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ABSTRACT 

 

This thesis presents a finite element method, discontinuous Galerkin time domain 

approach that solves the 2-D acoustic wave equation in cylindrical coordinates. The 

method is based on discretization of the wave field into a grid of ( 𝑟,𝜃) where 𝑟 is the 

distance from the centre and 𝜃 is the radial angle. The Galerkin formulation is used to 

approximate the solution of the acoustic wave equation along the 𝑟 coordinate and 𝜃 

coordinate derivatives. The boundary conditions applied at the boundaries of the 

numerical grid are the free surface boundary condition at 𝑟 =1 and the absorbing 

boundary condition applied at the edges of the grid at 𝑟 =2. The solution is based on 

considering wave motion in the direction normal to the boundary, which in this case is 

the radial direction over radial angle 𝜃 ∈ [0𝑜 , 30𝑜]. The exact solution is described in 

terms of Bessel function of the first kind, which forms the basis of the boundary 

conditions for the values of pressure and eventually sufficient accuracy of the 

numerical solution. The obtained Matlab algorithm is tested against the known 

analytical solution, which demonstrates that, pressure of the wave increases as the 

radius increases within the same radial angle. The domain was discretized using linear 

triangular elements. The main advantage of this method is the ability to accurately 

represent the wave propagation in the free surface boundary with absorbing boundary 

condition at the edges of the grid, hence the method can very accurately handle wave 

propagation on the surface of a cylindrical domain. The resulting numerical algorithm 

enables the evaluation of the effects of cavities on seismograms recorded in boreholes 

or in cylindrical shaped tunnels.  
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CHAPTER ONE 

INTRODUCTION 

 Acoustic or Sound wave propagation is motion of sound waves in heterogeneous 

media (fluids and solids). There are numerous numerical methods for solving different 

types of partial differential equations that describes the physical dynamics of the 

world for instance PDE’s are used to understand fluid flow for aerodynamics, wave 

dynamics for seismic exploration and orbital mechanics. For many seismic processing 

procedures, the numerical modeling of seismic waves is an essential part of the 

process. When attempting to image the subsurface of the earth based on the difference 

between the response of the modeled system, it is sometimes necessary to iteratively 

update the current model and the data recorded from the actual experiment. Therefore 

it is important that both the numerical method and the type of model used in the 

forward modeling, are capable of accurately representing the physical experiment, this 

is according to Matt et al (2012).  A specific type of numerical method is required in 

solving partial differential equations that accurately model the earth’s properties. 

More precisely, because of the discontinuous nature of the earth’s properties, the 

PDE’s exhibit a low-order level of continuity at the discontinuous interfaces. 

Approximation methods that assume a higher level of continuity, can cause the 

position of these kinks to show up at incorrect spatial locations, leading to improperly 

reconstructed earth models according to Matt et al (2012). This thesis begins with the 

formulation of the acoustic wave propagation equation in the fluid medium. We also 

highlight some of the numerical methods used to solve PDE’s and discuss the 

necessary concepts to understand Discontinuous Galerkin. The Galerkin formulation 

solves the weak form of the PDE representing wave propagation and naturally 

includes boundary integral terms to represent free surface, rigid and absorbing 
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boundary effects. These concepts are then used in formulating DG for 2D acoustic 

wave equation under uniquely formulated boundary conditions and its solution 

compared to the exact solution in terms of convergence and accuracy. The Matlab 

code is used to compute the results of the acoustic wave problem. 

1.1 Background of the Problem  

 

Sound is a wave phenomenon by which energy is transmitted through a medium via 

fluctuations in pressure and fluid vibration. To illustrate the physical process of the 

acoustic waves, a fluid (a gas or a liquid) is enclosed in a semi-infinite tube with a 

sliding piston at one end. It is assumed that the tube is sufficiently narrow for all 

variations in fluid properties to depend only on the axial coordinate 𝑥. However, the 

influence of the walls is neglected. In a narrow tube, viscous effects lead to energy 

loss in the vicinity of the walls but this is neglected here. Such one-dimensional 

waves are called plane waves, as the acoustic fluctuations are uniform on any plane 

perpendicular to the axial direction. (Frank and David (2015)). The compressibility of 

the fluid plays a central role in the propagation of acoustic disturbances. If the fluid in 

the tube were incompressible and did not deform at all, then all of the fluid in the tube 

would move at the same instant as the piston. However, if the fluid is compressible 

and has inertia, it takes a finite time for the disturbance caused by the motion of the 

piston to be transmitted to the fluid. The speed at which this is transmitted is the speed 

of sound. In the physical process involved, first, the fluid immediately in front of the 

piston becomes compressed. The compression is then transmitted down the tube. The 

leading edge of the disturbance, having an increased pressure over the ambient 

pressure, moves at the speed 𝑐0, the speed of sound. As the compression moves down 

the tube, more and more of the fluid reaches the velocity 𝑢 at which the piston is 
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moving. If the piston is suddenly brought to rest, then the fluid immediately in front 

of the piston will also come to rest; nevertheless, both the leading and the trailing 

edges of the disturbance continue to propagate at the velocity 𝑐0 , and as the 

compression passes down the tube it imparts a velocity 𝑢 to the fluid as it passes. This 

illustrates the important distinction between the velocity 𝑐0 at which the compression 

propagates and the velocity 𝑢  which the fluid reaches as the compression passes 

through a given local region of fluid. The latter is known as the particle velocity, 

which corresponds to the passage of an acoustic wave. (Frank and David (2015)).   

Sound waves in a fluid (air or water) are longitudinal waves. The particles in the 

medium are displaced from their equilibrium position parallel to the direction that the 

wave propagates.  

1.1.1 Wave propagation speed 

The wave speed is determined by the properties of the medium. In general the speed 

of a mechanical wave depends on the resilience of the medium as well as its mass 

density. The more rigid the medium the faster the wave propagation speed. But the 

higher the mass density, the slower the wave speed. For sound waves through air or 

water, the wave speed would depend on the compressibility of the medium and the 

volume mass density. An example of wave motion involves a wave function that is 

sinusoidal (Herrin 2012). The disturbance is in the shape of a sine wave. The resulting 

wave motion description is then 

                                   𝑢(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 ± 𝜔𝑡)                                                      (1.1)                                             

   𝑘 = 𝑤𝑎𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟,  𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝐴 = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

 The amplitude of the wave is the maximum displacement of any part of the medium 

from the equilibrium or undisturbed position. The frequency 𝐹,  the period 𝑇  of 
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oscillation, the wavelength 𝜆, the wave number 𝑘, the wave speed 𝑐  and the wave 

function 𝑢(𝑥, 𝑡) can be related in the form 

          𝑢(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 ± 𝜔𝑡) = 𝐴 sin(
2𝜋

𝜆
𝑥 ± 2𝜋𝐹𝑡) = 𝐴 sin 𝑘(𝑥 ± 𝑐𝑡)           (1.2) 

1.1.2 Speed of Sound 

The general principles in the discussions of wave motion apply equally to sound. The 

propagation of a disturbance in air is described by a differential equation of the same 

form as equation (1.1). So the solutions to the equation are necessarily of the form as 

equation (1.2). The wave speed 𝑐 depends on the bulk modulus 𝛽 and on the mass 

density 𝜌 of the fluid.                                                              

                                   𝑐 = √
𝛽

𝜌
                                                                                   (1.3)                                                                                           

The bulk modulus refers to how resistant the fluid is to a change in its volume and is 

given by 

𝛽 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑒𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑟𝑎𝑖𝑛
= −

∆𝑃
𝑃⁄

∆𝑉
𝑉⁄

 

with ∆𝑃 as the change in pressure 𝑃 and ∆𝑉 as the change in volume V. For a sound 

wave in air 𝑐 = 340𝑚𝑠−1, For a sound in water 𝑐 = 1500𝑚𝑠−1  

In the field of mechanical wave propagation, two wave types are distinguished 

depending on the properties of the underlying propagation medium. Traditionally, 

waves in fluids are called acoustic waves and waves in solids are known as elastic 

waves. 
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1.1.3 Derivation of 1-D Acoustic wave equation 

To describe the propagation of acoustic disturbances in a fluid such as air or water, we 

first consider a one–dimensional situation before turning to a two-dimensional 

situation. Consider a tube of cross-sectional area 𝑆, containing air at ambient pressure 

𝑝0  and pressure which is the sum of ambient pressure and the acoustic pressure, 

𝑝𝑡𝑜𝑡 = 𝑝0 + 𝑝 where 𝑝 is small compared to 𝑝0. Similarly, as the fluid is compressed 

or rarefied, its density will vary from its nominal value 𝜌0 and this can also be written 

as  𝜌𝑡𝑜𝑡 = 𝜌0 + 𝜌, where 𝜌 is the ‘acoustic’ fluctuation of the density, which is much 

smaller than  𝜌0. The fluid also experiences motion within the tube which can be 

described by its particle velocity 𝑢 in the 𝑥 direction. 

1.1.3.1 Equation of mass conservation 

Consider a fluid volume of infinitesimal length 𝛿𝑥 and the mass of fluid within this 

volume is given by 𝜌𝑡𝑜𝑡𝛿𝑥𝑆. We are interested in the rate of increase of mass within 

the volume, which can be written as 

  𝜕𝜌𝑡𝑜𝑡

𝜕𝑡
𝛿𝑥𝑆 =

𝜕𝜌

𝜕𝑡
𝛿𝑥𝑆                                                                                                  (1.4)                       

as 𝜌0  is independent of time. This must equal the flow of mass into the control 

volume. At the left-hand end, the rate of flow of mass into the volume is given by 

𝜌𝑡𝑜𝑡𝑢𝑆 evaluated at 𝑥, while at the right-hand end, the corresponding rate of flow of 

mass out of the volume is 𝜌𝑡𝑜𝑡𝑢𝑆 evaluated as 𝑥 + 𝛿𝑥. For any quantity ℎ, to a first-

order approximation 

ℎ(𝑥 + 𝛿𝑥) ≡ ℎ(𝑥) +
𝜕ℎ

𝜕𝑥
𝛿𝑥𝑆                                                                                     (1.5) 

thus the rate of mass inflow into the control volume is given by 
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𝜌𝑡𝑜𝑡𝑢𝑆 − ⌊𝜌𝑡𝑜𝑡𝑢 +
𝜕(𝜌𝑡𝑜𝑡𝑢)

𝜕𝑥
𝛿𝑥⌋ 𝑆 = −

𝜕(𝜌𝑡𝑜𝑡𝑢)

𝜕𝑥
𝛿𝑥𝑆                                                   (1.6)           

Expanding the derivative, 

𝜕(𝜌𝑡𝑜𝑡𝑢)

𝜕𝑥
= 𝑢

𝜕𝜌𝑡𝑜𝑡

𝜕𝑥
+ 𝜌𝑡𝑜𝑡

𝜕𝑢

𝜕𝑥
                                                                                       (1.7)                                                                                                  

