
ance and together explained 67.9% of the total phenotypic 
variance. In DH pop2 and DH pop3, two and three QTLs 
were detected for MCMV-DS, respectively. These QTLs 
individually explained 11.1–15.7% and 5.2–30.6% of the 
phenotypic variance and together explained 28.8 and 12.5% 
of the total phenotypic variance in DH pop2 and DH pop3, 
respectively (Table 2). For MCMV-AUDPC, we identified 
a set of five, one and three QTLs in DH pop1, DH pop2 and 
DH pop3, respectively. The phenotypic variances explained 
by these QTLs ranged from 1.9 to 58.7% in DH pop1 and 
6.7 to 30.5% in DH pop3. The total PVE explained by these 
QTLs for AUDPC was 72.8%, 10.2% and 13.1% in DH pop1, 
DH pop2 and DH pop3, respectively. The QTLs for MCMV 
resistance were found on maize chromosomes 1, 2, 3, 4, 5, 
7, 8 and 9 (Table 2). One QTL detected on chromosome 3, 
qMCMV3-108, explained > 53% of the total phenotypic vari-
ation, and was found to have the largest effect.

Table 1   Means, ranges and 
components of variance for 
DS and area under disease 
progress curve (AUDPC) for 
maize inbred lines from IMAS 
association panel and three DH 
populations inoculated with 
MCMV and MLN viruses

*, **Significance at P < 0.05 and P < 0.01, respectively

Trait Mean (range) σG
2 σ2

GE σe
2 h2

CML550 X CML504 (DH pop1)
 MCMV-DS 3.98 (2.92–4.92) 0.31** 0.13** 0.39 0.74
 MCMV-AUDPC 191.10 (136.00–232.90) 726.36** 379.76** 541.94 0.77
 MLN-DS 6.14 (4.19–7.96) 0.77** 0.00 0.39 0.80
 MLN-AUDPC 172.6 (118.90–222.70) 598.53** 0.00 188.41 0.86

CML550 X CML511 (DH pop2)
 MCMV-DS 6.11 (4.97–7.19) 0.10* 0.04** 0.23 0.57
 MCMV-AUDPC 293.20 (263.9–318.5) 59.84* 42.26* 436.74 0.31
 MLN-DS 6.91 (5.70–8.61) 0.62** 0.00 0.31 0.80
 MLN-AUDPC 196.30 (160.60–250.90) 453.92** 0.00 202.81 0.82

CML550 X CML494 (DH pop3)
 MCMV-DS 4.60 (3.83–5.20) 0.09** 0.00 0.24 0.43
 MCMV-AUDPC 222.48 (185.90–241.30) 197.71** 0.00 323.93 0.55
 MLN-DS 4.50 (3.15–5.30) 0.18** 0.08** 0.32 0.73
 MLN-AUDPC 120.78 (85.33–147.98) 164.63** 39.66** 198.38 0.81

Combined DH populations
 MCMV-DS 4.42 (3.47–5.33) 0.21** 0.11** 0.36 0.78
 MCMV-AUDPC 217.20 (168.40–256.40) 379.82** 274.28** 476.56 0.82
 MLN-DS 5.28 (3.85–7.18) 0.36** 0.09** 0.34 0.89
 MLN-AUDPC 148.24 (103.79–202.95) 312.48** 45.27** 199.13 0.92

IMAS AM panel
 MCMV-DS 4.37 (3.30–5.60) 0.34** 0.39** 0.80 0.56
 MCMV-AUDPC 170.43 (139.50–208.80) 310.57** 352.30** 562.51 0.60
 MLN-DS 4.96 (2.48–7.29) 0.94** 0.31** 1.66 0.71
 MLN-AUDPC 155.73 (40.37–240.81) 803.27** 294.99** 1180.48 0.73
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For MLN, we found a set of four, one and four QTLs for 
DS and six, one and five QTLs for AUDPC for DH pop1, 
DH pop2 and DH pop3, respectively (Table 2). Among these 
DH populations, the phenotypic variance explained by indi-
vidual QTLs for MLN-DS ranged from 3.3 to 33%, whereas 
the range was 2.2–26% for the AUDPC values. The highest 
total phenotypic variance explained was 65.9% for MLN-
AUDPC in DH pop1 and the lowest was 25.4% for MLN-DS 
in DH pop3 (Table 2). The QTL detected on chromosome 
3, qMCMV3-108, which explained 33% of the total pheno-
typic variation, was found to have the largest effect followed 
by same QTL for AUDPC, which explained 26.6% of the 
total phenotypic variation. Interestingly, the favorable alleles 
for both QTLs were derived from CML550, which was the 
MCMV- and MLN-tolerant parent.

