
 

Asian Journal of Probability and Statistics 

 
3(2): 1-29, 2019; Article no.AJPAS.46944 
 

 
 

 

 

_____________________________________ 

*Corresponding author: E-mail:dmbete@mmust.ac.ke; 

  

 

Analysis and Modelling of Extreme Rainfall: A Case Study for 

Dodoma, Tanzania 

 
Emmanuel Iyamuremye

1
, Samson W. Wanyonyi

2
 and Drinold A. Mbete

3*
 

 
1
Department of Statistics and Actuarial Science, Jomo Kenyatta University of Agriculture and Technology, 

Box 62000-00200 Nairobi, Kenya. 
2
Department of Mathematics and Computer Science, University of Eldoret, Box 1125-30100, Eldoret, 

Kenya. 
3
Department of Mathematics, Masinde Muliro University of Science and Technology, Box 190-50100, 

Kakamega, Kenya. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 

 
DOI: 10.9734/AJPAS/2019/v3i230086 

Editor(s): 

(1) Dr. S. M. Aqil Burney, Department of Computer Science, University of Karachi, Pakistan. 
Reviewers: 

(1) Yahaya Shagaiya Daniel, Kaduna State University, Nigeria. 

(2) Janilson Pinheiro de, Federal Rural University of the Semi-arid Region, Brazil.   
(3) Zlatin Zlatev, Trakia University, Bulgaria. 

Complete Peer review History: http://www.sdiarticle3.com/review-history/46944 

 

 

 

Received: 22 November 2018 

Accepted: 01 February 2019 

Published 13 March 2019 

_______________________________________________________________________________ 
 

Abstract 

 
The analysis of climate change, climate variability and their extremes has become more important as they 

clearly affect the human society and ecology. The impact of climate change is reflected by the change of 

frequency, duration and intensity of climate extreme events in the environment and on the economic 

activities. Climate extreme events, such as extreme rainfall threaten to environment, agricultural 

production and loss of people’s lives. Dodoma daily rainfall data exported from R-Instat software were 

used after being provided by Tanzania Meteorological Agency. The data were recorded from 1935 to 

2011. In this essay, we used climate indices of rainfall to analyse changes in extreme rainfall. We only 

used 6 rainfall indices related to extremes to describe the change in rainfall extremes. Extreme rainfall 

indices did not show statistical evidence of a linear trend in Dodoma rainfall extremes for 77 years. Apart 

from the extreme rainfall indices, this essay utilized two techniques in extreme value theory namely the 

block maxima approach and peak over threshold approach. The two extreme value approaches were used 

for univariate sequences of independent identically distributed (iid) random variables. Using 
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Dodomadaily rainfall data, this essay illustrated the power of the extreme value distributions in modelling 

of extreme rainfall. Annual maxima of Dodoma daily rainfall from 1935 to 2011 were fitted to the 

Generalized Extreme Value (GEV) model. Gumbel was found to be the best fit of the data after likelihood 

ratio test of GEV and Gumbel models. The Gumbel model parameters were considered to be stationary 

and non-stationary in two different models. The stationary Gumbel model was found to be good fit of 

Dodoma maximum rainfall. Later, the levels at which maximum Dodoma rainfall is expected to exceed 

once, on average, in a given period of time T = 2, 5, 10, 20, 30, 50 and 100 years, were obtained using 

stationary Gumbel model. Lastly, the data of exceedances were fitted to     the Generalized Pareto (GP) 

model under stationary climate assumption. 

 

 

Keywords: Climate extreme indices; extreme value theory; generalized extreme value distribution; 

generalized Pareto distribution; block maxima; peak over threshold and tail distribution; return 

level. 

 

1 Introduction 

 
Extreme weather causes substantial damage to our lives through events such as extreme rainfall, floods and 

ecological disturbances as they affect human activities and the economy [1]. In Tanzania, flooding has been 

reported in 5 regions since mid-January, 2016. At least 400 people have been displaced in Dodoma 

municipality after 70 houses were destroyed or damaged after heavy rains between 17 and 18January 2016. 

Since then, flooding has been reported in Morogoro, Katavi, Mtwara and Dar es Salaam [2]. Some examples 

of the loss caused by floods in the region are the damage both to life and property experienced throughout 

the country during the 1997-1998 El Nino associated with floods, and the 2011 floods that wrecked the 

coastal city of Dar es Salaam. In recent years (2009-2011), heavy rains accompanied with strong winds have 

left thousands of people displaced and without food in Muleba, Kilosa, Same and Dar es Salaam. The 

flooding of 2009-2010 in Kilosa proved as serious, that over three quarters of the farmers reported their 

households were affected [3]. Furthermore, in 2010, floods occurred in Kilosa (Morogoro), Mpwapwa and 

Kondoa (Dodoma) where more than 50000 people were affected, 5100 hectares of crops were destroyed and 

agricultural land was covered with mud and sand; public facilities were also destroyed [4]. 

 

2 Methodology 
 

Various methods were applied to achieve the objectives of the study. Some of the methods were 

 

2.1 Climate extreme indices 
 

Climate indices allow a statistical study of variations of the dependent climatological aspects, such as 

analysis and comparison of time series, means, extremes and trends [5].  

 

The World Meteorology Organization (WMO) developed the 27 indices which describe the changes in 

extremes. Indices are driven from the daily maximum   and minimum temperatures and daily rainfall. In this 

paper, we only defined some extreme rainfall indices which are related to the objectives of the study. 

 

2.1.1 Extreme rainfall indices 
 

Six indices of rainfall extremes were considered. Some of them are percentile based; very wet days (R95p) 

and extremely wet days (R99p). Indices which represent maximum value within a year; highest daily 

precipitation (RX1day) and highest 5 consecutive days precipitation amount (RX5day) were analyzed. 