Substituting 𝜌𝑡𝑜𝑡 = 𝜌0 + 𝜌 and noting that 𝜕𝜌0 𝜕𝑥⁄ = 0                                                                                                                                                                                                      

𝜕(𝜌𝑡𝑜𝑡𝑢)

𝜕𝑥
= 𝑢

𝜕𝜌

𝜕𝑥
+ (𝜌0 + 𝜌)

𝜕𝑢

𝜕𝑥
                                                                                   (1.8)                                                                                                           

However, for small amplitudes, the terms 𝑢(𝜕𝜌 𝜕𝑥⁄ ) and 𝜌(𝜕𝑢 𝜕𝑥⁄ ), which are the 

product of  

two small quantities, can be neglected, leaving only 𝜌0(𝜕𝑢 𝜕𝑥⁄ ) on the right-hand 

side. Substituting this into (equation (1.6)) and equating it with (equation (1.4)) yields 

𝜕𝜌

𝜕𝑥
+ 𝜌0

𝜕𝑢

𝜕𝑥
= 0                                                                                                         (1.9) 

which is known as the linearized equation of mass conservation because it contains 

terms which are linear functions of the fluctuating quantities.(Frank and David 

(2015)) 
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1.1.3.2 Equation of momentum conservation 

The second equation required can be found by applying the principle of momentum 

conservation to a fluid element; in this case, we will apply the principle to an element 

that moves with the fluid. The net force acting on the fluid element in the positive 𝑥- 

direction is given by the difference in 𝑝𝑡𝑜𝑡 at the two sides of the element multiplied 

by the area 𝑆, 

𝑝𝑡𝑜𝑡𝑆 − (𝑝𝑡𝑜𝑡 +
𝜕𝑝𝑡𝑜𝑡

𝜕𝑥
𝛿𝑥) 𝑆 = −

𝜕𝑝𝑡𝑜𝑡

𝜕𝑥
𝛿𝑥𝑆 = −

𝜕𝑝

𝜕𝑥
𝛿𝑥𝑆                                         (1.10) 

The momentum conservation principle states that this net applied force must be 

balanced by the acceleration of the fluid element multiplied by its mass, 𝑚 =

𝜌𝑡𝑜𝑡𝛿𝑥𝑆 ≈ 𝜌0𝛿𝑥𝑆  (Newton’s second law). The acceleration of the moving fluid 

element is given by 

𝐷𝑢

𝐷𝑡
= 𝑢

𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑡
                                                                                                        (1.11) 

Where 𝐷 𝐷𝑡⁄  is the total convective derivative. However, the first term, which 

expresses the effect of convection of the fluid, is the product of small quantities and 

can be neglected, so that the mass times the acceleration of the fluid element is given 

by 

 𝜌0
𝜕𝑢

𝜕𝑡
+
𝜕𝑝

𝜕𝑥
= 0                                                                                                       (1.12) 

This relationship is known as the linearized equation of momentum conservation or 

Euler’s equation. 

To relate the pressure and density, we assume that the density change in the fluid is 

determined solely by the pressure change in the fluid and is not independent on the 
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temperature change. This is despite the fact that the temperature of the fluid will 

fluctuate slightly during the course of the compression and rarefaction. In a particular 

case of a perfect gas undergoing such an adiabatic compression, the relationship 

between the total pressure and total density is given by 

𝑝𝑡𝑜𝑡 = 𝑝0 (
𝜌𝑡𝑜𝑡

𝜌0
)
𝛾

                                                                                                     (1.13)            

Where 𝛾 is the ratio of the specific heats of the gas, which for air has the value 1.4. 

The relation between the acoustic pressure and density can be found from the gradient 

of (equation (1.13)) evaluated at density 𝜌0. This can be written as 

𝑝

𝜌
=
𝜕𝑝𝑡𝑜𝑡

𝜕𝜌𝑡𝑜𝑡 
]𝜌𝑡𝑜𝑡=𝜌0 = 𝛾𝑝0

(𝜌𝑡𝑜𝑡)
𝛾−1

(𝜌0)𝛾
 ]𝜌𝑡𝑜𝑡=𝜌0 =

𝛾𝑝0

𝜌0
                                                    (1.14) 

1.1.3.3 The acoustic wave equation. 

With differentiation of (equation 1.9) with respect to 𝑡  and (equation 1,12) with 

respect to 𝑥, then eliminating the common term 𝜌0𝜕
2𝑢 𝜕𝑥𝜕𝑡⁄  gives 

𝜕2𝑝

𝜕𝑥2
−
𝜕2𝜌

𝜕𝑡2
= 0                                                                                                          (1.15) 

The acoustic pressure and density fluctuations are related by (equation 1.14). 

Substituting this into (equation 1.15) yields the one-dimensional wave equation in 

terms of acoustic pressure fluctuations.  

𝜕2𝑝

𝜕𝑥2
−

1

𝑐0
2

𝜕2𝑝

𝜕𝑡2
= 0                                                                                                      (1.16) 

Where 𝑐0 is given by 

𝑐0
2 =

𝛾𝑝0

𝜌0
                                                                                                                  (1.17) 
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𝑐0  is the speed at which acoustic disturbances travel in the medium. Note from 

(equation 1.14), that  

 𝑝 = 𝑐0
2𝜌                                                                                                                  (1.18) 

in all linear acoustic fields, so that the density also satisfies the wave equation ( as 𝑐0 

is a constant for a given medium), as does the  particle velocity. 

It also follows from the ideal gas equation, 𝑝𝑡𝑜𝑡 = 𝜌𝑡𝑜𝑡𝑅𝑇𝑎, where 𝑅 is the specific 

gas constant and 𝑇𝑎 is absolute temperature (in Kelvin), that 

𝑐0
2 = 𝛾𝑅𝑇𝑎                                                                                                               (1.19) 

(Equation 1.16) relates the way in which the acoustic pressure fluctuation behave with 

respect to space (as a function of the coordinate distance  𝑥) and with respect to time 

𝑡. (Frank and David 2015) 

1.1.4 Solutions of the one-dimensional wave equation 

A general form of solution to equation (1.16) was given by d’Alembert; 

𝑝(𝑥, 𝑡) = 𝑓(𝑡 − 𝑥 𝑐)⁄ + 𝑔(𝑡 + 𝑥 𝑐) ⁄                                                                      (1.20) 

Where 𝑓 𝑎𝑛𝑑 𝑔 are arbitrary functions. The fact that these are solutions which can be 

readily demonstrated by differentiating the functions 𝑓 and 𝑔. Thus for 𝑓: 

𝜕2

𝜕𝑡2
{𝑓(𝑡 − 𝑥 𝑐⁄ } = 𝑓′′(𝑡 − 𝑥 𝑐)⁄                                                                              (1.21) 

Where the dash indicates the derivative of the function, and  

𝜕2

𝜕𝑥2
{𝑓(𝑡 − 𝑥 𝑐)⁄ } =

1

𝑐2
𝑓′′(𝑡 − 𝑥 𝑐⁄ )                                                                        (1.22) 



10 
 

 
 

Which indeed satisfy ( equation 1.16). The same applies to 𝑔. The two functions also 

have a well-defined physical interpretation. The first function 𝑓(𝑡 − 𝑥 𝑐)⁄  describes 

pressure disturbance which is travelling in the positive 𝑥-direction. Conversely, the 

function 

 𝑔(𝑡 + 𝑥 𝑐) ⁄ describes a fluctuation which travels in the negative 𝑥-direction. 

The functions 𝑓  and 𝑔  are harmonic in time. Using complex notation for a time-

dependence 𝑒𝑖𝜔𝑡, the corresponding function 𝑓 is given by 

𝑓(𝑡 − 𝑥 𝑐⁄ ) = 𝑅𝑒{𝐴𝑒𝑖𝜔(𝑡−𝑥 𝑐⁄ )} = 𝑅𝑒{𝐴𝑒𝑖(𝜔𝑡−𝑘𝑥)}                                                (1.23) 

or, writing 𝐴 = 𝑎𝑒𝑖𝜑: 

𝑓(𝑡 − 𝑥 𝑐⁄ ) = acos (𝜔𝑡 − 𝑘𝑥 + 𝜑)                                                                        (1.24) 

The quantity 𝑘 = 𝜔 𝑐⁄  is known as the wavenumber, and can be seen to correspond to 

the phase change per unit distance, having units of radians per meter. It can be 

thought of as a spatial frequency. (Frank and David 2015). 

1.1.5 Derivation of Two-Dimensional Acoustic wave equation  

A two-dimensional acoustic wave equation can be found using Euler’s equation and 

the equation of continuity. ( Ahmad 2000). 

                          
𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2 ∇. 𝑢 = 0       Continuity                                                (1.25) 

                           
𝜕𝑢

𝜕𝑡
+
1

𝜌
∇𝑝 = 0         Euler                                                             (1.26)  

where 𝑢 is the particle velocity, 𝑝 is the acoustic pressure, 𝜌 = 𝜌(𝑥, 𝑧) is the density 

and 𝑐 = 𝑐(𝑥, 𝑧) is the velocity of the acoustic wave in the acoustic media. Substitution 
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of the divergence of the Euler’s equation and the time derivative of the equation of 

continuity yield, 

                               
𝜕2𝑝

𝜕𝑡2
+ 𝜌𝑐2 {−∇ [

1

𝜌
∇𝑝]} = 0                                                      (1.27) 

                                
𝜕2𝑝

𝜕𝑡2
− 𝜌𝑐2 {

𝜕

𝜕𝑥
(
1

𝜌

𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑧
(
1

𝜌

𝜕𝑝

𝜕𝑧
)} = 0                                    (1.28) 

which is then simplified as follows: 

                                
𝜕2𝑝

𝜕𝑡2
− 𝑐2 {

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑧2
} = 0                                                        (1.29) 

1.1.6 Two-Dimensional wave equation in Cylindrical coordinates 

To convert equation (1.29) from (𝑥, 𝑧) to (𝑟, 𝜃) coordinates, 

         𝑥 = 𝑟 cos 𝜃, 𝑧 = 𝑟  𝑎𝑛𝑑 𝑡 = 𝑡                                                                        (1.30) 

Every (𝑥, 𝑧, 𝑡) will map to a unique (𝑟, 𝜃, 𝑡). The Jacobian of the transformation is  

                  J =   
𝜕(𝑥.𝑧,𝑡)

𝜕(𝑟,𝜃,𝑡)
                                                                                           (1.31) 

                       =  

(

 
 

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝑡
𝜕𝑧

𝜕𝑟

𝜕𝑧

𝜕𝜃

𝜕𝑧

𝜕𝑡
𝜕𝑡

𝜕𝑟

𝜕𝑡

𝜕𝜃

𝜕𝑡

𝜕𝑡)

 
 

                                                                            (1.32) 

                       =  (
cos 𝜃 −𝑟 sin 𝜃 0
sin 𝜃 𝑟 cos 𝜃 0
0 0 1

)                                                                (1.33) 