Combined analyses of DH populations through JLAM 
revealed 10 QTLs each for MCMV-DS and AUDPC val-
ues, which distributed across all chromosomes except chro-
mosome 10 (Table 3). These QTLs individually explained 
0.4–41% of the phenotypic variance for DS and 1.1–29.4% 
of the phenotypic variance for AUDPC values. Two QTLs 
(qMCMV2-189 and qMCMV6-17) were common to both 
the DS and AUDPC values, while the others were specific. 
QTL qMCMV3-108 detected on chromosome 3 was the 
largest effect QTL, and it explained 41.6% of phenotypic 
variance followed by qMCMV6-17 on chromosome 6 which 
explained 29.4% of phenotypic variance. QTL qMCMV6-17 
was consistently detected for both DS and AUDPC values. 
For MCMV, all the detected QTLs together explained 58% 
and 67% of total phenotypic variance for DS and AUDPC, 
respectively. JLAM analyses for MLN revealed nine QTLs 
associated with DS and 14 QTLs associated with AUDPC 
values (Table  3). Two QTLs (qMLN6-17 and qMLN7-
144) were common for DS and AUDPC values. The PVE 
explained by individual QTLs for DS ranged from 1.5 to 
17.6% and for AUDPC the PVE ranged from 0.9 to 22.9%. 
For both MLN-DS and MLN-AUDPC, QTL qMLN6-17 was 
the largest effect QTL, with 17.6% and 22.9% of the PVE, 
respectively. For MLN-DS, QTL qMLN3-119 was the sec-
ond largest effect QTL with 10.9% of PVE, and for MLN-
AUDPC, qMLN3-87 was the second largest effect QTL with 
10.7% of PVE. The total PVE by all the detected QTLs was 
50% and 54% for DS and AUDPC, respectively. A major 
QTL, qMCMV-108/qMLN3-108, identified in DH pop1 indi-
cated that CML 550 is a source of favorable alleles (Fig. 2).

PCA of the IMAS association panel revealed a moder-
ate population structure (Supplementary Fig S1). The first 
two eigenvectors clearly delineated three clusters compris-
ing lowland tropical lines, subtropical lines and lines from 
the ARC-South Africa breeding program. The first two PCs 
explained 15.4% and 8.8% of variation. The genome-wide 
LD decay plotted as LD (r2) between adjacent pairs of mark-
ers versus distance in kb showed that the average LD decay Ta
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Table 3   Analysis of trait-associated markers, allele substitution (α) effects, and the total phenotypic variance (R2) of the joint linkage association 
mapping based on combined three DH populations

*Chr Chromosome, PVE proportion of phenotypic variance explained

MCMV QTL name Chr Position (Mbp) Disease severity AUDPC

α-effect P value PVE (%) α-effect P value PVE (%)

S1_10960822 qMCMV1-10 1 10.961 – – – − 6.21 3.01E − 24 9.60
S1_71020191 qMCMV1-71 1 71.020 − 0.10 2.23E − 11 4.40 – – –
S2_38977357 qMCMV2-39 2 38.977 – – – − 3.57 2.07E − 09 3.10
S2_111135899 qMCMV2-111 2 111.136 − 0.08 1.62E − 08 3.10 – – –
S2_189579989 qMCMV2-189 2 189.580 0.04 3.81E − 02 0.40 11.95 3.04E − 45 20.30
S3_108706910 qMCMV3-108 3 108.707 0.31 7.87E − 73 41.60 – – –
S3_116124132 qMCMV3-116 3 116.124 0.06 1.62E − 03 0.90 – – –
S3_149234811 qMCMV3-149 3 149.235 – – – 2.25 3.39E − 04 1.10
S3_196142479 qMCMV3-196 3 196.142 − 0.05 4.82E − 04 1.10 – – –
S4_163779660 qMCMV4-163 4 163.780 – – – − 1.27 2.97E − 03 0.80
S5_133915065 qMCMV5-133 5 133.915 – – – 2.41 1.48E − 03 1.20
S5_210676383 qMCMV5-210 5 210.676 − 0.05 3.20E − 03 1.10 – – –
S5_213038590 qMCMV5-213 5 213.039 0.06 6.34E − 05 2.00 – – –
S6_1540161 qMCMV6-2 6 1.540 – – – − 5.27 1.03E − 08 3.90
S6_17165743 qMCMV6-17 6 17.166 0.19 7.73E − 42 27.20 9.49 3.63E − 47 29.40
S7_5784540 qMCMV7-6 7 5.785 – – – − 2.16 1.73E − 05 2.20
S8_170127444 qMCMV8-170 8 170.127 − 0.10 1.93E − 14 7.70 – – –
S9_41517817 qMCMV9-41 9 41.518 – – – − 5.78 1.46E − 15 7.80
Total PVE (%) 0.58 0.67