Indices which represent the number of days on which the rainfall value falls above a fixed threshold; heavy 

rainy days (R20) and very heavy rainy days (R50) were also analyzed. In Table 2.1 below, each index was 

shortly defined. 
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Table 2.1. Definition of extreme rainfall indices 
 

Extreme rainfall indices 

Index Indicator name Definition 

R20 

R50 

R95p 

R99p 

RX1day 

RX5day 

Heavy rainy days 

Very heavy rainy days Very 

wet days Extremely wet days 

Maximum 1-day rainfall 

amount 

Maximum 5-day rainfall 

amount 

Annual count of days when PRCP  

Annual count of days when PRCP ≥ ( threshold) 

Annual total PRCP when RR > percentile 

Annual total PRCP when RR > percentile Annual 

maximum 1-day rainfall 

Annual maximum 5-day rainfall 
 

2.2 Observed change/trend in extreme rainfall 

 
Changes in extreme rainfall in Dodoma were analysed through the annual and daily occurrence of rainfall. 

Changes in extreme rainfall can be studied by looking at the change in the frequency of days with 

precipitation exceeding some threshold; R10 mm, R20 mm and Rnnmm where nn represents any fixed 

threshold [6]. Extreme rainfall is defined also as the highest daily precipitation (RX1day) or the highest 5 

consecutive days precipitation amount (RX5day) per year or again extreme rainfall is a heavy rainfall event 

(R95p and R99p). The indices were chosen primarily for the assessment of many aspects of a changing 

global climate which include changes in intensity, frequency and duration of precipitation events. They 

represent events that occur several times per season or year giving them more strong statistical properties 

than measures of extremes which are far enough into the tails of the distribution so as not to be observed 

during some years [6]. 
 

This paper used the linear regression model to describe change of extreme rainfall over the time. Let Y be 

response variable and T be independent variable (Time). So, we fitted the following simple model: 
 

 
 

where  is an intercept and  i s the slope which describes the change of extreme rainfall over time. After 

fitting this model to the data, we made the following inference, 
 

 

 
 

to check if there is a relationship between the extreme rainfall and time. To test the statistical significance of 

relationship between time and the extreme rainfall , the significance level of 0.01 was used. 
 

All climate extremes indices for rainfall presented in Table 2.1 are calculated using data from Dodoma and 

the analysis and results are presented in chapter 3. Climate extremes indices can be used to define extremes 

and analyse changes in extremes. However, those indices do not give the answer to the question of return 

levels of extreme rainfall. Thus, extreme value distributions are introduced in the next section. 

 

2.3 Extreme value distributions 
 

In this section we reviewed the model which focuses on the statistical behavior of 
 

 
 

where , is a sequence of independent random variables having a common distribution 

function F [7]. In applications, usually represent values of a process measured on a regular time-scale, 
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then we take the maxima over particular blocks of time to extract the upper extreme values from a set of data. 

For example, in this essay represent Dodoma daily rainfall since 1935 to 2011. If is the 

number of observations in a year, then Mn corresponds to the annual maximum of the daily rainfall over 

 period. 

 

Now, could we derive the distribution for for all  to answer this question, we used the probability 

theory to find the possible limit distributions of the maxima . From probability theory,  the 

cumulative distribution function of is defined as 

 

 
 

If is known, the distribution of is derived exactly for all values of n as follow: 

 

 

                                                        (2.2.1) 

 

By using the fact of independence Equation 2.2.1 becomes 

 

 
As the Xi are independent identically distributed with a common distribution F 

 

                                                                                              (2.2.2) 

 

For unknown distribution   we use the limit laws of convergence in distribution to approximate F n for 

large  

 

Theorem (Fisher-Tippett 1928; Gnedenko, 1943). If the sequence are iid random variables with the 

distribution function  and are sequences of normalizing constants. Then, if there exist 

constants and a non-degenerate distribution function  so that,  

 

as  

 

 
 

then it must be of the same type as one of the following three types of distributions: 

 

Gumbel distribution 

 

 
 

Weibull distribution 
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Frechet distribution      

 

 
 

with parameters  and  namely scale, location and shape parameters respectively. 

 

Remark. The Theorem 2.2.1 is also known as Extremal type’s theorem while the three max-stable 

distributions are Gumbel, Weibull and Fr´echet. 

 

Convergence of sample maxima 

 

Sample maxima N =1000 

− − −A−s−n−→−∞− − −→ 

 

Fig. 2.1. The extremal types theorem: the power of this theorem is to approximate the distribution of 

sample maxima as n increases to be max-stable distribution regardless of the parent population Xi . 

 

If the Theorem 2.2.1holds for suitable choices of and then we say that G is an extreme value 

cumulative distribution and is in the domain of attraction of , written as  . However, can 

take the form of the generalized extreme value distribution which unifies three extreme value distributions 

known as Gumbel,Weibull and Frechet (Coles et al.,2001).  The unified extreme value distributions is 

defined by 

 

       (2.2.3) 

 

with From  Equation 2.2.3,  we derive the GEV density function by using the probability 

theory of cumulative and density function by applying derivative of cumulative distribution as follows 

 

 

with                                                                                                                (2.2.4) 
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The GEV distribution and its density function have three parameters namely , location, shape and 

scale parameters respectively.  and  can be denoted by  and  respectively. 

The x are the extreme values from the block maxima. 

 

Remark. The shape parameter governs the tail behaviour of the distribution. When fitting the GEV model 

to sample data, the sign of the shape parameter ξ will usually indicate which one of the three models best 

describes the random process we are dealing with (Coles et al.,2001). 

 

For , light tail (Gumbel type) 

For , bounded upper tail (Weibull type) 

For , heavy tail (Fre´chet type) 

 

 
 

Modelling by Generalized Extreme Value Distributions: 

 

The Block Maxima approach description: 

 

In ordinary statistics, we describe the main part of the distribution; many ignore outliers. However, in the 

statistics of extremes we characterise the tail of the distribution by keeping only the extreme observations. 