We have   𝐽 = |𝐉|= 𝑟, so the transformation is singular and thus nonunique when 

𝑟 = 0. It is orientation-preserving for 𝑟 > 0,  and it is volume preserving only for 

𝑟 = 1; thus, in general it does not preserve volume. (Powers 2017). 
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The metric tensor G is  

                  G=J
T
.J,                                                                                                 (1.34) 

               =(
cos 𝜃 sin 𝜃 0
−𝑟 sin 𝜃 𝑟 cos 𝜃 0
0 0 1

)(
cos 𝜃 −𝑟 sin 𝜃 0
sin 𝜃 𝑟 cos 𝜃 0
0 0 1

)                                 (1.35) 

               =  (
1 0 0
0 𝑟2 0
0 0 1

)                                                                                        (1.36) 

Because G is diagonal, the new coordinates axes are also orthogonal. Now it can be 

shown that the gradient operator in the Cartesian system is related to that of the 

cylindrical system via  

                   ∇ =

(

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑧
𝜕

𝜕𝑡)

 
 
= (𝐉𝑇)−1  

(

 
 

𝜕

𝜕𝑟
𝜕

𝜕𝜃
𝜕

𝜕𝑡)

 
 

 ,                                                              (1.37) 

                                    = (

cos 𝜃 −
sin𝜃

𝑟
0

sin 𝜃
cos𝜃

𝑟
0

0 0 1

)

(

 
 

𝜕

𝜕𝑟
𝜕

𝜕𝜃
𝜕

𝜕𝑡)

 
 

 ,                                         (1.38) 

                                   = 

(

 
 
cos 𝜃

𝜕

𝜕𝑟
−
sin𝜃

𝑟

𝜕

𝜕𝜃

sin 𝜃
𝜕

𝜕𝑟
+
cos𝜃

𝑟

𝜕

𝜕𝜃
𝜕

𝜕𝑡 )

 
 

                                                      (1.39) 

Consider then the Lablacian operator,  ∇2= ∇𝑇 . ∇ , which is  
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= (cos 𝜃
𝜕

𝜕𝑟
−
sin𝜃

𝑟

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝑟
+
cos𝜃

𝑟

𝜕

𝜕𝜃

𝜕

𝜕𝑡
)

(

 
 
cos 𝜃

𝜕

𝜕𝑟
−
sin𝜃

𝑟

𝜕

𝜕𝜃

sin 𝜃
𝜕

𝜕𝑟
+
cos𝜃

𝑟

𝜕

𝜕𝜃
𝜕

𝜕𝑡 )

 
 

                 (1.40) 

Detailed expansion followed by extensive use of trigonometric identities reveals that 

equation (1.40) reduces to 

                                           ∇𝑇 . ∇ = ∇2 =  
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑟2
𝜕2

𝜕𝜃2
+

𝜕2

𝜕𝑡2
                       (1.41) 

1.1.7 Solutions of the wave equation in cylindrical coordinates 

In this section the solutions of the wave equation in cylindrical coordinates as given in 

equation (1.41) will be formulated. A standard technique often utilised to solve PDE 

of this type is the separation of variables. (Arfken and Weber (2001)). The solution of 

a PDE can be written in terms of a product of functions which only dependent on one 

variable. Applying this principle to equation (1.41) states that the solution can be 

written as a product of functions which are only dependent from one of the three 

spatial variables 𝜃, 𝑟, 𝑧 and the time 𝑡 as 

𝑝(𝜃, 𝑟, 𝑧, 𝑡) = 𝑝𝜃(𝜃), 𝑝𝑟(𝑟). 𝑝𝑧(𝑧), 𝑝𝑡(𝑡)                                                                (1.42) 

Introducing the solution equation (1.42) into the wave equation (1.41), results in three 

ordinary differential equations of second order for  𝑝𝜃(𝜃), 𝑝𝑟(𝑟). 𝑝𝑧(𝑧), and 𝑝𝑡(𝑡). 

The solution to the radial part 𝑝𝑟(𝑟)  is given by Bessel’s differential equation ( 

Williams (1999)). 

𝑑2𝑝(𝑟)

𝑑𝑟2
+ 

𝑑𝑝𝑟(𝑟)

𝑟𝑑𝑟
+ (𝑘𝑟

2 −
𝑣2

𝑟2
) 𝑝𝑟(𝑟) = 0                                                                  (1.43) 
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The solutions of Bessel’s differential equation are given by the Bessel functions of 

first, second and third kind. 

𝑝𝑟(𝑟) =  𝑅1𝐽𝑛(𝑘𝑟𝑟) + 𝑅2𝑌𝑛(𝑘𝑟𝑟)                                                                         (1.44)  

where  𝑅1, 𝑅2 are arbitrary constants. The Bessel functions of the first kind and non-

negative integer degree 𝑛 of 𝑟 denoted by 𝐽𝑛(. )  are solutions of Bessel’s differential 

equation that are finite at the origin  𝑟 = 0. They can be defined by its Taylor series 

expansion around 𝑟 = 0 as follows (Williams 1999) 

𝐽𝑛𝑟 =  ∑
(−1)𝑚

𝑚!Γ(𝑚+𝑛+1)
∞
𝑚=0 (

𝑟

2
)
2𝑚+𝑛

                                                                          (1.45) 

where Γ(. ) Is the gamma function, a generalisation of the factorial function to non-

integer values. Bessel function behaviour looks like oscillating sine or cosine 

functions that decay proportionally to 1 √𝑥⁄  . for integer order, the following 

relationship is valid    

 𝐽−𝑛(𝑥) = (−1)
𝑛𝐽𝑛(𝑥)  (williams1999)                            

1.1.8 Numerical Solution 

For simulation of time dependent acoustic, electromagnetic or elastic wave 

phenomena, the efficient and accurate numerical solution of the wave equation is of 

fundamental importance. Finite difference methods are commonly used for simulation 

of time dependent waves because of their simplicity on structured Cartesian meshes. 

However, in the presence of complex geometry or small geometric features that 

require locally refined meshes their usefulness is somewhat limited. In contrast, finite 

element methods (FEMs) easily handle locally refined unstructured meshes and their 

extension to high order is straightforward even in the presence of curved boundaries 
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or materials interfaces, this is according to Wang et al (2010). When a second order 

hyperbolic problem is discretized by the use of Galerkin which is a finite element 

method, the problem typically leads to a second order system of ordinary differential 

equations. 

The numerical solutions of wave propagation have numerous applications. One of 

particular interest is to simulate seismic surveys in oil and gas explorations. Various 

numerical methods have been developed to carry out this simulation. In this thesis an 

implementation of the discontinuous Galerkin finite element time domain method 

(DGTD) is applied to acoustic wave equation in cylindrical symmetry and MATLAB 

computer program to evaluate its accuracy and efficiency is used. 

1.1.9 Seismology in oil Industry 

In heterogeneous media, the speed and density of sound wave varies in one or more 

space coordinates. In cases where the variation occurs as discrete discontinuities in 

the medium properties, the derivation of the linear wave equation is not valid at 

discontinuity itself, and the problem therefore has to be formulated as a boundary 

value problem. For continuously varying media, the space dependency is directly 

included in the wave equation. This is according to Jensen et al (2011) 

The ocean environment in reality is a combination of the two, with the medium 

properties changing abruptly at the scabbed and at sub bottom interfaces between 

different geological strata, but with speed of sound varying more or less continuously 

in the water column. However, since the analytical approach is different in the two 

cases, we will describe the solution of the wave equation in discretely and 

continuously varying media separately. The numerical approaches, in general, have to 
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combine the treatment of these two types of medium heterogeneity. (Jensen et al 

2011) 

 

                                                           Figure 1.1 Seismic survey 

 

The figure above illustrates the heterogeneity of the sea to the sea bed and the 

movement of the sound wave from ship guns as the acoustic sound source. The sound 

wave hit the sea bed and reflects back depending on the nature of the sea bed.  The 

reflected sound wave, is received by a cable with sound sensors. 

The reflected sound wave help scientists map the ocean floor and geology beneath it. 

Surveyors release compressed air into the water to create short duration sound waves 

that reflect off subsurface rock layers and are received by sensors being towed behind 

the vessel. The collected data is analyzed by scientists and used  to create maps of 

geological structures that could contain energy resources beneath the ocean floor. The 

sound produced during seismic surveys is comparable in magnitude to many naturally 

occurring and other man-made ocean sound sources, including wind and wave action, 

rain, lightning strikes, marine life, and shipping. This is according to Symes (2003). 
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Survey operations are normally conducted at a speed of approximately 4.5 to 5 knots 

(~5.5 mph), with the sound source typically activated at 10-15 second intervals. As a 

result, the sound does not last long in any one location and is not at full volume 24 

hours a day. 

1.2 Statement of the Problem 

To accurately handle wave propagation on the surface of a cylindrical domain, 

discontinuous Galerkin time domain method which is a Finite Element method is 

used in this research to solve the 2-D acoustic wave equation in cylindrical 

coordinates ( 𝑟, 𝜃, 𝑡),  along the radial direction 𝑟 ∈ [1,2]  over radial angle 𝜃 ∈

[0𝑜 , 30𝑜].                                                                                                                                        

1.3 General   objective 

The goal of this study is to solve the acoustic wave problem using the Discontinuous 

Galerkin time domain method of approximation by finding a function which satisfies 

the given PDE’s and the boundary conditions and then compare with the exact 

solution obtained from Bessel function of the first kind. 

1.4 Objectives of the Study  

Objectives of the research include; 

1. Solve the 2-D acoustic wave problem in cylindrical coordinates using 

Discontinuous Galerkin time domain approach of approximation which is a 

finite element method. 

2.  Using the free surface and absorbing boundary conditions, analyse the 

solution of pressure values for the acoustic wave equation along the radial 

direction over radial angle on the nodal points in the domain. 



18 
 

 
 

3. Compare the exact result based on the Bessel function of the first kind and the 

numerical result of the acoustic wave propagation in terms of accuracy. 

1.5 Significance of the Study 

Acoustics is the science of sound, including its production, transmission and effects. It 

is distinguished from optics in that sound is a mechanical, rather than an 

electromagnetic, wave motion. The broad scope of acoustics is an important area of 

interest and study to a variety of reasons. First, there is the ubiquitous nature of 

mechanical radiation, generated by natural causes and human activity and then 

second, there is the existence of the sensation of hearing, of the human vocal ability, 

of communication via sound, along with the variety of psychological influences sound 

has on those who hear it. This is according to a study done by Pierce (2019). It is also 

a significant factor especially in underwater acoustics. A variety of applications, in 

basic research and in technology, exploit the fact that transmission of sound is 

affected by, and consequently gives information concerning, the medium through 

which it passes and intervening bodies and in homogeneities. (Pierce 2019). 

During oil and gas explorations either in land or sea, the first step is to conduct 

seismic surveys, which typically consist of sending into the ground sound waves 

generated by sources at the sea or ground surface such as air guns in marine surveys 

or dynamite in land acquisition and through sensors called geophones recording 

echoes of the sending waves, caused by the heterogeneity of the earth’s subsurface. 