MLN Disease severity AUDPC

S1_100824500 qMLN1-100 1 100.825 − 0.27 4.02E − 04 1.50 – – –
S1_146484798 qMLN1-146 1 146.485 0.39 1.76E − 07 3.20 – – –
S3_47463783 qMLN3-47 3 47.464 0.09 8.18E − 05 1.80 – – –
S3_86873766 qMLN3-86 3 86.874 – – – 6.92 9.87E − 20 10.70
S3_87781149 qMLN3-87 3 87.781 – – – − 3.20 8.36E − 04 1.30
S3_119614021 qMLN3-119 3 119.614 0.22 1.07E − 20 10.90 – – –
S3_154250438 qMLN3-154 3 154.250 0.14 4.02E − 11 5.30 – – –
S3_167432530 qMLN3-167 3 167.433 – – – 4.31 1.98E − 07 3.30
S4_90676084 qMLN4-90 4 90.676 − 0.08 5.09E − 06 2.50 – – –
S4_121562618 qMLN4-121 4 121.563 – – – − 4.51 4.99E − 10 4.80
S4_235268672 qMLN4-235 4 235.269 – – – − 2.09 2.24E − 04 1.70
S5_201226926 qMLN5-201 5 201.227 – – – 4.28 3.26E − 08 3.30
S6_17165743 qMLN6-17 6 17.166 0.23 3.24E − 27 17.60 8.82 6.16E − 42 22.90
S6_159257330 qMLN6-159 6 159.257 0.06 5.10E − 04 1.70 – – –
S6_164557883 qMLN6-165 6 164.558 – – – 5.37 5.16E − 06 2.20
S7_144659968 qMLN7-144 7 144.660 − 0.11 1.35E − 08 4.50 − 3.76 3.23E − 13 5.80
S8_22170669 qMLN8-22 8 22.171 – – – − 2.37 1.76E − 04 1.50
S9_55511793 qMLN9-55 9 55.512 – – – − 3.19 4.79E − 09 3.70
S10_137828847 qMLN10-137 10 137.829 – – – − 5.76 3.63E − 09 3.80
S10_147141046 qMLN10-147 10 147.141 – – – − 3.01 4.34E − 03 0.90
S10_149558048 qMLN10-149 10 149.558 – – – 5.28 2.28E − 07 2.90
Total PVE (%) 0.50 0.54
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was 18.82 Kb at r2 = 0.1 and 6.53 kb at r2 = 0.2 (Supplemen-
tary Fig S2).

In a previous study, we used the IMAS panel to identify 
the genetic architecture and putative candidate genes under-
lying MLN resistance by using only the MLN-DS score 
(Gowda et al. 2015). In this study, we used the same panel 
to identify and validate the genomic regions for MCMV-
DS and MCMV-AUDPC, and MLN-AUDPC. The GWAS 
results for the DS and AUDPC of both MCMV and MLN 
are presented as Manhattan plots (Fig. 3). Quantile–quantile 
plots of P values comparing the expected − log10 p value to 
the observed − log10 p value are also shown in Fig. 3. For 
MCMV, we detected eight and six significant marker–trait 
associations for DS and AUDPC, respectively (Table 4). 
These significantly associated SNPs individually explained 
5–8% of the total phenotypic variance. Among these sig-
nificantly associated SNPs, S1_79444916 on chromosome 
1 was found to be the most significantly associated SNP for 
both DS and AUDPC, which explained 8% of the phenotypic 
variance.

For MLN, a set of 20 significant SNPs distributed across 
six chromosomes were identified for DS that individually 
explained 5–7% of the total phenotypic variance (Supple-
mentary Table S3), whereas for AUDPC we detected 26 
SNPs significantly associated with MLN-AUDPC values, 
explaining 5–7% of phenotypic variance. S5_5205032 
on chromosome 5 was found to be the most significantly 

associated SNP for both MLN-DS and MLN-AUDPC. A 
set of putative candidate genes were identified; based on 
their functions, these can be grouped as either R genes or 
plant defense responsive genes (Table 4, Supplementary 
Table S3). All the QTLs detected for MCMV and MLN in 
each DH population and JLAM, quantitative trait nucleo-
tides (QTNs) for GWAS were mapped on one integrated 
physical map (Supplementary Fig S4).