We do not care about mean and variance, we care only about tails. If we fit the one distribution to entire data 

sets, we shall often miss the tail. Therefore, we take data and we extract some data which are said to be 

extreme. One of the methods of extracting extreme data is the block maxima method. In this method, the idea 

is to break the data into the monthly/annual blocks of equal length then extract the maximums from each 

month/year and fit the model to that data (monthly/annual maxima) [7]. The right distribution to fit block 

maxima is the generalized extreme value (GEV) distribution as shown in Equation 2.2.3. In practice, the 

implementation of this model for any particular data, to choose the block size is critical because of the 

following reasons: 

 

By the limit model in Theorem 2.2.1, blocks that are too small are likely to have poor approximation, which 

leads to bias in estimation and extrapolation. 
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Large blocks generate few block maxima, leading to large estimation variance. 

 

a) Maximum likelihood estimation 

 

Let us denote the maximum of a sample by . So, a sample of independent 

sample maxima has a common GEV distribution. The parameters σ, µ and ξ of GEV distribution can be 

estimated by using different methods. Various methods of estimation for fitting GEV model have been 

proposed: least squares estimation, maximum likelihood estimation, probability weighted moments and 

others. In this essay, we focus on the maximum likelihood ) method because of its flexibility to any 

model.  

 

Consider independent random variables such that 

 

 
 

The GEV log-likelihood function is: 

 

 

 

 

 
 

 

defined when          (2.2.5) 

 

The ML estimates with respect to the entire GEV family are obtained by maximizing theEquation 2.2.5 with 

respect to the parameter vector  It is possible to obtain the maximum likelihood estimator explicitly, 

usually by differentiating the log-likelihood and equating to zero. 

 

b) Inference for return levels 

 

Definition. A return period, also known as a recurrence interval is defined as an estimate of the likelihood 

of an event, such as extreme rainfall, flood or a river discharge flow to occur. 

 

In simple terms, the return level is associated with the corresponding return period and indicates the 

maxima can reach within such a return period. We used the annual block maxima approach which consists of 

fitting the GEV model to a series of annual maximum data with n taken to be the number of  events in a 

year. The T -year return value is formally defined by setting Equation 2.2.3 to 

 

 
 

is then the solution to the resulting equation. We need to choose an optimal threshold such that the 

probability that an observed value exceeds is equal to  where  is the upper tail 

probability. 

 

 

                                                    (2.2.6) 
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Solving Equation 2.2.6 for , we obtain  
 

                      (2.2.7) 
 

In terms of extreme value terminology, is the return level associated with the return period p and it is 

common to extrapolate the relationship (2.2.7) to obtain estimates of return levels considerably beyond the 

end of the data to which the model is fitted. After estimating the GEV parameters by maximum likelihood 

method, we obtain the maximum likelihood estimates of, by substituting estimated GEV parameters into 

Equation 2.2.7 
 

                       (2.2.8) 
 

The p−year return level, , is the level an extreme is expected to exceed once every n time-units 
 

Modelling by Generalised Pareto Distributions: 

 

The Peak over Threshold approach description: 
 

Modelling by generalized extreme value distribution is based on the block maxima approach. However, the 

block maxima approach does not consider all maximums. It considers only the highest value in all maximum 

values. Therefore, sometimes using only the block maxima can be wasteful if it ignores much of the data. It 

is often more useful to look at exceedances over a fixed high threshold instead of simply the maximum or 

minimum of the data. Consider values of to be extreme if they are above (below) a high (low) threshold u. 

In peak over threshold method, we fix the threshold and we extract the data exceeding the threshold. Let { } 

be the sequence of independent random variables with common distribution function and be the 

sample maxima of the sequence { } [7]. 

 

Theorem. Denote an arbitrary term in the sequence by , and suppose that  satisfies Theorem 2.2.1. 

By Theorem 2.2.1, for a large , 

 

 
where 

  ,  for  some   and  

 

Then, for large enough  the distribution of  conditional on , is approximately 

                       (2.2.9) 

 

Defined on    and  
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For  which is interpreted as limit  in (2.2.9), leading to  

 

       (2.2.10) 

 

Where   

 

As , the two Equation 2.2.10 and (2.2.9) can be written as   

 

 (2.2.11)  

 

The family of distributions defined by Equation 2.2.9 is known as generalised Pareto family. There- fore, if 

block maxima have approximating distribution , then threshold excesses have a corresponding 

approximate distribution within the generalised Pareto family [7]. From Equation 2.2.11, we derive the 

density function of the generalised Pareto distribution 

 

 (2.2.12) 

 

 

Remark. There are three types of generalised Pareto distribution which are: Exponential  Pareto 

 and Beta . 

 

a) Threshold selection 

 

One consideration for POT modelling is the right choice of threshold. In practice, the implementation of this 

model for any particular data set to choose the right threshold is critical because of the following reasons: the 

threshold that is too low is likely to violate the asymptotic basis of the threshold model, which leads to bias 

in estimation and extrapolation [7]. Too high threshold generates few excesses, leading to high estimation 

variance. To handle this challenge, two methods are available: the first method is an exploratory technique 

carried out prior to model estimation. The second is to assess the stability of parameter estimates, based on 

the fitting of models across a range of different thresholds. There are two common graphical tools that can 

help in choice of the threshold. The first is the mean excess plot. 

 

Remark. Above a threshold    at which the generalised Pareto distribution provides a valid approximation 

to excess distribution, the mean residual life plot should be approximately linear in  . 

 

In the second method, we plot the parameter estimates and confidence intervals at different thresholds. The 

estimated parameters remain constant above the threshold at which the asymptotic approximation is valid.  

 

Above a level    at which the asymptotic motivation for the generalised Pareto distribution is valid, 

estimates of the shape parameter ξ should be approximately constant, while estimates of   should be linear 

in  . 
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b) Maximum likelihood estimation 

 

After determining the threshold, the generalised Pareto distribution parameters can be estimated by using the 

maximum likelihood method. Let be excesses of a threshold . The log-likelihood is 

derived from (2.2.12) as 

 

   (2.2.13) 

 

defined  , . We obtain the ML estimates  for  by 

maximizing numerically Equation 2.2.13. 