The recorded time series of data called seismic traces or seismograms is then analyzed 

by seismologists and geoscientists and interpret the earth’s interior properties by 

imaging technologies based on the basic mathematical point of view that “waves 

transfer space-time resolved information from one place to another with (relatively) 

little loss. This is according to Symes  (2003). 
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The resulting numerical solution can be applied in the evaluation of the effects of the 

cavities on seismograms recorded in boreholes or in cylindrical shaped tunnels in oil 

and gas exploration either in land or sea. 
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CHAPTER TWO 

LITERATURE REVIEW 

This is a presentation of brief discussions of various works done in the line of the 

present study, their breakthroughs, challenges and limitations. 

2.1 Solution for acoustic wave equation 

The solution to scalar wave equation using Standard Finite difference methods have 

been implemented as part of CREWES Matlab toolbox by Youzwishen and Margrave 

(1999) and Margrave (2000). These implementations handle a variety of simple 

boundary conditions. 

A mathematical model of linear acoustic wave propagation in fluids has been 

presented by Mohamed et al (2011). The approach is based on an analytical solution 

to the homogenous wave equation for fluid medium. Normal mode analysis in a 

medium with 2-D spatially-variable acoustic properties for the propagation of acoustic 

pressure wave has been explained. This normal mode method analysis gives exact 

solutions without assumed restrictions on pressure and velocity. 

According to Atangana (2013), the solution of an acoustic wave equation with 

Variable-Order derivative loss operator has been presented. The use of fractional 

derivatives when modelling sound propagation, leads to models that better describe 

observations of attenuation and dispersion. The wave equation for viscous losses 

involving interger-order derivatives only leads to an attenuation which is proportional 

to the square of the frequency. The Crank-Nicholson scheme solves the generalised 

equation.  

In the journal; Operator upscaling for acoustic wave equation by Tetyana et al (2005), 

upscaling is the process of redefining the physical system’s parameters up to a coarser 
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grid, forming effective or equivalent parameters. Modelling of wave propagation in a 

heterogeneous medium requires input data that varies on many different spatial and 

temporal scales. Operator based upscaling captures the effect of the fine scales on a 

coarser domain without solving the full fine-scale problem. The method applied to the 

constant density, variable sound velocity acoustic wave equation, consists of solving 

small independent problems for approximate fine-scale information internal to each 

coarse block and using these sub-grid solutions to define an upscaled operator on the 

coarse grid. 

2.2 Galerkin Method 

Galerkin method was invented by a Russian Mathematician, Boris Grigoryerich 

Galerkin. Galerkin methods are a class of methods for converting continuous operator 

problem (such as a differential equation) to a discrete problem. In principle, it is 

equivalent of applying the method of variation of parameters to a function space with 

a finite set of basis functions. Galerkin methods developed in engineering have now 

been used in many diverse applications including meteorology, oceanology and many 

other scientific disciplines that require tracking various wave phenomena.  

Considerable research has been undertaken in recent times to solve hyperbolic 

problems to develop optimal methods with respect to local polynomial degree p. The 

resulting methods have hence been termed hp-finite element methods. 

The comparison between continuous piecewise polynomials and their discontinuous 

versions can be found in Houston et al (2002), where a least squares stabilization 

method is proposed for discontinuous Galerkin methods. 
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In the Galerkin approach, the problem is reformulated by requiring the equation 

residual to be orthogonal to each of the basic functions that are chosen. The basis 

functions satisfy the natural boundary conditions. 

2.3 Discontinuous Galerkin time domain approach  

Reed and Hill (1973) proposed the first Discontinuous Garlekin finite element method 

as an approach for solving the neutron transport equation and as a solution to 

overcome the stability limitations of conventional continuous finite element 

approximations to first order hyperbolic problem. After its introduction, the DG laid 

dormant for many years. However, in the past two decades, there has been renewed 

interest in the class of methods stimulated by computational convenience of DG due 

to the need to approximate advection-dominated diffusion problems without excessive 

numerical stabilization and the desire to handle nonlinear hyperbolic problems which 

are known to exhibit discontinuous solution even when the data is smooth. 

On the other hand, Erickson and Johnson (1991), published a series of papers 

analysing the DG method applied to parabolic problems where they focused on the 

heat equation by adopting the DG method in time and the standard Galerkin method 

space. 

Cockburn and Shu (1998), extended the DG method to solve first-order hyperbolic 

partial differential equations of conservation laws. The authors developed later the 

local discontinuous Galerkin method for convention-diffusion problems. 

Atkins and Shu (1998) and Hesthaven and Warburton (2007) propose efficient 

quadrature-free DG implementation strategies in the case of piecewise constant media 

on triangular meshes. Aside from reduction in code complexity and overhead 

computational cost, these quadrature-free implementations result in lower memory 
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costs associated with storing DG operators relative to their quadrature based 

counterparts. On the other hand, quadrature based implementations have the upper 

hand in terms of accuracy since medium parameters as variable functions in space 

within mesh elements are better representatives than piecewise constant coefficients 

when computing element wise integrals in the definition of DG operators such as 

mass and stiffness matrices. For example, Ober et al. (2010) employ quadrature based 

DG implementations in the context of acoustic seismic inversion. A comparison 

between the quadrature-free and quadrature based DG implementations for elastic 

wave propagation in variable media is provided. Their results show that the numerical 

solutions for piecewise constant and variable models do not converge to the same 

limit as the polynomial order is increased. However, insight into the performance and 

efficiency of quadrature-free and quadrature based implementations is not provided. 

Arnord et al (2001), provide a framework for analysis of wide class of discontinuous 

methods for second order elliptic problems. This analysis permits scientists to have a 

detailed recapitulation and comparison of discontinuous Galerkin methods proposed 

over the last few decades for the numerical treatment of elliptic problems. 

The DG method has been evaluated in several studies including the modelling of 

shallow water equations (Eskilsson and Shervin 2005), compressible and 

incompressible Navier-stokes equations (Shahbazi et al 2007). The active 

development of the DG method in the last few years proves their efficiency in a wide 

range of applications. They have been used to solve complex problems in areas of 

compressible and incompressible flows, transport equations and viscoelastic fluid 

flow, turbo machinery flows, magneto-hydrodynamics including Maxwell`s equation, 

semi-conductor device simulation, transport of contaminant in porous media, second 

order elliptic problem and elasticity. 
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Grote et al (2006), presented the symmetric interior penalty discontinuous Galerkin 

(SIPDG) method for the numerical discretization of second order scalar wave 

equation. They used the SIPDG finite element method in space while leaving the time 

dependence continuous. 

Celiker and Cockburn (2007) studied the discontinuous Galerkin, Petro-Galerkin and 

hybridized mixed methods for convection-diffusion problems in one space. 

Kaser  and Dumbser (2006) presents a new numerical approach to solve the elastic 

wave equation in heterogeneous media in the presence of externally given source 

terms with arbitrary high-order accuracy in space and time on unstructured triangular 

meshes. A discontinuous Galerkin method is combined with the ideas of the ADER 

time integration approach using arbitrary high-order derivatives. The time integration 

is performed via the so-called Cauchy-kovalewski procedure using repeatedly 

governing partial differential equation itself. 

Klockner et al (2009) extended the DG method to run on graphics processing units to 

approximate the time-dependent Maxwell’s equation in realistic 3D problems. The 

results predict that computation time is largely decreased when the DG method is 

computed on graphics processing unit. 

Wang et al (2010), compared DG and FD methods for time domain acoustics, results 

reveal the efficiency of the DG method over staggered FD methods for the case of 

complex piecewise constant media. Interface errors over the discontinuity reduce the 

convergence rate of FD methods to first order, while a DG scheme with an 

appropriately aligned mesh results in a sub-optimal second order method making DG 

a more efficient method for complicated models. 
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Another interesting study was conducted by Simonaho et al (2012), where DG 

simulation of acoustic wave propagation were compared to real data. The author 

simulated an acquired 3D experimental data for pulse propagation and scattering from 

a cylinder in air. Results show that simulated data matches measurement time-series 

well up to 4.5 m/s for the pulse propagation study. Moreover, amplitude spectrum of 

the simulated data closely resembles that of real data for frequencies less than 2 kHz. 

For the scattering cylinder case, simulated data contained all of the representative 

qualitative characteristics present in the real data, which is interference patterns from 

reflections and diffractions due to the cylinder, for 2D spatial slices at given time-

shots. A lot of the work on DG applied to wave propagation cited above, assumes that 

the medium parameters are piecewise constant for implementation purposes. 

Zhebel et al (2013) perform a study on the parallel scalability of FD and finite 

element method, including mass lumped finite elements and DG, for 3D acoustic 

wave propagation in piecewise constant media with a dipping interface on an Intel 

Sandy Bridge dual 8-core machine and Intel's 61-core Xeon Phi. Overall the DG 

method demonstrated larger speed up on Sandy Bridge as the number of cores was 

increased and the problem size is kept constant, partly due to the fact that DG 

involves more net FLOPs (floating point operations) relative to other methods. 

Interestingly enough, for Intel's Xeon Phi, FD and DG methods showed similar strong 

scalability performance, for an optimal choice of FD domain subdivisions. Lastly, 

convergence results by Zhebel et al (2013) demonstrate again the superior accuracy of 

finite element type methods with mesh alignment to that of FD methods. 

 The propagation of small perturbations in complex geometries can involve 

hydrodynamic-acoustic interactions, coupling acoustic waves and vertical modes. 

Renzo (2016), proposed a propagation model, based on the linearized Navier-stokes 



26 
 

 
 

equations. It includes the mechanism responsible for generation of vorticity associated 

with the hydrodynamic modes. The linearized Navier-stokes equations are discretised 

in space using a discontinuous Galerkin formulation for unstructured grids.  

 Wang (2017) performed a study on Finite Difference and Discontinous Galerkin 

methods for wave equations. Wave propagation problems can be modelled by partial 

differential equations. Wave propagation in fluids and in solids is modelled by the 

acoustic wave equation and the elastic wave equation respectively. In real world 

applications, wave often propagates in heterogeneous media with complex 

geometries, which makes it impossible to derive exact solutions to the governing 

equations. An efficient numerical method produces accurate approximation at low 

computational cost. The finite difference method is conceptually simple and easy, but 

has difficulties in handling complex geometries of the computational domain 

according to the author.  However, discontinuous galerkin method is flexible with 

complex geometries, making it suitable for multiphysics problems. An energy based 

discontinuous Galerkin method is used to solve a coupled acoustic-elastic problem. 

From the review of the literature on previous studies, no study has been done to solve 

a 2-D wave equation particularly on cylindrical coordinates using discontinuous 

Galerkin time domain method which belongs to Finite Element method yet the 

method can be adopted to solve problems of complex geometry unlike other 

numerical methods. Hence this study is meant to fill the gap. 
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CHAPTER THREE 

METHODOLOGY 

In this chapter, various aspects of the research methodology are presented. A review 

on the numerical methods which include, Finite difference method, Finite volume 

method, Boundary element method and Finite element method. Galerkin method is a 

form of Finite element method, is used to find the approximate form of the governing 

equation expressed in cylindrical coordinates with appropriate initial and boundary 

conditions. The discretization of the appropriate grid is also given in this chapter. 