We used fivefold cross-validation to assess the accuracy 
of GP for MCMV and MLN. For within-population predic-
tions, the average accuracies for the IMAS panel, DHpop1, 
DHpop2 and DHpop3 were 0.32, 0.78, 0.47 and 0.21 for 
MCMV-DS, and 0.31, 0.95, 0.44 and 0.29 for MCMV-
AUDPC, respectively (Fig. 4). For MLN-DS, the respec-
tive mean accuracies were 0.52, 0.86, 0.46 and 0.62, and 
for MLN-AUDPC they were 0.58, 0.87, 0.46 and 0.66, 
(Fig. 4). Predictions generated by combining DH popula-
tions, and DH populations with the IMAS panel revealed 
significant improvement in the accuracy. Overall, the 
combined DH populations alone yielded higher accuracy 
than the DH populations combined with the IMAS panel 
(Fig. 4). In summary, the accuracies were consistently higher 
for MLN than for MCMV for both DS and AUDPC. For 
across-population predictions, the accuracy varied depend-
ing on the testing population and was even negative for DH 
pop2 (Fig. 5). Overall, the accuracies for across populations 
were substantially lower compared to within-population and 

Fig. 2   Major QTL for MCMV and MLN resistance in the DH popu-
lations. A likelihood of odds (LOD) scan showing the QTLs identi-
fied on chromosome 3. Box–whisker plots display the level of disease 

resistance or severity for different allele combinations at resistance 
gene loci explaining > 20% of the phenotypic variation for MCMV 
and MLN as determined by two strongly associated SNP markers
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combined-population-based predictions. Populations with 
high heritability and large population size showed high pre-
diction accuracy compared to others.

Discussion

Accurate phenotyping is fundamental for studying genetic 
architecture of traits, including genetic resistance to plant 
diseases. MLN, caused by co-infection of MCMV and 
SCMV, is a complex disease, seriously threatening food 
security in eastern Africa. Most of the elite inbred lines and 
commercial hybrids are susceptible to MCMV and MLN 
(De Groote et al. 2016). Breeding for MLN resistance is 
complicated, as one needs to phenotype accurately under 
artificial inoculation in isolated or controlled conditions; 
this process is cumbersome and labor intensive. The genet-
ics of SCMV resistance has been studied more extensively 
(Tao et al. 2013; Gustafson et al. 2018) than the genetics of 
MCMV resistance, so identifying, validating and deploy-
ing molecular markers associated with MCMV and/or MLN 
resistance could increase the efficacy of breeding programs 
engaged in developing MLN-resistant tropical and subtropi-
cal maize germplasm. Indeed, introgression of MCMV and 
MLN resistance-associated markers into the breeding pipe-
line is the next priority of the maize breeding programs of 
CIMMYT as well as the National Agricultural Research 
System (NARS) partners in eastern Africa.

The distribution of lines in each of the mapping popula-
tions, as well as in combined populations, for the DS and 
AUDPC of MCMV and MLN (Fig. 1) suggests a polygenic 
nature for both MCMV and MLN resistance. Earlier stud-
ies on the inheritance of resistance to MCMV (Jones et al. 
2018) and MLN (Gowda et al. 2015, 2018; Beyene et al. 
2017) also confirmed polygenic control. In the current work, 
we observed significant genetic variances and moderate-to-
high heritability for DS and AUDPC of both MCMV and 
MLN, indicating good prospects for breeding for resistance 
against MCMV and MLN in tropical maize germplasm. This 
closely parallels earlier studies of biparental populations of 
SCMV (Xia et al. 1999), MCMV (Jones et al. 2018) and 
MLN (Gowda et al. 2018), and association panels of SCMV 
(Leng et al. 2015; Gustafson et al. 2018) and MLN (Gowda 
et al. 2015). MLN is due to the individual effects of SCMV 
and MCMV, as well as their interaction effects. Selection 

for MCMV resistance can improve resistance against MLN, 
which is also well supported by the significant positive 
correlations we observed in this study (correlation range 
r = 0.33 to 0.60) between MCMV and MLN for both DS 
and AUDPC in all populations except DH pop3 (data not 
shown). However, undertaking screening and breeding for 
resistance to individual viruses could be more laborious than 
breeding for MLN resistance as a single trait.