 

c) Inference on the return levels 

 

The more convenient way of interpreting extreme value models is using the quantiles or return levels, rather 

than individual parameter values. So, we suppose that a generalized Pareto distribution with parameters 

and is a suitable model for exceedances of a threshold by a variable . For , 

 

 
 

It means that 

 

 
 

where . Thus, for  the level  that is exceeded on average once every  

observations is the solution of    

   

 

                                  (2.2.14) 

provided is sufficiently large to ensure that . 

 

To estimate the return levels, we substitute the parameters by their corresponding maximum likelihood 

estimates. However, the probability of an individual observation exceeding the threshold u has a natural 

estimator of  
 

the sample proportion of points exceeding   [7]. 
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Stationary and non-stationary model 

 

Most of the time when one deals with real life data some assumptions are violated. Therefore, in this essay 

we considered both assumptions, stationarity and non-stationarity of climate extremes data. Climate is 

change over period and the reliable future projections of extreme rainfall cannot rely only on stationary 

assumption [16,17]. Under the assumption of non-stationarity, we have non-stationary model with a linear 

trend in location parameter. Using the notation  to denote the GEV distribution with 

parameters  it follows that a suitable model for , the annual maximum Dodoma rainfall in 

year , might be 

 

 

 

where 

 
 

with parameters  and . In this way, variations through time in the observed process are modelled as a 

linear trend in the location parameter of the appropriate extreme value model [16], which in this case is the 

GEV model. The parameter  corresponds to the annual rate of change in annual maximum rainfall. Non-

stationarity can be expressed in terms of the location parameter as follow: 

 

 

 

(2.2.15) 

 

 

where 

 

 

 

. 

For  

 

 
(2.2.16) 

 

The advantage of maximum likelihood over other techniques of parameter estimation is its adaptability to the 

changes in model structure [7]. That is why for this non-stationary model, we did not change our previous 

model. We maximised the Equation 2.2.5 by considering a linear trend in location parameter. Note that, for 

stationarity, the GEV and GP models assume that the parameter location, scale and shape are time-

independent (parameters are constants). 

 

Likelihood Ratio (LR) Test and Model Diagnostics or goodness-of-fit checks. 

 

As in any statistical model, after fitting model, we check the good of fit of the model. The Likelihood Ratio 

(LR) test is used to compare the fit of two models where the null model,    is a special case of the other 

(alternative model,   ). The best model [9] is determined by deriving 
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The probability or p-value of the difference in , the LR test statistic, defined as  where 

has a chi-square distribution. However, LR test is applied to nested models, which means that comparison 

can only be made between one complex model and one simpler model [1]. In the model checking we are 

comparing the observed data to GEV or GP estimates. We use probability 

 

Plots, quantile plots, return level plots and density plots to assess the quality of a fitted GEV or GP 

 

Model. The probability plot compares the empirical and fitted distribution functions. 

 

i. The probability plot should lie close to the unit diagonal. In probability plot, we Look for linearity and 

deviations in tails. 

ii. Quantile plot compares observed quantiles in data to quantiles estimated by the GEV. In quantile plot, 

we also Look for linearity and deviations in tails. 

iii. The return level plot. 

iv. The density function of fitted GEV or GP model is compared to histogram of block maxima 

(histogram of exceedances for GP model). 

 

Data preparation: 

 

The daily rainfall data obtained for Dodoma starts in January 1935 and lasts in December 2013. The data had 

no missing values apart from the last two years. The data were supplied by Tanzania Meteorological Agency 

in 2013.Table 3.1 below details the information of the missing values. 

 

Table 3.1. Missing values in Dodoma daily rainfall data 

 

Variable Period Month Number of missing values 

Rain 2013 November 30 

December 31 

2012 November 30 

 

As shown in Table 3.1, all years had values except the last two years. Hence, we chose to use the data to 

2011. We shifted years so that we obtain all extreme rainfall in the same season for Dodoma. Then, the            

daily rainfall data starts from August 1935 and ends in July 2011 (see Figure 3.4). The number of 

observations did not change because we brought half of the data for 1935 to 1934 and the last year ends in 

July 2011. 

 

Data description: 

 

We put our data into two main groups; rainy days and dry days to get rainy season data for extreme rainfall. 

As we were interested in studying the behaviour of maximum rainfall in Dodoma, we considered rainy days 

(Rain>10.0mm in our data). The Dodoma data has 4 variables; Year, Month, Date and Rain. The statistical 

summaries for rainy days between 1935 and 2011 are presented in a table below. 

 

Table 3.2. Statistical summaries of Dodoma rainy days 
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Table 3.2 shows that in our Dodoma daily rainfall data approximately 5% of the daily rainfall exceeds 10mm, 

and this was 1337 out of 28124 days. In total, we have 1337 rainy days for Dodoma from 1935 to 2011 and 

the data for rainfall were recorded in millimetre (mm). The maximum rainfall in our data was 119.8mm 

which occurred on 02 Feb 1964. The average daily rainfall was 27.1mm. The table below describes the 

Dodoma daily rainfall on the monthly basis. 

 

Table 3.3. Statistical monthly summaries of rainfall from 1935 to 2011 

 

R10(days) R10 per 

year (days) 

Chance to rain 

each year ( %) 

Mean 

(mm) 

Max(mm) Std(mm) Month 

315 4 13 27.2 113.00 18.3 Jan 
274 4 13 25.9 119.8 16.3 Feb 
259 3 11 28.2 102.5 18.9 Mar 
117 2 5 26.7 92.5 16.9 Apr 
7 0 0 19.1 41.7 11.8 May 
2 0 0 10.8 11.4 0.8 Jun 
0 0 0 - 0.6 - Jul 
0 0 0 - 0.8 - Aug 
0 0 0 - 2.2 - Sep 
9 0 0 30.7 54.4 12.9 Oct 
60 1 2 24.5 90.4 16.7 Nov 
294 4 12 27.8 107.0 17.4 Dec 

 

In Table 3.3, the column with R10 represents the number of days in each month with daily rainfall greater 

than 10mm for 77 years. Mean column is the average monthly rainfall for 77 years. The chance to rain was 

calculated taking R10 per year divided by days of the month. The Table 3.3above shows, for example, July, 

August and September were found to be months with almost no rain, while January, February, March and 

December were the wettest months with some possibility of the daily rainfall being greater than 10mm. To 

better understand the behaviour of the daily maximum rainfall for Dodoma, some analyses were investigated 

using graphical methods. 