3.1 Review on numerical methods 

To find closed-form analytical solutions to canonical PDEs, the number of methods 

available is limited. The available methods include separation of variables, 

superposition, product solution methods, Fourier transforms, Laplace transforms and 

perturbation methods, which are limited by constraints such as regular geometry, 

linearity of the equation and constant coefficients. When these constraints are 

imposed of they severely curtail the range of applicability of analytical techniques 

for solving PDES, rendering them almost irrelevant for problems of practical 

interest. This is according to Sandip (2016). In realisation of this fact, numerous 

numerical methods have been proposed to solve different types of partial differential 

equations (PDEs) that describe the physical dynamics of the world. Three notable 

methods are Finite Difference Methods (FDMs), Finite Volume Methods (FVMs), 

Boundary element method (BEMs) and Finite Element Methods (FEMs). Two 

common FEMs are Continuous Galerkin (CG) and Discontinuous Galerkin (DG), 

each of which comprises an element-based approach to solving a set of equations. 

The main focus of this thesis is to explore DG method for approximating a 2-D wave 

equation with unique boundary conditions. 
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3.1.1. Finite Difference Method 

The Finite difference method is based on the calculus of finite differences. According 

to Sandip (2016), in Finite difference method, the governing PDE is satisfied at a set 

of prescribed interconnected points within the computational domain, basically known 

as nodes, making the method relatively straightforward. The boundary conditions in 

turn are satisfied at a set of prescribed nodes located on the boundaries of the 

computational domain. The framework of interconnected nodes is referred to as grids 

or mesh. Each derivative in the PDE is approximated using a difference 

approximation that is typically derived using Taylor series expansions.  

With the FD method, the discretization of general initial-boundary value problem is 

intuitively simple, which makes the approach very popular. The huge disadvantage of 

the FD method, however, is that the approach is highly ill-suited to deal with complex 

geometries of the computational domain. Despite the disadvantages of the FD 

method, it is still heavily investigated, especially in the field of therapeutic ultrasound 

and propagation of electromagnetic waves. Timo (2010)) 

 

3.1.2. Finite Volume Method 

The finite volume method derives its name from the fact that in this method the 

governing PDE is satisfied over finite-sized control volumes, rather than at points. In 

this method, the first step is to split the computational domain into a set of control 

volumes known as cells. In general, these cells may be of arbitrary shape and size, 

although, traditionally, the cells are convex polygons (in 2D) or polyhedrons (in 3D), 

that is, they are bounded by straight edges (in 2D) or planar surfaces (in 3D). As a 

result, if the bounding surface is curved, it is approximated by straight edges or planar 

faces. These bounding discrete surfaces are known as cell faces or simply, faces. The 
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vertices of the cells, on the other hand, are called nodes, and are, in fact, the same 

nodes that were used in the finite difference method. All information is stored at the 

geometric centroids of the cells, referred to as cell centres. The derivation of the finite 

volume equations commences by integrating the governing PDE over the cells 

constituting the computational domain. (Sandip 2016)  

3.1.3. Boundary Element Method 

BEM is a method by which the external surface of the domain is divided or 

discretised into series of elements over which the function under consideration can 

vary in different ways, in much the same way as finite elements. According to Sandip 

(2016), the boundary element method (BEM) is a derivative of the finite element 

method. Its attractive feature is that it does not require a volumetric mesh, but only a 

surface mesh. This is particularly convenient for 2D geometries, wherein the only 

geometric input required is a set of coordinates of points. This method is particularly 

suited to problems for which the interior solution is not of practical interest.  For 

PDEs with constant coefficients or in which the variation of the coefficients obey a 

certain format, boundary element method is only used. This is because it is only 

applicable to problems for which Green’s functions can be computed easily. 

Nonlinear PDEs, PDEs with strong in homogeneities, and 3D problems are generally 

outside the realm of pure BEM. For BEM to be applied in such scenarios, usually it 

requires a volumetric mesh and combination of BEM with a volume discretization 

method, which undermines its advantage of being an efficient method. Due to these 

limitations BEM has found limited use except for some specific problems in 

mechanics, heat conduction and electrostatics.  This is according to Sandip (2016). 
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3.1.4. The Finite Element Method 

Finite element method is a numerical technique that gives approximate solutions to 

differential equations that model problems arising in physics and engineering. As with 

the more commonly used finite difference schemes, the finite element method reduces 

problems defined in geometrical space (or domain), to finding a solution in a finite 

number of points by subdividing the domain into smaller regions (a mesh). In finite 

elements, each sub region or “element” is unique and need not be orthogonal to the 

others. For example, triangles or quadrilaterals can be used in two dimensions, and 

tetrahedral or hexahedral in three dimensions. Over each finite element, the unknown 

variables like temperature, velocity and others are approximated using known 

functions; these functions are usually polynomials that can be linear or higher-order 

expansions based on the geometrical locations of a few points (nodes) used to define 

the finite element shape. In contrast to finite difference procedures (conventional 

finite differences, as opposed to the finite volume method, which is integrated), the 

governing equations in the finite element method are integrated over each finite 

element, and the contributions summed (“assembled”) over the entire problem 

domain. As a consequence of this procedure, a set of finite linear equations is 

obtained in terms of the values of the unknown parameters at the elements nodes. 

Solutions of these equations are achieved using linear algebra techniques. (Darrell and 

Juan 2017) 

 Finite element method has essentially become the de facto standard for numerical 

approximation of the partial differential equations that define structural engineering, 

and presently it is widely accepted for a multitude of other engineering and scientific 

problems. Most of the commercial computer codes today are finite element based—

even the finite volume computational fluid dynamics codes sold commercially employ 
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mesh generators based on finite element unstructured mesh generation. This is 

according to the study by Darrell and Juan (2017). 

In this thesis the FE method was used to approximate the time-dependent acoustic 

wave equation in 2D problems. The underlying principle of the finite element method 

resides in the method of weighted residuals. The two most commonly used procedures 

are the Rayleigh–Ritz and Galerkin methods. Rayleigh–Ritz method is based on 

calculus of variations; however, the method cannot be used on some more 

complicated equations. The Galerkin method is simple to use and is guaranteed to 

yield a compatible approximation to the governing differential equation even when 

the Rayleigh–Ritz method cannot be applied. In both of the methods, the dependent 

variable is expressed by means of a finite series approximation in which the “shape” 

of the solution is assumed known, and it depends on a finite number of parameters to 

be determined. Replaced in the governing differential equation, the Galerkin 

approximation generates a residual function, which is multiplied by weighting 

functions and is required to be orthogonal to the weighting functions in the integrated 

sense. (Darrell and Juan 2017) 

3.1.4.1 Galerkin Method 

Galerkin Methods belong to a class of solution methods for PDE’s where the solution 

residue is minimised giving rise to well-known weak formulation of problems. In this 

approach, according to Kythe et al (2003) a basis function of the form 

 

                        𝑢(𝑥, 𝑡) = 𝜙0(𝑥) + ∑ 𝑐𝑗(𝑡)𝜙𝑗(𝑥)
𝑁
𝑗=1                                                                 

(3.1) 

is chosen where, 
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           𝜙𝑗(𝑥)  is the finite number of basis functions. 

           𝑐𝑗 is unknown coefficients. 

For a given differential equation of the form 𝐿[𝑢] = 𝑓,  defined on a region Ω  where 

𝐿  is a linear spatial differential operator and  𝑓  is a given function, subject to 

boundary conditions 𝑢 = 𝑔(𝑠) on Γ1, and                                                                                                                                                                            

 

                            
 𝜕𝑢

𝜕𝑡
+ 𝑘(𝑠)𝑢 = ℎ(𝑠) on Γ2                                                             (3.2) 

 

Where Γ = Γ1 ∪ Γ2 is the boundary of the region Ω. A space of functions 𝑉 is choosen 

in which element 𝑢  and 𝑣  will reside. The function 𝑢  is written as a linear 

combination of the basis functions of the space, 

                                                 𝑢 = ∑ 𝑎𝑖𝜙𝑖𝑖  ,                                                            (3.3)   

and 𝑣  is choosen from amongst the basis functions. The measure of the residual 

(error) associated with an approximate solution is defined as 𝑅[𝑢] = 𝐿[𝑢] − 𝑓 should 

then theoretically be zero. That is, 

                                     ∫
Ω
𝑅[𝑢]𝑣 𝑑𝑥 = 0,   for all 𝑣 ∈ 𝐶0

1(Ω)                               

or,                               

                                       ∑ 𝑎𝑖∫Ω𝐿[𝜙𝑖]𝜙𝑗𝑑𝑥 = ∫Ω𝑓𝜙𝑗  𝑑𝑥,𝑖           for all 𝑗.               (3.4) 

 

The Galerkin Method requires that the residual be orthogonal with respect to the basis 

functions 𝜙𝑖 i.e. 

                                                       〈𝑅[𝑢], 𝜙𝑖〉 = 0                                                   (3.5) 



33 
 

 
 

The infinite sums according to Matt et al (2012), must be truncated at some large 𝑁, 

the intergrals evaluated and re-written as a large 𝑁-dimensional system of equations 

to be solved for the unknowns 𝑎𝑖′𝑠, 

                                                               𝑲a=f .                                                        (3.6) 

According to Prem et al (2003), the formulation can be generalised to a 2-D case 

which becomes; 

                                   ∬ {𝐿[𝑢] − 𝑓}𝜙𝑖Ω
𝑑𝑥𝑑𝑦 = 0       𝑖 = 1, ……… . , 𝑁               (3.7)     

                                          or 

                                    ∑ 𝑎𝑖∬ 𝜙𝑖Ω
𝐿𝜙𝑗𝑑𝑥𝑑𝑦 = ∬ 𝑓𝜙𝑖𝑑𝑥𝑑𝑦Ω

𝑁
𝑗=1                              (3.8) 

 

which in the matrix form is written as 

[𝐴]{𝑐} = {𝑏}, 

Where, 𝐴𝑖𝑗 = ∬ 𝜙𝑖𝐿𝜙𝑗𝑑𝑥𝑑𝑦Ω
 , 𝑏𝑖 = ∬ 𝑓𝜙𝑖Ω

𝑑𝑥𝑑𝑦 also  [𝑐] = {
𝑐𝑖
𝑐𝑗
} 

According to Benjamin (2015), the two main categories of Galerkin methods are 

Continuous Galerkin (CG) and Discontinuous Galerkin (DG). Both methods use an 

elemental approach to solving integral form, but the difference between DG and CG is 

mainly whether the continuity between the elements is enforced in a more general 

form i.e weak variational formulation or in the corresponding strong formulation.  