QTL analyses in the three DH populations revealed 
a genomic region in chromosome 3, between 85 and 109 
mega base pairs (Mbp), as being important for both MCMV 
and MLN resistance. One major QTL, qMCMV3-108, iden-
tified in this region is very consistent with the DS scores 
and AUDPC values in both DH pop1 and DH pop2 for 
both MCMV and MLN (Table 2). Further, this QTL also 
explained the highest proportion of variance of up to 58% for 
MCMV-AUDPC. An earlier GWAS on MLN (Gowda et al. 
2015) revealed the three SNPs S3_90976749, S3_90976758, 
and S3_114355785, which fell within the same confidence 
interval as qMCMV3-108 QTL. This QTL is also consist-
ent with the previously reported MLN QTL, qMLN_03-129, 
identified in multiple biparental populations (Gowda et al. 
2018). The physical position of the major SCMV QTL, 
SCMV2, is ~ 133 Mbp on chromosome 3 (Gustafson et al. 
2018). The previous multiple population study (Gowda 
et al. 2018) and the results of the present study suggest that 
the genomic region between 100 and 119 Mbp in chromo-
some 3 is important for MCMV and MLN resistance. This 
genomic region seems to be different from the Scmv2 QTL. 
qMCMV4-235 is another consistent QTL detected for both 
DS and AUDPC of MCMV as well as for MLN (Table 2). 
This QTL is also consistent with a previously reported 
QTL for MLN in an F3 population (Gowda et al. 2018). 
This implies that the detected major QTL is associated 
specifically with MCMV resistance and useful for improv-
ing MCMV resistance and ultimately MLN resistance. In 
contrast, three quantitative trait nucleotides (QTNs) identi-
fied for SCMV resistance in a diversity panel (Gustafson 
et al. 2018) fell within the confidence interval of the three 
MCMV resistance QTLs, qMCMV1-290, qMCMV2-192 and 
qMCMV4-235, which supports the clustering nature of viral 
disease resistance genes in maize (Zambrano et al. 2014). 
Furthermore, there were 11 new QTLs that were identified 
specifically for MCMV across the three DH populations in 
the current study; this clearly points out the complex nature 
of MCMV resistance.

Among the 11 QTLs detected for MLN in three DH 
populations, eight of QTLs were found only with MLN 
and they were not detected for MCMV resistance (Table 2). 
Nevertheless, the QTL detected on chromosome 6, qMLN6-
158, overlaps with the QTL reported for MCMV resistance 
in F2 populations (Jones et al. 2018). Surprisingly, in the 
same genomic region, a QTL for SCMV resistance was 

Fig. 3   Manhattan plot and Q–Q plots for the GWAS of MCMV and 
MLN for disease severity and the AUDPC value in the IMAS asso-
ciation mapping panel. The dashed horizontal line in Manhattan 
plots depicts the significance threshold (P = 5.8 × 10−5). The X-axis 
indicates the SNP location along the 10 chromosomes, separated by 
different colors; Y-axis is the − log10 (P observed) for each analysis. 
Q–Q plots depicts inflation of observed versus expected − log10 (P 
values) plots for each trait

◂
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also reported from a diversity panel (Gustafson et al. 2018). 
Another QTL, qMLN6-89, overlaps with MLN resistance 
QTL reported in F3 populations (Gowda et al. 2018). Major-
effect QTLs for SCMV are known to be present on chro-
mosome 3 (133 Mbp) and chromosome 6 (13–16 Mbp). 
Interestingly, these eight MLN-specific QTL also did not 
fall into major SCMV QTL regions, which warrants fur-
ther research/validation to understand whether these QTLs 
respond to SCMV or MCMV separately or respond to their 
interactions. This could help breeders design effective strat-
egies for introgressing such QTLs into breeding materials 
through marker-assisted breeding.

In DH pop1, the major QTL, qMCMV-108/qMLN3-108, 
identified on chromosome 3 with a LOD score of 53.9 and 
explaining up to 58% of the phenotypic variation for MCMV 
and 23% for MLN indicated that CML 550 is a source of 
favorable alleles (Fig. 2). The segregation alleles from two 
tightly linked markers for this major QTL reveal that DH 
lines and inbred lines from the IMAS panel with low DS 
scores were strongly associated with alleles from CML550, 
the MCMV- and MLN-tolerant parent (Fig.  2). Thus, 
CML550 can be used as a potential trait donor to introgress 
the major QTL identified on chromosome 3. This finding 

also agrees with Beyene et al. (2017) who reported CML550 
as one of the best lines with high general combining ability 
(GCA) for MLN tolerance. Nevertheless, as part of vali-
dation, the efficiency of these flanking markers should be 
assessed further through KASP (Kompetitive allele specific 
PCR) assays, where we can check their ability to identify 
MLN- and MCMV-resistant and susceptible genotypes.