 

Different graphical Description of Dodoma daily rainfall data 

 

 
 

Fig. 3.2. Histogram of Dodoma daily rainfall 
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Fig. 3.3. Daily rainfall scatter plot 

 

Figure 3.3 above shows the daily rainfall. We observe that all years had rainfall above 27.1mm, which is the 

average rainfall of rainy days for 77 years (see Table 3.2). The red line represents the average rainfall in 

Dodoma for 77 years. This scatter plot can give us an idea about the extreme rainfall by studying the 

behaviour (distribution) of rainfall exceeding the average rainfall. We defined the year to start in August and 

end in July as shown in a monthly boxplot in Figure 3.4 below. 

 

 
 

Fig. 3.4. Monthly boxplot of Dodoma daily rainfall 



 
 
 

Iyamuremye et al.; AJPAS, 3(2): 1-29, 2019; Article no.AJPAS.46944 

 

 

 

15 
 
 

This box plot is showing the variability in the daily rainfall on monthly basis across the years for the 

Dodoma station. The daily rainfall rises during the wet season (from November to December and again from 

January to April) and declines during the dry period (from May to September). Several periods of heavy 

rainfall in Tanzania since 14 January 2016 have caused flooding in the regions of Mwanza and Dodoma 

[10,11,12, 15]. The Tanzania Meteorological Agency issued a warning of severe weather in most parts of the 

country, with possible rainfall of 50mm in 24 hours expected in many areas until 16 April (Rainfall and 

forecasts,14 January 2016). We used records of extreme rainfall causing floods in some regions, to fix the 

threshold to describe extreme rainfall in our Dodoma data. The plots below show the daily rainfall of 

Dodoma from 1935 to 2011 exceeding some heavy rainfall causing floods in Dodoma. 

 

 
 

Fig. 3.5. Daily rainfall for Dodoma with rain exceeding 50mm 

 

The blue points represent the daily rainfall in Dodoma exceeding 50mm each year for 77 years. Data with 

rainfall greater than 50mm is much scattered compared to others. 

 

 
 

Fig. 3.6. Daily rainfall for Dodoma with rain exceeding 30mm 
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The blue points represent daily rainfall in Dodoma exceeding 30mm each year since 1935. Data with rainfall 

greater than 30mm is scattered compared to others. This scatter plot does not show obvious trend in daily 

rainfall greater than 30mm. Even if the above scatter plots did not show an obvious trend in rainfall 

exceeding some maximum rainfall, we need some statistical evidences to confirm this. In the next section we 

used precipitation indices to see whether there was a linear trend in Extreme rainfall or not. 

 

Analysis of a linear trend in extreme rainfall over time using rainfall indices 

 

Changes in extreme rainfall in Dodoma were analysed through the annual and daily occurrence of rainfall. In 

Table 2.1, we described some useful indices to analyse extreme rainfall [13]. Changes in extreme rainfall can 

be studied by looking at the change in the frequency of days with precipitation exceeding some threshold; 

R10mm, R20mm and Rnnmmwhere nnrepresents any fixed threshold [6]. Extreme rainfall is defined also as 

the highest daily precipitation (RX1day) or the highest 5 consecutive days precipitation amount (RX5day) per 

year or again extreme rainfall is a heavy rainfall event (R95p and R99p) [8]. As extremes are defined based 

on the occurrence, frequency and intensity, the plots below are based on some threshold of exceedance, 

intensity and frequency of rainfall in Dodoma. To study the trend in rainfall extremes over period of 77 years, 

linear regression model was used and the fitted line (in red) indicates linear trend in occurrence, frequency 

and intensity of extreme rainfall. How often does extreme rainfall in Dodoma occur? Is there any statistical 

evidence of change in extreme rainfall in Dodoma over a period of 77 years? 

 

Table 3.4. Summary of linear regression model 

 

 

 

 

R50 0.18 0.01 Y = 0.01 × T − 15.71 

R95p 0.20 0.01 Y = 0.59 × T − 1038.52 

R99p 0.74 0.00 Y = 0.11 × T − 175.36 

RX1day 0.16 0.01 Y = 0.13 × T − 195.39 

RX5day 0.14 0.02 Y = 0.28 × T − 442.84 

 

 
 

Fig. 3.7. Annual daily maximum rainfall with a regression line y = 0.13t − 195.39. 

 

Using the indices described in Table 2.1, we can answer those questions. In this essay, 7 precipitation indices 

related to exceedances, frequency and duration of rainfall were analysed. To determine whether there exists a 

index p-value(slope) R-squared Trend line 

R20 0.79 0.00 Y = −0.01 × T + 18.59 
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linear trend, a linear regression of rainfall indices against year was fitted. The slopes of the annual trends of 

extreme rainfall indices were calculated based on a least square linear fitting. Trends were obtained for each 

index and the statistical significance of the trends were assessed using a p-value. The trends were considered 

to be statistically significant at 99% confidence level. 

 

The observed linear trend of extreme rainfall indices is presented below 

 

The line in red is a trend-line computed by least square fit and the corresponding regression equation is 

presented for each index in Table 3.4. 

 

 
 

Fig. 3.8. Annual maximum of 5-day consecutive rainfall with a regression line y = 0.28t − 442.83 

 

 
 

Fig. 3.9. The exceedance of 95 percentile threshold with a regression line y = 0.59t − 1038.51 
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Fig. 3.10. The exceedance of 99 percentile threshold with a regression line y = 0.11t − 175.36. 

 

Fig. 3.10 and Fig. 3.9 above represent very wet days and extremely wet days: The 95th and 99th percentiles 

describe the annual precipitation amount accumulated on days when daily precipitation is greater than the 

(95th) and (99th) percentiles threshold of the wet-day precipitation (Rain>1mm). 