A computational domain is build when using CG and then subdivided into various-

sized elements, similar to FVM. Within each element however, we use specially 

selected degrees of freedom. For example, in the one-dimensional sense, the degrees 

of freedom could be a grid of points across the cell.(Benjamin 2015) 

Generally, DG is similar to CG in requiring numerical interpolation and integration as 

well as building the same computational domain; one of the main differences however 
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comes from the elemental boundaries. The boundaries are required  to be continuous 

in CG, while in DG they are discontinuous and the continuity is enforced weakly. 

According to Benjamin (2015),  the domain in DG is still represented by a collection 

of elements; the union of these elements is accomplished through a numerical flux 

similar to FVMs. Similar to FEMs, Discontinuous Galerkin still uses the same space 

of basis and test functions, and each element boundary has its own set of degrees of 

freedom. 

The solution therefore is typically represented by a set of piecewise polynomials that 

are discontinuous at the element boundaries. The numerical flux, resolves this 

discontinuity to assist in finding the final solution. Furthermore, the mass matrix is 

constructed locally instead of globally and this allows it to be inverted at a reduced 

computational cost, yielding a semi discrete scheme that is explicit. Discontinuous 

Galerkin is the method used in this research. (Benjamin 2015) 

 

3.2 Discontinuous Galerkin Method for Acoustic wave equation 

The discontinuous Galerkin (DG) method was originally introduced by Reed and Hill 

(1973). The idea of the DG method is to decompose the original problem into a set of 

sub problems that are connected using an appropriate transmission condition (known 

as the numerical flux). For geometric partitioning of the computational domain, the 

DG method uses standard disjoint finite element meshes. In the DG method, each 

element of the computational mesh determines a single sub problem.  

By setting the material properties for each sub problem to be constant, the solution is 

calculated separately for each element of the computational mesh. The solution for the 

whole computational domain is achieved by summing over all the elements of the 

mesh. 
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3.2.1. The governing equation  

From equation (1.41), the acoustic wave equation in 2-D cylindrical coordinates is 

given by, 

                           
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑝

𝜕𝑟
) +

1

𝑟2
𝜕2𝑝

𝜕𝜃2
=

1

𝑐2
𝜕2𝑝

𝜕𝑡2
     in Ω                                              (3.9) 

where Ω is the domain, 𝑟 is the radius, 𝜃 is the radial angle, 𝑝 is the pressure field, 𝑐 is 

the velocity of the acoustic wave in the acoustic media and 𝑡 denotes time. (David and 

Dan 1990). . The two dimensional domain Ω is bounded by the boundary 𝜕Ω. The 

acoustic wave equation models sound propagation in the sea in the presence of 

cylindrical symmetry.                                                                                                                                                                                                                                                                                                                     

For the numerical algorithm, we recast (3.9) as a system of three coupled first order 

equations given by 

                        
𝜕

𝜕𝑡
(

𝑝

𝑟
𝜕𝑝

𝜕𝑟
𝜕𝑝

𝜕𝜃

) = 𝐴(

𝑝

𝑟
𝜕𝑝

𝜕𝑟
𝜕𝑝

𝜕𝑟

)+ 𝐵(

𝑝

𝑟
𝜕𝑝

𝜕𝑟
𝜕𝑝

𝜕𝑟

)                                                (3.10) 

Where 𝐴 = (
0

𝑐2

𝑟
0

𝑟 0 0
0 0 0

)  and 𝐵 = (
0 0

𝑐2

𝑟2

0 0 0
1 0 0

) 

The numerical algorithm solves equation (3.9) with the free surface boundary 

condition at 𝑟 = 𝑎 and with the absorbing boundary condition at the edges of the grid 

at 𝑟 = 𝑏. The variables are discretised on a spatial grid which is non-uniform in the 

𝑟 direction and uniform in the 𝜃 variable.  
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Figure 3.1 Configuration of boundary conditions 

 

A cylindrical bar of radius 𝑟 = 𝑏 is sliced through to show geometry of six equally-

spaced symmetrical planes of angle 𝜃 = 30𝑜 . A unit cell will be discretised to 

triangular elements by subdividing the domain into triangular shaped units. 

r = a 
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Figure 3.2 Slice through Cylindrical bar showing geometry, six equally-spaced      

planes of symmetry and unit cell (shaded) 

 

3.2.2. Initial Condition  

The initial condition 𝑟 = 0 models the acoustic source at 𝑡 = 0 and at 𝜃 = 0𝑜 

The expression 𝑝(𝑟, 𝜃, 𝑡) denotes the wave disturbance at angle 𝜃 over radius 𝑟. 

 The exact solution for this problem, using Bessel function of the first kind is; 

                 𝑝(𝑟, 𝜃, 𝑡) = 100 𝐽0(𝑟) sin(
𝜋𝑡

4
) sin 3𝜃                                                    (3.11)  

              Hence at 𝑡 = 0. the initial condition for pressure becomes 𝑝(𝑟, 𝜃, 0) = 0 

  

3.2.3. Boundary Conditions 

There are two types of boundary conditions exclusively used in the seismic 

simulation, the free surface boundary condition and the absorbing boundary condition. 

The numerical simulation is carried out on a bounded domain whose boundaries are 

either the physical sea surface, landform or the fields far away from the domain of 

interest. 
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The absorbing boundary condition does not mimic any physical scenarios, but is used 

to truncate the open domain problem into a finite one so that the numerical method 

can handle.  To solve equation (3.9) the free surface boundary condition at 𝑟 = 𝑎 (see 

figure 3.1) and the absorbing boundary condition at the edges of the grid at 𝑟 = 𝑏 are 

used. The variables are discretised on a spatial grid which is non-uniform in the 

𝑟 direction and uniform in the 𝜃 variable. 

With changing radius at 𝜃 = 0,  using Bessel function of the first kind (equation 

(3.11)), we obtain pressure values at the right hand boundary of the domain at 𝑡 = 1 

as given below;  

𝑝(1,0,1) = 0 ;                                 𝑟 = 1 

𝑝(1.5,0,1) = 0 ;                               𝑟 = 1.5 

𝑝(2,0,1) = 0 ;                                   𝑟 = 2 

With changing radius at =
𝜋

6
 , using Bessel function of the first kind (equation (3.11)), 

we obtain pressure values at the left hand boundary of the domain at 𝑡 = 1 as given 

below; 

𝑝 (1,
𝜋

6
, 1) = 54.11;                        𝑟 = 1 

𝑝 (1.5,
𝜋

6
, 1) = 36.19 ;                   𝑟 = 1.5 

𝑝 (2,
𝜋

6
, 1) = 15.83 ;                   𝑟 = 2 
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3.2.4. The appropriate grid 

The figure below shows finite mesh showing discretization of the unit cell for the 

cylindrical  bar using triangular elements   

      

                                         

     Figure  3.3 Finite element mesh showing discretization of the unit cell. 

                   

The unit bar above is 𝑟 = 2 and  𝜃 =
𝜋

6
 .  The free surface boundary is at 𝑟 = 1 and 

the absorbing boundary is at the edges of the grid at 𝑟 = 2. The domain is discretised 

into 8   triangular elements as shown in the figure below 
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                          Figure 3.4– Triangulation of a surface Domain  

 

  

3.2.5. Formulation of DG method for 2D acoustic wave equation 

The exact solution to equation (3.9) in cylindrical coordinates using Bessel function 𝐽0 

is given as equation (3.11),  𝑢 = (𝑟, 𝜃, 𝑡) is the numerical approximation to 𝑝(𝑟, 𝜃, 𝑡). 

According to Jain (1986), to formulate and solve equation (3.9) using Discontinuous 

Galerkin approach, first we find the functional that corresponds to the partial 

differential equation (3.9) in (𝑥, 𝑧, 𝑡), then the result is converted to suit the cylindrical 

coordinates (𝑟, 𝜃, 𝑡). 

 

                                  𝐽[𝑝] =
1

2
∬ [(𝑐2 (

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑧2
)) −

𝜕2𝑝

𝜕𝑡2
]

Ω
𝑑𝑥𝑑𝑧 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚  

                           =
1

2
∬ [𝑐2 ((

𝜕𝑝

𝜕𝑥
)
2

+ (
𝜕𝑝

𝜕𝑧
)
2

) − (
𝜕𝑝

𝜕𝑡
)
2

] 𝑑𝑥𝑑𝑧 = 0
Ω

          (3.12) 
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Where the boundary conditions are to be satisfied. We divide the domain Ω into finite 

elements as shown in the figure 3.3. The approximate solution 𝑢(𝑥, 𝑧, 𝑡) for the whole 

domain Ω in Cartesian coordinates may be written as 

 

                            𝑢(𝑥, 𝑧, 𝑡) = ∑ 𝑁(𝑒)𝜙(𝑒) = ∑ 𝑁𝑖𝜙𝑖 = 𝑁ϕ
𝑚
𝑖=1

𝑚
𝑒=1              (3.13)                                            

where 𝑚 is the number of elements with 𝑁 nodes in Ω,𝑁 = [𝑁1, 𝑁2…… . . 𝑁𝑚] 

, 𝜙 = [𝜙1, 𝜙2, …… . . 𝜙𝑚]
𝑇 the basis functions 𝑁𝑖 satisfy the conditions 

 

                       𝑁𝑖(𝑥, 𝑧) = |0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑁𝑖
(𝑒)(𝑥,𝑧),   𝑖𝑓 (𝑥,𝑧)∈(𝑒) 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑖 𝑎𝑠 𝑎𝑛 𝑎𝑝𝑒𝑥

               (3.14) 

 

            and 𝜙(𝑒) are the nodal values associated with the element (𝑒). 

The Galerkin method for the differential equation (3.12) may be written as  

 ∬ 𝑁𝑖Ω(e)
[𝑐2 (

𝜕

𝜕𝑥
(
𝜕𝑝(𝑒)

𝜕𝑥
) +

𝜕

𝜕𝑧
(
𝜕𝑝(𝑒)

𝜕𝑧
)) −

𝜕

𝜕𝑡
(
𝜕𝑝(𝑒)

𝜕𝑡
)] 𝑑𝑥𝑑𝑧 = 0                               (3.15)  

           𝑖 = 1,2………𝑞                                                                     

Where 𝑁𝑖 are the shape functions defined piecewise element by element and 𝑞                

is the number of unknown nodal quantities assigned to the element (𝑒).  