JLAM was implemented with the aim of taking advantage 
of both its high QTL detection power and improved resolu-
tion to robustly identify MCMV and MLN resistance QTLs. 
In line with this expectation, the consistent and major-effect 
QTL, qMCMV3-108/qMLN3-108, identified with confi-
dence intervals of 67Mbp (51–119 Mbp) in DH pop2 and 
24 Mbp (86–109 Mbp) in DH pop1 was reduced and five 
significant markers identified within this region. Two mark-
ers, S3_108706910 (qMCMV3-108) and S3_116124132 
(qMCMV3-116), were identified with MCMV resistance and 
three markers, S3_86873766 (qMLN3-86), S3_87781149 
(qMLN3-87) and S3_119614021(qMLN3-119), were sig-
nificantly associated with MLN resistance (Tables 2, 3). 
This suggests the possibility of more than one QTL in this 
region. S3_119614021(qMLN3-119) was also reported as 
an important genomic region for MLN resistance (Gowda 

Table 4   Chromosomal position and SNPs significantly associated with MCMV disease severity (DS) and area under disease progress curve 
(AUDPC) detected by SNP-based GWAS in the IMAS association mapping panel

Trait SNP-name Chr Position (bp) MCMV MAF Minor Allele Putative candidate gene Predicted function of can-
didate geneP values R2

Disease severity
 S1_79444916 1 79444916 7.44E − 07 0.08 0.02 C/T GRMZM2G396640 Uncharacterized protein
 S2_47111414 2 47111414 1.63E − 05 0.06 0.02 A/C GRMZM2G086971 GTPase-mediated signal 

transduction
 S5_11490669 5 11490669 9.81E − 06 0.07 0.48 C/T GRMZM2G177934 Copper ion binding
 S5_58728012 5 58728012 1.41E − 05 0.06 0.03 A/G GRMZM2G098793 Glycosyltransferase
 S6_28146715 6 28146715 5.79E − 05 0.06 0.24 G/A GRMZM2G313448 Uncharacterized protein
 S7_167346730 7 167346730 2.03E − 05 0.06 0.02 A/G GRMZM2G158130 Uncharacterized protein 
 S8_14796196 8 14796196 4.46E − 05 0.06 0.03 A/C GRMZM2G139600 Gamma-glutamyltrans-

ferase activity
 S10_139328331 10 139328331 3.37E − 05 0.06 0.02 T/C GRMZM2G125585 Unknown

Total R2 0.23
AUDPC value
 S1_79444916 1 79444916 1.07E − 06 0.08 0.02 C/T GRMZM2G396640 Uncharacterized protein
 S2_197143379 2 197143379 5.12E − 05 0.06 0.03 G/A GRMZM2G151656 SAUR52-auxin-responsive 

SAUR family
 S3_217571950 3 217571950 5.84E − 05 0.06 0.10 A/C GRMZM2G480687 Response to freezing; G 

protein-coupled receptor 
protein signaling pathway

 S5_205155934 5 205155934 2.42E − 05 0.06 0.06 T/G GRMZM2G090609 Caleosin-related protein 
 S7_130133358 7 130133358 5.31E − 05 0.05 0.07 T/C AC210027.3_FG003 Unknown
 S8_149982735 8 149982735 5.39E − 05 0.06 0.47 T/G GRMZM2G160990 G protein-coupled receptor 

protein signaling pathway
Total R2 0.21
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et al. 2018) and appears to be different from the major-effect 
QTL SCMV2 (133 Mbp), which was also detected in the 
same study.

JLAM exploits variations from across and within popula-
tions and is able to detect new QTLs that might be missed in 

linkage mapping. In accordance with this observation, we 
found some new QTLs that were not detected by individual 
population-based QTL mapping, most notably S6_17165743 
(qMCMV6-17/qMLN6-17). The S6_17165743 marker was 
identified close to the Scmv1 region, a key gene for SCMV 

Fig. 4   Box–whisker plots for 
the accuracy of genomic predic-
tions assessed by fivefold cross-
validation. Results are shown 
for the combined association 
panel and DH populations (all), 
the IMAS association panel, 
the combined DH populations 
and the three individual DH 
populations for the MCMV-DS, 
MCMV-AUDPC, MLN-DS, 
and MLN-AUDPC scores

Fig. 5   Accuracy of genomic 
predictions for effect estimation 
in the IMAS association panel 
and prediction in individual DH 
populations. Results are shown 
for the MCMV-DS, MCMV-
AUDPC, MLN-DS and MLN-
AUDPC scores
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resistance; interestingly in addition to MLN resistance, the 
same S6_17165743 QTL (qMCMV6-17/qMLN6-17) was 
also significantly associated with MCMV resistance and 
explained 27.2% of phenotypic variance (Table 3).