 

 
 

Fig. 3.11. Annual counts of days with daily rainfall exceeding 20mm with a regression line y = 

−0.01t + 18.59 

 

Fig. 3.11 and Fig. 3.12 above represent the heavy rainfall days (Rain >20, 50mm). An increase shown in 

annual counts of days with rainfall exceeding 50 mm could indicate an increase of extreme rainfall in 

Dodoma for 77 years. We observed a positive slope of the trend line to all indices except R20, which means 

that the rainfall extremes increased over time. However, we need statistical test to confirm this change in 

extreme rainfall. From Table 3.4, all the p-values were greater than 0.01 level of significance. We therefore 

did not have enough evidence to reject the null hypothesis, since our test was not significant. In addition, the 

value of the R-squared is very small. This implies there is a very small (for example 1 % for R50) variability 
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in extreme rainfall that can be explained by the change in time. Then, we concluded that the rainfall indices 

showed that there is no statistical evidence of the change in rainfall extremes in Dodoma between 1935 and 

2011. 

 

 
 

Fig. 3.12. Annual counts of days with daily rainfall exceeding 50mm with a regression line y = 0.01t − 

15.71 

 

One of the unanswered questions clearly by the above indices is the distribution of observed extreme rainfall 

in Dodoma since 1935. As extreme events are also defined as those in the tail of the distribution, to 

accurately assess potential changes in the shape of the distribution of rainfall observations requires additional 

rigorous analysis rather than using the rainfall indices. To study the distribution of extreme rainfall over 

period in Dodoma, extreme value distributions were used. In the next section, extreme value distributions 

with stationary and non-stationary parameters were fitted to observations of Dodoma daily rainfall to model 

trends in extreme rainfall and to determine return levels. 

 

Modelling of Extreme Rainfall using Extreme Value Distributions: 

 

This modelling is based on the time series of daily rainfall for Dodoma recorded from 1935 up to 2011 as 

described in section 3.1. In this section, we applied the theory of extreme value distributions presented in 

section 2.2. At the first, we used block maxima (BM) approach. Secondly, we considered model with 

stationary and non-stationary extreme value distribution parameters [17]. We finally used the peak over a 

threshold (POT) approach to model the data of exceedances. 

 

Fitting the model to the data by BM Approach: 

 

One of the most important things to do before applying GEV model is to obtain , the 

maximum observations in m blocks of length related to the period For this, we 

need to choose a block of equal length n, and discard all values, remaining with only the maximum value in 

each block. First, we have extracted the block maxima of annual maximum from Dodoma daily rainfall. 

Therefore, for Dodoma rainfall  for annual blocks of maxima. 

 

There is a need to know the risks of extreme events in agriculture, especially those that are damaging, such 

as heavy rainfall. Too much rainfall can affect the quality and productivity of crops. Figure 3.13 shows the 
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extreme daily rainfall in a year. In 1964 we had the highest rainfall amount of 119.8mm whereas, the lowest 

extreme amount of rainfall was 29.0mm. 

 

 The figure below represents the annual block maxima for Dodoma daily rainfall: 

 

 
 

Fig. 3.13. The extreme rainfall in Dodoma since 1935 to 2011 

 

Fitting the data to a GEV model with stationary parameters 

 

We assumed that the pattern of variation of extreme rainfall has stayed constant over the period 1935- 2011, 

so we modelled the daily Dodoma rainfall as independent observations from the GEV distribution. After 

filtering 77 blocks of maximum, we fitted the annual block maxima to GEV model and we estimated the 

parameters µ, σ and ξ by maximum likelihood method. The GEV log-likelihood of annual maxima  

with  is given by 

 

(3.4.1) 

 

 

If ξ = 0, we have Gumbel model. The log-likelihood of annual maxima L(φ) with φ = (µ, σ) is given by 

 

 
(3.4.2) 

 

Maximization of the log-likelihood (Equation 3.4.1 and Equation 3.4.2) numerically using R, leads to the 

estimates presented in Table 3.5. 
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Table 3.5. GEV and Gumbel parameter estimates with their 99% confidence intervals 

 

 GEV parameters 

Parameter Estimate Standard Error CI (99%) 

Shape(ξˆ) -0.19 0.08 (−0.39, 0.01) 

Location(µˆ) 61.91 2.29 (56.00, 67.83) 

Scale(σˆ) 18.23 1.61 (14.08, 22.37) 

 Gumbel parameters 

Parameter Estimate Standard Error CI (99%) 

Location(µˆ) 60.08 2.12 (54.62, 65.54) 

Scale(σˆ) 17.69 1.48 (13.87, 21.51) 

 

Maximization of Equation 3.4.1for Dodoma annual maxima rainfall data leads to the estimate (µˆ, σˆ, ξˆ) = 

(61.91, 18.23, −0.19), for which the only one parameter (ξˆ) was statistically insignificant. But all parameters 

were statistically significant (µˆ, σˆ) = (60.08, 17.69) when we maximized the Equation 3.4.2. 

 

 3 parameter (GEV) versus 2 parameter (Gumbel) model: 

 

The shape parameter ξ is the only parameter which governs the tail behaviour of the distribution. After 

fitting the GEV model to annual maxima data, ξ indicates which one of the three models best describe the 

Dodoma annual maxima rainfall. We used likelihood ratio-test to test GEV and Gumbel models with the 

following hypothesis 

 

  : Gumbel model (ξ = 0),   :GEV model          
 

The smaller the p-value, the stronger the evidence against H0 provided by the data. Using function lr.test() 

in extRemes package for likelihood ratio-test, we got the p-value 0.024 at alpha (α = 0.01), therefore, we 

failed to reject the null hypothesis. The zero belongs to the shape parameter’s confidence interval      
           (see Table 3.5). Thus, we did not reject the null hypothesis    , which means that the suitable 

model for our Dodoma extreme rainfall belongs to Gumbel model. 

 

Diagnostic plots of GEV and Gumbel model: 

 

 
 

Fig. 3.14.  GEV model 
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On top, there are two plots; probability and quantile plots and at the bottom we have plot of the fitted GEV 

density superimposed onto the empirical density of the actual data (bottom left) and retun level plot. 