Before substituting for 𝑝(𝑒)  we express the first and second terms in the 

integrand in the form 

∬ 𝑁𝑖Ω(e)
[𝑐2 (

𝜕

𝜕𝑥
(
𝜕𝑝(𝑒)

𝜕𝑥
))] 𝑑𝑥𝑑𝑧 =

∫ 𝑁𝑖𝑐
2 𝜕𝑝

(𝑒)

𝜕𝑥𝜕Ω(e)
𝑛𝑥𝑑𝑠 +∬ 𝑐2

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑝(𝑒)

𝜕𝑥
𝑑𝑥𝑑𝑧

Ω(𝑒)
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∬𝑁𝑖

Ω(e)

[𝑐2(
𝜕

𝜕𝑧
(
𝜕𝑝(𝑒)

𝜕𝑧
))] 𝑑𝑥𝑑𝑧

= ∫ 𝑁𝑖𝑐
2
𝜕𝑝(𝑒)

𝜕𝑧
𝜕Ω(e)

𝑛𝑧𝑑𝑠 + ∬𝑐2
𝜕𝑁𝑖
𝜕𝑧

𝜕𝑝(𝑒)

𝜕𝑧
𝑑𝑥𝑑𝑧

Ω(𝑒)

 

 

 where 𝜕Ω(e) is the boundary of the element (𝑒), 𝑠 is the coordinate on the boundary, 

𝑛𝑥 and 𝑛𝑧 are the 𝑥 and 𝑧 components of outward normal of the boundary.Replacing 

the above expressions in equation (3.15) we get  

    ∬ [𝑐2 (
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑢(𝑒)

𝜕𝑥
+
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑢(𝑒)

𝜕𝑧
)]

Ω(e)
𝑑𝑥𝑑𝑧 + ∫ 𝑁𝑖𝑐

2 𝜕𝑢
(𝑒)

𝜕𝑛
𝑑𝑠 = 0

𝜕Ω(𝑒)
          (3.16) 

 where 𝑛 is the unit outward normal. 

This method can be regarded as analysing conditions at a particular instant of time, 

which is treating the derivatives with respect to the time variable as a constant in the 

formulation, since there is no integration with respect to time in equation (3.15). Jain 

(1986)) 

The time derivative 
𝜕𝑝

𝜕𝑡
 is treated as a constant, the resulting differential equation 

contain time derivatives of the nodal values of 𝑝. Thus we obtain a system of linear 

ordinary differential equations in the 𝑝𝑖. The value of 𝑝 within the element (𝑒) is as 

shown in the figure below. 
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                                                Figure 3.5; Triangular element 

 

which is given by;  𝑝(𝑒) = 𝑁𝑖𝑝𝑖 + 𝑁𝑗𝑝𝑗 + 𝑁𝑘𝑝𝑘 

                          = [𝑁𝑖𝑁𝑗𝑁𝑘] [

𝑝𝑖
𝑝𝑗
𝑝𝑘
] = 𝑁(𝑒)𝜙(𝑒)                                            (3.17) 

So we can use 

                            
𝜕𝑝(𝑒)

𝜕𝑡
= 𝑁𝑖

𝑑𝑝𝑖

𝑑𝑡
+ 𝑁𝑗

𝑑𝑝𝑗

𝑑𝑡
+ 𝑁𝑘

𝑑𝑝𝑘

𝑑𝑡
                                     (3.18) 

in the approximate minimisation of equation (3.15) treating 
𝜕𝑢(𝑒)

𝜕𝑡
 as a constant and 

using (3.17) and (3.18), we now substitute (3.12) into (3.16) and write the element 

equation as 

∬ [𝑐2 (
𝜕𝑁(𝑒)𝑇

𝜕𝑥

𝜕𝑁(𝑒)

𝜕𝑥
+
𝜕𝑁(𝑒)𝑇

𝜕𝑧

𝜕𝑁(𝑒)

𝜕𝑧
)𝜙(𝑒)] 𝑑𝑥𝑑𝑧 + ∫ [𝑁(𝑒)𝑇𝑐2

𝜕𝑁(𝑒)𝑇

𝜕𝑛
𝜙(𝑒)] 𝑑𝑠 −

∂Ω(e)Ω(e)

∬ [𝑁(𝑒)𝑇𝑁(𝑒)
𝑑𝜙(𝑒)

𝑑𝑡
] 𝑑𝑥𝑑𝑧 = 0

Ω(𝑒)
                                                                           (3.19) 

which may be written as;        

         𝐴(𝑒)𝜙(𝑒) + ∫ [𝑁(𝑒)𝑇𝑐2
𝜕𝑁(𝑒)

𝜕𝑛
𝜙(𝑒)] 𝑑𝑠 − 𝑏(𝑒)𝜙(𝑒) = 0

∂Ω(𝑒)
                            (3.20) 
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        The term ∫ [𝑁(𝑒)𝑇𝑐2
𝜕𝑁(𝑒)

𝜕𝑛
𝜙(𝑒)] 𝑑𝑠

𝜕Ω(𝑒)
 contributes to the vector 𝑏(𝑒) when the 

derivative boundary conditions are associated with the differential equation (3.9) 

otherwise it is neglected. 

Thus the element equation becomes; 

                                𝐴(𝑒)𝜙(𝑒) − 𝑏(𝑒)𝜙(𝑒) = 0                                                         (3.21) 

    

Where; {𝐴(𝑒) = ∬ [𝑐2 (
𝜕𝑁(𝑒)𝑇

𝜕𝑥

𝜕𝑁(𝑒0

𝜕𝑥
+
𝜕𝑁(𝑒)𝑇

𝜕𝑧

𝜕𝑁(𝑒)

𝜕𝑧
)]

Ω(e)
𝑑𝑥𝑑𝑧,   𝑏(𝑒) =

∬ [𝑁(𝑒)𝑇𝑁(𝑒)
𝑑𝜙(𝑒)

𝑑𝑡
] 𝑑𝑥𝑑𝑧

Ω(𝑒)
  𝑎𝑛𝑑 𝜙(𝑒) = [𝑝𝑖, 𝑝𝑗 , 𝑝𝑘]

𝑇
}                                       (3.22)            

We then consider a three node triangular element (𝑒) with nodes 𝑖, 𝑗, 𝑘 as shown in 

Figure 3.5 

Although many kinds of elements can be used, our treatment will consider triangular 

elements. The elements must span the entire region and approximate the boundary 

relatively closely. Every node (the vertices of our triangular elements) and every side 

of the triangles must be common with adjacent elements, except for sides on the 

boundaries. 

The linear piecewise approximate solution over the element (𝑒) may be written as 

𝑝(𝑒) = 𝑁𝑖𝑝𝑖 + 𝑁𝑗𝑝𝑗 + 𝑁𝑘𝑝𝑘 = 𝑁
(𝑒)𝜙(𝑒)                                                                (3.23)  

  Where  𝑁(𝑒) = [𝑁𝑖, 𝑁𝑗 , 𝑁𝑘],           𝜙
(𝑒) = [𝑝𝑖, 𝑝𝑗, 𝑝𝑘]

𝑇
 

𝑁𝑖 =
1

2Δ(𝑒)
(𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑧) 
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𝑁𝑗 =
1

2Δ(𝑒)
(𝑎𝑗 + 𝑏𝑗𝑥 + 𝑐𝑗𝑧) 

𝑁𝑘 =
1

2Δ(𝑒)
(𝑎𝑘 + 𝑏𝑘𝑥 + 𝑐𝑘𝑧) 

Δ(𝑒) =
1

2
𝑑𝑒𝑡 [

1 𝑥𝑖 𝑧𝑖
1 𝑥𝑗 𝑧𝑗
1 𝑥𝑘 𝑧𝑘

] 

 

𝑎𝑖 = 𝑥𝑗𝑧𝑘 − 𝑥𝑘𝑧𝑗 ,     𝑏𝑖 = 𝑧𝑗 − 𝑧𝑘 ,   𝑐𝑖 = 𝑥𝑘 − 𝑥𝑗 

 

𝑎𝑗 = 𝑥𝑘𝑧𝑖 − 𝑥𝑖𝑧𝑘,     𝑏𝑗 = 𝑧𝑘 − 𝑧𝑖 ,   𝑐𝑗 = 𝑥𝑖 − 𝑥𝑘 

 

𝑎𝑘 = 𝑥𝑖𝑧𝑗 − 𝑥𝑗𝑧𝑖,     𝑏𝑘 = 𝑧𝑖 − 𝑧𝑗 ,   𝑐𝑘 = 𝑥𝑗 − 𝑥𝑖 

 

Substituting (3.23) into (3.22), the element equation (3.21) become; 

 

 

𝐴(𝑒)𝜙(𝑒) − 𝐵(𝑒)𝜙(𝑒) = 0 

 

where; 

𝐴(𝑒) =
𝑐2

4Δ(𝑒)
[

𝑏𝑖
2 + 𝑐𝑖

2 𝑏𝑖𝑏𝑗 + 𝑐𝑖𝑐𝑗 𝑏𝑖𝑏𝑘 + 𝑐𝑖𝑐𝑘

𝑏𝑖𝑏𝑗 + 𝑐𝑖𝑐𝑗 𝑏𝑗
2 + 𝑐𝑗

2 𝑏𝑗𝑏𝑘 + 𝑐𝑗𝑐𝑘

𝑏𝑖𝑏𝑘 + 𝑐𝑖𝑐𝑘 𝑏𝑗𝑏𝑘 + 𝑐𝑗𝑐𝑘 𝑏𝑘
2 + 𝑐𝑘

2

] 
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𝐵(𝑒) =
𝑐2

4Δ(𝑒)
[

𝑐𝑖
2 𝑐𝑖𝑐𝑗 𝑐𝑖𝑐𝑘

𝑐𝑗𝑐𝑖 𝑐𝑗
2 𝑐𝑗𝑐𝑘

𝑐𝑘𝑐𝑖 𝑐𝑘𝑐𝑗 𝑐𝑘
2

] 

 

𝜙(𝑒) = [𝑝𝑖, 𝑝𝑗 , 𝑝𝑘]
𝑇
 

 

 

3.2.6 Convergence Rates 

A numerical analyst is always greatly concerned about the accuracy of the numerical 

solutions. For finite-element-method procedures, the question is "How do the errors 

decrease when we put nodes closer together?" It can be shown that, with linear 

elements, errors are of order 0(ℎ2),  where h is a measure of the nodal spacing. 