SCMV is an important component of MLN in eastern 
Africa. Scmv1 is a major gene for SCMV resistance. How-
ever, in this study we did not find the same QTL associ-
ated with MLN resistance in the DH populations. This is 
probably due to complete absence of markers in this region; 
markers were removed due to a high missing rate in many 
lines, especially in the region between 12 and 16 Mbp on 
chromosome 6. A large presence–absence variation has been 
reported in this region on the short arm of chromosome 6 
where the Scmv1 is known to be present. This is similar to 
the observations of Tao et al. (2013) and Gustafson et al. 
(2018) on their association panel where they were unable to 
amplify any markers in this region in many lines. Neverthe-
less, S6_17165743 is an important QTL for MLN resistance 
and possibly contributes toward both MCMV and SCMV 
resistance. Overall, JLAM efficiency was improved signifi-
cantly due to increased population size, allele diversity and 
balanced allele frequencies.

As maize has high genetic diversity and rapid LD decay, 
GWAS has been commonly used to analyze the genetic 
architecture of many complex diseases. In the present study, 
we found 13 SNPs associated with MCMV resistance and 
39 SNPs with MLN resistance (Table 4 and Supplemen-
tary Table S3). All the identified SNPs seemed to have 
minor effects, as revealed by the PVE by each SNP for both 
MCMV and MLN. Even though MLN is due to a combina-
tion of MCMV and SCMV, in this study we were not able to 
find common SNPs across MCMV and MLN. Some of the 
identified SNPs with MCMV and MLN resistance showed 
strong functional association with disease resistance genes, 
particularly related to the WRKY DNA-binding protein (Yu 
et al. 2001) and serine/threonine protein kinase (Lin et al. 
2015). Nevertheless, GWAS results must be taken cautiously 
as we observed smaller deviation of SNPs toward expected P 
values in QQ plots which indicates the possibility of selec-
tion of false positives (Fig. 3). Therefore, the main-effect 
QTL detected not only through association panel but also 
detected in different populations should be considered for 
breeding applications.

Validation of QTLs detected through linkage mapping 
and JLAM through GWAS revealed some consistently over-
lapping genomic regions (Tables 2, 3, 4 and S3). This is 
very much clear in the integrated physical map where all the 
QTLs detected for MCMV and MLN in each DH population 
and JLAM, QTNs for GWAS were mapped (Supplemen-
tary Fig. S4). Specifically, SNP S1_79444916 detected for 
MCMV resistance was within the confidence interval (CI) 
of the QTL qMCMV1-10 and located very close (< 2 Mbp) 
to the other two QTLs, qMCMV1-76 and qMCMV1-80, 

detected in linkage mapping. QTL qMCMV1-71 found 
through JLAM co-occurred with SNP S1_79444916 
and S8_149982735 is another marker that overlaps with 
QTL qMCMV8-169, which has a CI of 149–169 Mbp. 
S7_130133358 is another SNP located within the CI of the 
QTL qMCMV7-132, whereas SNP S2_197143379 is located 
close to the QTL qMCMV2-192. For MLN, six SNPs are 
located within the CI of QTL qMCMV1-10 and five signifi-
cant SNPs were identified within the CI of qMLN3-167. SNP 
S6_158471262 on chromosome 6 was identified within the 
CI of qMLN6-158 and there were four SNPs that were also 
identified in this region within < 5 Mb using JLAM, which 
suggests the importance of this region for MLN resistance. 
Jones et al. (2018) observed major recessive QTLs in this 
region in F2 populations, whereas Gustafson et al. (2018) 
also found QTLs for SCMV resistance in their association 
panel in the same region. In chromosome 7, we found two 
SNPs that fell within the CI of the QTLs qMLN7-130 and 
qMLN7-152 (Tables 3 and S2). Validation results suggest 
genomic regions identified in chromosomes 1, 3, 6 and 7 
were consistent across DH populations and the GWAS panel, 
and they might have potential for marker-assisted breeding 
for MLN resistance.