 

 
 

Fig. 3.15. Gumbel model 

 

The above plots are four diagnostic plots; probability plot, quantile plot, return level plot and density plot of 

Gumbel model. 

 

Modelling a linear trend in extreme rainfall using Gumbel with non-stationary parameters: 

 

After finding that Gumbel model is the best fit of Dodoma maximum rainfall, we modelled linear trend in 

extreme rainfall using Gumbel model. In the context of environmental processes, non-stationarity is often 

apparent because of seasonal effects, perhaps due to different climate patterns in different months, or in the 

form of trends, possibly due to long-term climate changes. Due to climate change, the trend in frequency and 

intensity of extreme weather events occurs through time. To model change in extreme rainfall, extreme value 

distributions with non-stationary parameters could be used. Non-stationarity can be expressed in terms of 

location parameter with trend. Thus, we used Gumbel with two parameters as follow: 

 

, t = 1, 2,..  

 

The classical Gumbel; Gu(x, µ, σ) model assumes that the two parameters of location and scale are time 

independent (stationary parameters). However, if trends are detected in the data sample, the non-stationarity 

case where parameters are no longer constants but expressed as covariates (e.g.time), should be considered. 

To study linear trend checking whether there exist a trend in change of extreme rainfall, two models were 

considered; stationary model1 (classical Gumbel), and non-stationary model2 (Gumbel with time as 

covariates). 

 

Model 1 without trend: are constants 

 

Model 2 with trend: σ  is constant, 
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where t refers to units of the selection period (for example, t = 1 corresponds to 1935 for Dodoma daily 

rainfall data). 

 

We fitted Gumbel without trend in model 1 to compare with model 2 including trend. The second model is 

Gumbel fitted with linear trend in location parameter. The detail result of each model is shown below: 

 

Table 3.6. Gumbel parameter estimates for Model1 and Model2 with their 99% confidence intervals 

 

 Model1 

Parameter Estimate Standard Error CI (99%) 

Location(µˆ) 60.1 2.1 (54.6, 65.5) 

Scale(σˆ) 17.7 1.5 (13.9, 21.5) 

 Model2 

Parameter Estimate Standard Error CI (99%) 

Location(µˆ0) 61.4 201.8 (−458.3, 581.2) 

Location(µˆ1) -0.001 0.1 (−0.3, 0.3) 

Scale(σˆ) 17.7 1.5 (13.7, 21.6) 

 

Fitting the model without a trend in location parameter, we got that all two parameters are statistically 

significant at 99 %. The second model is Gumbel fitted with linear trend in only location parameter and we 

got only one parameter statistically significant (σˆ) but location parameters were not. 

 

Writing a location parameter with linear trend µt = 61.4 − 0.001t, wheretis an index for year, with t = 1 

corresponding to 1935. The parameter µˆ1 = −0.001 corresponds to the annual rate of change in yearly 

maximum rainfall in Dodoma. However, all estimates of location parameter in model2 were not statistically 

significant at 99%. We used the likelihood-ratio test to test two models. We got a big p-value (≈ 1) indicating 

that the stationary model (Model1) should be accepted. This implies there is no evidence of a linear trend in 

location parameter. 

 

Annual maximum rainfall with a fitted line of a linear trend in location parameter 

 

 
 

Fig. 3.16. Fitted estimates for µ in linear trend Gumbel model of Dodoma annual maximum rainfall. 

The red line represents location parameter with a linear trend µ = 61.4 − 0.001t 
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Remark. The location parameter is analogous to the mean of a normal distribution, so increase in µ 

uniformly shifts the distribution to higher values, increasing all extremes equally. Whereas σ and ξ determine 

the rate at which the magnitude of extremes alters with rarity [14]. 

 

Diagnostic plots for Gumbel with and without trend model 

 

 
 

Fig. 3.17. Gumbel without any trend 
 

 
 

Fig. 3.18. Gumbel with linear trend in location parameter Return levels and their (1 − α)% confidence 

limits 
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After estimating the Gumbel parameters, we estimated the return levels of extreme rainfall in Dodoma and 

we extrapolated to obtain estimates of return levels beyond the end of the data we have. Under the ideal of 

stationarity, the return level calculated from one period of the data should be approximately the same value if 

it was calculated from any other period of the same data. However, this is not the case if climate is changing. 

We were able to predict the estimate of the daily rainfall we would expect to see in Dodoma, 

 

◊Once in T = 2 years, 

◊Once in T = 5 years, 

◊Once in T = 10 years, so on. 

 

We used our fitted stationary Gumbel model to extrapolate beyond the range of our data to estimate such 

return levels. The results are presented in Table 3.7 below. 

 

Table 3.7. Gumbel return level estimates with their 99% confidence intervals 

 

Return period T T-year return level in mm 

Estimated return level (xˆT) in mm CI (99%) 

2-year return level 66.6 (60.5,72.6) 

5-year return level 86.6 (77.5, 95.7) 

10-year return level 99.9 (88.3, 111.5) 

20-year return level 112.6 (98.5, 126.7) 

50-year return level 129.1 (111.6, 146.6) 

100-year return level 141.5 (121.4,161.5) 

 

In this table above, the 5−year return level, 86.6, is the level extreme rainfall is expected to occur once in a 

period of 5 years. We would say that extreme rainfall of 86.6mm in Dodoma has 20% chance of being 

exceeded in any one year. According to estimated return levels in Table 3.7, there is a probability of 1% in 

Dodoma extreme rainfall to exceed 141.5mm in any one year. The results presented in the above Table 

3.7were obtained under a stationary Gumbel model. 

 

Fitting the model to the data by POT Approach: 

 
After BM approach, we turned to another alternative approach to the extreme value statistics based on 

exceedances over a threshold. The basic idea is to pick a high threshold u and to study all the exceedances of 

u. Those selected exceedances are said to follow the generalized Pareto distribution (Check:Equation 2.2.9). 