Understanding the functional mechanism of genes 
involved in the stable QTL regions can establish a strong 
association between resistance gene candidates and both 
qualitative and quantitative resistances. In line with this 
expectation, in the qMLN3-108 QTL region we found SNPs 
like S3_51499448 associated with hydrogen peroxide detoxi-
fication, S3_85659716 associated with leucine-rich repeat 
protein, S3_109388419 associated with zinc ion binding 
function, and S3_116124132 associated with WRKY DNA-
binding protein, and in qMLN3-17 region S6_17165743 
associated with D-amino acid aminotransferase which 
involved in a process where RNA molecules inactivate 
expression of target genes (https​://phyto​zome.jgi.doe.gov/
phyto​mine/resul​ts). An unusually high frequency of genes 
conferring recessive resistance is observed in interactions 
with potyviruses (Jones et al. 2018; Shi et al. 2005). There-
fore, it warrants further research through candidate-gene 
approach on the stable QTL which can able to pinpoint the 
resistance QTLs as well as help to understand the molecular 
mechanisms underlying the development and progression 
of SCMV and MCMV infection and development of plant 
resistance in maize.

GP within populations showed high accuracy in DH 
pop1 and the combined DH populations for both MCMV 
and MLN, and this is encouraging for the use of GP in 
MCMV and MLN resistance breeding. The high accuracy 
in the DH populations is also due to their expected high LD 
blocks relative to the IMAS panel. In contrast, we found 
low accuracy in DH pop3 for MCMV, which could be due 
to its small range of variability within population as well as 

https://phytozome.jgi.doe.gov/phytomine/results
https://phytozome.jgi.doe.gov/phytomine/results


2397Theoretical and Applied Genetics (2019) 132:2381–2399	

1 3

low heritability (Table 1, Fig. 4). The accuracy was moder-
ate for both MCMV and MLN in the IMAS panel, which is 
explained by the broad genetic base of the panel (Gowda 
et al. 2015; Zhang et al. 2017). The observed differences in 
the accuracies in different populations studied here could 
be due to their differences in sample size, genetic variance, 
trait heritability, changes in population structure and LD 
estimates. Trait-wise comparison of accuracy reveals bet-
ter predictions for MLN over MCMV (Fig. 4). Although 
MLN resistance is more complex than MCMV resistance, 
the observed difference in accuracy can be attributed to high 
genetic variation, heritability (Table 1) observed for MLN 
over MCMV and possibly the contribution of all the segre-
gating major-effect QTLs in all populations for both MCMV 
and SCMV.

In breeding for resistance to MLN and MCMV, it is use-
ful to have a common training population to reduce labor-
intensive phenotyping. In this study, we have three DH 
populations whose parents are part of the association map-
ping panel and are highly related to several lines derived 
from subtropical breeding program. High relatedness among 
DH populations and IMAS association mapping panel is 
also evident with PCA (Supplementary Fig S3). For GP, we 
used the IMAS panel as a training population and the DH 
populations as testing populations (Fig. 5). This scenario 
was applied by considering relatively simple genetic archi-
tecture and high heritability for MLN and MCMV compared 
to complex traits like grain yield and practical scenarios of 
breeding. We observed reasonable accuracies, but these 
were lower than the prediction accuracies observed within 
populations and in the combined populations (Figs. 4, 5). 
Prediction accuracies also varied with testing populations. 
The negative accuracies observed for DH pop2 for MCMV 
are intriguing; similar results were also reported for pre-
diction among less related biparental populations in maize 
(Riedelsheimer et al. 2013) and sugar beet (Würschum et al. 
2013). Opposite linkage phases between markers and major-
effect QTLs in the IMAS panel and DH pop 2 might be 
another possible explanation for negative accuracy. In addi-
tion, a lower magnitude of observed genotypic variation and 
low heritability for MCMV might also have contributed to 
lower prediction accuracy. In contrast, the prediction accu-
racies for MLN were similar for all three DH populations; 
this may be due to the major QTL being in the same linkage 
phase and segregating in both the IMAS panel and the DH 
populations as well. Overall, the obtained prediction accu-
racies, particularly for MLN resistance, are promising and 
showed that this approach does hold potential for application 
in breeding for MLN resistance.

In conclusion, we used three DH populations and one 
IMAS association mapping panel, together comprising 965 
lines, to unravel the genetic architecture of MCMV resist-
ance, and this approach identified new QTLs. In addition, we 

validated the reported QTLs for MLN resistance in tropical 
and subtropical maize germplasm. Linkage mapping identi-
fied two new major-effect QTLs that were consistent for both 
MCMV and MLN resistance. The detected QTLs were vali-
dated with GWAS, and several SNPs were found overlapping 
with the identified QTLs through either linkage mapping or 
JLAM. These genomic regions can serve as potential sources 
to improve resistance to MCMV and MLN. GP can be used 
within populations to predict the response of the germplasm 
to MCMV and MLN resistance. Having a common training 
population derived from intensively phenotyped and geno-
typed lines with diverse representation from a breeding pro-
gram holds promise in breeding for MLN resistance.
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