However, the main challenge of this approach is the selection of proper threshold. In subsection 2.2.6, we 

discussed POT approach and, in this subsection, we used the Dodoma daily rainfall data for the application. 

 

The two plots were used for this selection of threshold: the mean residual life plot and the threshold range 

plot for parameters. We finally chose the best indicated threshold by two plots to estimate the GPD 

parameters. 

 

The above plots were used before making a final decision. We selected a threshold such that the mean 

residue life plot is approximately linear above the selected proper threshold u0. The 30mm was found to be a 

reasonable threshold. 

 

Fitting the Dodoma daily rainfall data to a GP model with stationary parameters: 

 
After selecting the threshold, the Dodoma daily rainfall data were fitted to GP with a threshold of 30mm and 

we estimated GP parameters using MLE. The results are represented in the table below. 
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Figure 3.19: The threshold selection plots 

 

Table 3.8. Parameter estimates with their 99.5% confidence intervals of the GP fitted to the daily 

Dodoma rainfall exceeding the threshold u0 = 30mm 

 

 Threshold uo= 30mm 

Parameter Estimate Standard Error CI (99.5%) 

Shape(ξˆ) -0.13 0.05 (−0.26, 0.01) 

Scale(σˆ) 21.24 1.47 (17.11, 25.37) 

 

After estimating the generalized Pareto model parameters, we tested the shape parameter to know the best 

model of exceedances. 

 

   : exponential model (ξ = 0),  

   : Beta or Pareto model (ξ ≠0). 

 

A likelihood ratio test gave us a big p-value       (α = 0.005) for two models (    and   ). Consequently, 

this implies there is no evidence of rejecting the null hypothesis. Then, the exponential model is the 

appropriate model for the data of exceedances. 

 

Table 3.9. GP return level estimates with their 99.5% confidence intervals 

 

Return Period T T-year return level in mm 

Estimated Return level CI (99.5%) 

2 72.9 (66.4,79.5) 

5 86.5 (77.87,95.3) 

10 95.8 (84.6, 106.9) 

20 104.3 (89.9, 118.6) 

50 114.4 (95.0, 133.676) 

100 121.2 (97.7,144.8) 
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Fig. 3.20. The Diagnostic plots from the GP fitted to Dodoma daily rainfall. Quantile-quantile plot (top 

right), quantiles from a sample drawn from the fitted GP against the empirical data quantiles (top 

left), density plots of empirical data and fitted GP (bottom right), and return level plot with pointwise 

normal approximation confidence intervals (bottom left) 

 

We have already estimated the GP parameters;therefore, we can estimate the return levels by using Equation 

2.2.13. Table 3.9describes the return level estimates with their 99.5% CI at different return periods of daily 

exceedances over 30mm. 

 

3 Conclusion and Recommendations 
 

3.1 Conclusion 
 

In this essay we used three approaches to analyze and model rainfall extremes in Dodoma. Using 6 rainfall 

extremes indices, we analyzed trends in change in extreme rainfall. We used the least square method to 

estimate the parameters (slope and intercept) of a linear regression line. All estimated parameters were 

statistically insignificant at 0.01 level of significance. Then, there was no statistical evidence of the linear 

change in rainfall extremes in Dodoma. 

 

Apart from the rainfall extremes indices to analyse change in extreme rainfall over the time, this essay used 

the annual block maxima approach, a method which fitted GEV model to the maximum rainfall. Using this 

approach, we extracted the sample data and we fitted it to GEV model. After the likelihood ratio test of GEV 

model and Gumbel model, the Gumbel model was found to be appropriate model to describe the annual 

maximum Dodoma rainfall. The Gumbel model with a linear trend was not showing any statistical evidence 

of a linear trend in Dodoma rainfall extremes. However, more research is needed especially about cyclic 

variations because of seasonality. 

 

We estimated the return levels of extreme rainfall under Gumbel model with stationary parameters. But we 

did not estimate the return levels for extreme rainfall under a changing climate. We were able to predict the 

estimate of the daily rainfall we would expect to see in Dodoma once in T = 2, 5, 10, 20, 50 and 100 years. 

However, this essay did not extend the concept of return level to non-stationary climate [17]. 
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As block maxima approach ignores other important extreme rainfall data, especially those greater than the 

annual maximum. The peak over threshold (POT) approach were also used, where we focused on the 

distribution of values that have exceeded a threshold of 30mm. Using the likelihood ratio test, we tested the 

shape parameter and exponential model was found to be the extreme value model which can describe 

Dodoma rainfall exceeding 30mm. We have modelled exceedances data under the stationary climate only. 

For the GPD, it is not always clear how to interpret some parameters, such as return levels because the rate 

of exceeding the threshold may vary seasonally. The choice of an appropriated threshold in this approach 

remains a challenge. 

 

As shown with Dodoma daily rainfall data analysis, BM and POT approaches can be used for stationary and 

non-stationary extreme data. But still there is work to be done on the general theory to be extended for non-

stationary series especially in describing the trend variation in the data of exceedances using the fitted GP 

parameters. 

 

3.2 Recommendations 
 

In this essay, we used extremes package in R software. If this package can be incorparated in R-Instat 

software, this could be easy for some people especially those who want to analyse extremes in R-Instat 

software. Analysis and modelling of climate extremes need reliable and long period data. However, the data 

may have some missing values and this can provide the wrong predictions. It is always difficult to find a 

well detailed historic climate data. There is often a percentage of data missing, which if not well handled, 

can give wrong analysis. Thus, better ways of handling missing information should be considered. In this 

essay, we used only Dodoma station data. However, other stations in Tanzania or elsewhere can be used to 

study the distribution and change in extreme rainfall using the same theory applied in this essay. 

 

4. Further Work 
 

More research is needed to learn which model would be preferable to convey uncertainty about extreme 

events under climate change. To have more experience in this field of climate extremes, this essay will be 

extended as my future work to modelling non-stationary extreme rainfall and temperatures in Rwanda using 

extreme value distributions. Apart from considering a linear trend, in this work the cyclic variations of 

extremes will be taken into account. 
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