Quadratic elements give an 0(ℎ3) accuracy; higher orders than two give even better  

accuracy as the mesh is refined. As we have said, the rate of decrease is a limit value 

that is achieved only  as the h-value  gets very small. (The rate of decrease in the 

errors with quadratic or higher-order shape functions also depends on the integration 

method used in formulating the system of equations.) Also, a very interesting 

phenomenon has been observed in studies of the effect of smaller ℎ -values on 

accuracy-errors may not always decrease uniformly as the spacing is made closer. As 

a mesh is gradually refined, anomalous behavior can occur. It is frequently the case 

that nodes are not uniformly  spaced  in fact, this is one of the major  advantages of 

the finite-element method;  we can put  nodes closer together where the solution u(x) 

varies most rapidly to get better accuracy in that sub region. (Curtis and Patrick 2004).  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Results Analysis 

The formulation developed in section 3.2.5 above will be solved using dimensionless 

cylindrical coordinates, where the 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑧 = 𝑟𝑠𝑖𝑛𝜃 within the domain 𝑟 ∈ [1,2],

𝜃 ∈ [0,
𝜋

6
]. The acoustic wave equation in cylindrical coordinates (𝑟, 𝜃, 𝑡) see equation 

(3.9),  when solved using the initial conditions as given in section 3.2.2, boundary 

conditions given in section 3.2.3 and on discretising the equation reduces to; 

[𝑀]{𝑝} + 𝐶2[𝐾]{𝑝} = 0 

where 𝐾 and 𝑀 are stiffness and mass matrices respectively, 𝐾𝑒 = ∫Ω𝑒
(∇𝑁)𝑇∇𝑁𝑑Ω𝑒 

and 𝑀𝑒 = ∫Ω𝑒
𝑁𝑇𝑑Ω𝑒   where Ω𝑒  is the domain of the element and 𝑁  is the basis 

function matrix, the exact solution for this problem, using Bessel function of the first 

kind is as given in equation (3.11) where at 𝑡 = 0. the initial condition for pressure 

becomes 𝑝(𝑟, 𝜃, 0) = 0 

To ascertain the quality and correctness of a numerical solution, a comparison with a 

known solution should be performed. The exact solutions were described in terms of 

Bessel function of the first kind 

The graph below shows the Bessel function of the first kind versus radius. 
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Figure 4.1. Bessel function of the first kind 𝑱𝒏(𝒓) versus radius 

Figure 4.1 shows the solutions of wave equation at the nodal points given by the 

Bessel function of the first kind to the radial part. The Bessel function behaviour 

looks like oscillating sine or cosine functions, hence periodic. 

The boundary conditions applied at the boundaries of the numerical grid are the free 

surface boundary condition at 𝑟 =1 and the absorbing boundary condition applied at 

the edges of the grid at 𝑟 =2. The solution is based on considering wave motion in the 

direction normal to the boundary, which in this case is the radial direction over radial 

angle 𝜃 ∈ [0𝑜 , 30𝑜].  

 

 

radius 
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Figure 4.2. The polar plot of the numerical grid and the blue ensterix represents 

the domain to be discretised to triangular elements. 

 

The solution of the acoustic wave equation was obtained by using the MATLAB code 

(as given in the appendix) by solving the pressure variable over the domain using the 

exact solution which was obtained from the Bessel function of the first kind. The 

boundary conditions for pressure were obtained from the exact solution. For the 

numerical solution, the domain was discretised using linear triangular elements and 

the element intervals are as shown in fig 3.5.  

Time integration was done using finite difference. Other ordinary differential equation 

solvers can also be used for instance ode45. The table below illustrates the numerical 

solution and the exact solution of pressure over the nodal points 1-9 and the absolute 

error. 
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Table 1; The Numerical solution and the exact solution of pressure over nodal 

points 1-9 and the absolute error 

NODE NUMERICAL EXACT ABSOLUTE 

ERROR 

1 57.9164 57.9164 0 

2 32.6593 38.6481 5.9888 

3 0 0 0 

4 34.1447 34.1447 0 

5 29.7743 30.1721 0.3978 

6 0 0 0 

7 3.78 3.786 0.006 

8 20.3786 18.6147 1.7639 

9 0 0 0 

 

The above table shows numerical and exact pressure values for each nodal point from 

1-9, over radial angle 𝜃 ∈ (0,
𝜋

6
). It also shows the absolute error of the pressure 

values for each nodal point. From table 1, it is observed that nodal points 2,5,7 and 8 

have shown significant values of absolute error. While at nodal points 1,3,4,6 and 9, 

the absolute error is zero (0). As seen in Figure 3.4 the nodal points 3,6 and 9 lie 

along radial angle 𝜃 = 0, hence the numerical and exact values of pressure are zero 

(0). 
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Figure 4.3. Graphical representation of the numerical solution of pressure at 

nodal point 5 with time 

At 𝑡 ∈ (0.2, 0.3), the numerical values of pressure are generally obtained for all the 

nodal points. 

A comparison between numerical solution and analytical solution for values of 

pressure against 𝑟 ∈ [1,2] is represented graphically in the figure below. 
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 Figure 4.4; Graphical comparison between numerical solution and exact 

solution 

Figure 4.4 shows graphical comparison between numerical solution and exact solution 

of pressure for each nodal point from 1-9 against the radial direction 𝑟 ∈ (1,2), over 

radial angle 𝜃 ∈ (0,
𝜋

6
). The nodal points at radial angle 𝜃 = 0 shows the values of 

pressure to be zero (0) 

A surface response for pressure over radial angle in radians and the radius was also 

generated as shown in the diagram below. 
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Figure 4.5; surface response showing the values of pressure for each 

nodal point from 1-9 over radial angle (𝚽) in radians and the radius (r). 

 

 

 

 

          

 

 

 

 

 

 

 

 

                                                                                                                            

 

 

 

radius angle(Φ)(radians) 
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          KEY   

Figure 4.6: contour plot of values of pressure over radial angle (𝚽) in radians 

and the radius. Besides the contour plots sketch is the key to pressure values. 

The intense red plot signifies the greatest value of pressure. 

 

 

4.2 Discussion 

The analytical solution described in terms of Bessel function of the first kind forms 

the basis of sufficient accuracy of the numerical solution. Table 1 shows the 

numerical and exact values of pressure for each nodal point from 1-9 over radial angle 

𝜃 ∈ (0,
𝜋

6
). The comparison between the numerical solution and the exact solution 

shows that the absolute error is zero (0) in nodes 1,3,4,6 and 9. The numerical and 

exact values of pressure in nodal points 3,6 and 9 are zero (0) hence absolute error is 

zero (0). These nodal points lie along the radial angle 𝜃 = 0 where the pressure values 

an
gl

e(
Φ

)(
ra

d
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n
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radius 
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are generally zero (0). The nodal points 1 and 4 lie at radial angle =
𝜋

6
 .  At these two 

points the absolute error is zero (0), meaning the numerical solution and the exact 

solution of pressure at these nodal points is generally the same. This is due to lesser 

curved boundaries particularly at 𝑟, 𝜃 ∈ (1,
𝜋

6
)  and at 𝑟, 𝜃 ∈ (1.5,

𝜋

6
).   

 At  nodal points 2,5,7 and 8  there are significant values of absolute error, meaning 

the numerical solution and the exact solution of pressure generally differs. At nodal 

point 2 the absolute error is higher than in nodal point 5,7 and 8 but very minimal in 

node 7.  Refer to figure 3.4. The variations of the numerical values of pressure with 

the exact values of pressure are due to the increased curved boundaries, which 

basically decreases as the radius increases.  

Errors can be improved by refining the mesh using more triangular elements over the 

numerical grid or domain, by choosing the time interval of obtaining the numerical 

and the exact solution. In this research the time interval 𝑡 ∈ (0.2, 0.3) was used. 

Errors can also be improved by use of higher order elements like the quadratic 

elements. However, solutions at the curved boundaries are less accurate. 

Figure 4.3 shows the graphical representation of the numerical solution of pressure at 

nodal point 5 over the function time, which means at 𝑡 ∈ [0.2, 0.3] the numerical 

solution is obtained for generally all the nodal points.  

Figure 4.4 shows a comparison between numerical solution and exact solution of 

pressure values against 𝑟 ∈ [1,2] over radial angle 𝜃 ∈ (0,
𝜋

6
). The nodal points at 

radial angle 𝜃 = 0 shows the numerical and exact values of pressure to be zero (0). 

This means there is generally a perfect match between the numerical and exact results. 
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A surface response for pressure over radial angle in radians(Φ) and the radius was 

also generated as shown in figure 4.5, which shows that there is an increase in 

pressure values for each nodal point from 1-9 as the radius increases. 

Figure 4.6 shows the contour plots of pressure values over radial angle in radians (Φ)  

and the radius. Using the given key, the pressure values are generally the greatest at 

the greatest values of radius. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

 This thesis has presented the discontinuous Garlerkin time domain numerical method 

with the use of MATLAB code to solve the acoustic wave equation in 2-D cylindrical 

coordinates. The method is very useful in study of the pressure effects in wave 

propagation in fluids. The solution scheme is based on describing the exact solution in 

terms of Bessel function of the first kind and then developing the numerical solution. 

From the findings, a comparison between numerical solution and analytical solution 

for pressure shows that, there is an almost perfect match between the numerical 

solution and analytical results. This demonstrates that the method can very accurately 

handle wave propagation in homogenous medium, including propagation on the 

surface of a cylindrical object.  From the findings we can also conclude that, pressure 

of the wave increases as the radius increases within the same radial angle. The domain 

was discretised using linear triangular elements, however the solutions at the curved 

boundaries are slightly less accurate from the values of absolute errors obtained. The 

errors can be improved by refining the triangular mesh by using more triangular 

elements over the numerical grid or domain, carefully choosing the time variable and 

by use of higher order elements i.e quadratic elements. However, the only problem 

with small elements is that they can lead to small time step which can increase the 

overall computational cost in terms of time. The main advantage of DGTM over other 

numerical methods as a finite element method is that it can be adopted to problems of 

complex geometries (boundaries and interfaces). It also has high order accuracy and 

stability, however it is costly in terms of time, it requires a considerable amount of 

memory and computational costs. 
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5.2 Recommendations 

More work still remains undone in the field of acoustic wave propagation and in the 

implementation of the solution models. Following the results of this work, we would 

recommend further research on the following areas; 

1) To solve the 2-D acoustic wave equation using discontinuous Galerkin time 

domain method on more refined meshes on non-uniform boundaries using 

cylindrical coordinates. 

2) To solve the 3-D acoustic wave equation using DGTM method on cylindrical 

coordinates and compare with the analytical solution. 

3) To solve the non-linear acoustic wave equation on heterogeneous medium 

using DGTM method, which is a finite element method. 
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APPENDICES 

Appendix I 

MATLAB CODE FOR ANALYTICAL AND NUMERICAL SOLUTION TO 

ACOUSTIC WAVE EQUATION. 

function acoustic 

% To solve p_tt=p_rr+(p_r/r)+(p_phi,phi)/r^2 

% 0=<phi=<pi/6 radians,1=<r=<2,0=<t=<1 

% Using linear triangular elements and Finite 

% difference method for time integration 

% #################################################### 

% control parameters 

% #################################################### 

nel=8; 

nnel=3; 

ndof=1; 

nnode=9; 

sdof=nnode*ndof; 

dt=0.267; 

stime=0; 

deltaphi=pi/12; 

deltar=0.5; 

ftime=1; 

nt=fix((ftime-stime)/dt); 

% #################################################### 

% nodal coordinate values / Transformed 

% #################################################### 

% gcoord(i,j)=r*cos(phi);gcoord(i,j+1)=r*sin(phi) 

gcoord(1,1)=0.8660;     gcoord(1,2)=0.5; 

gcoord(2,1)=0.9659;     gcoord(2,2)=0.2588; 

gcoord(3,1)=1;          gcoord(3,2)=0; 

gcoord(4,1)=1.2990;     gcoord(4,2)=0.75; 

gcoord(5,1)=1.4672;     gcoord(5,2)=0.3119; 

gcoord(6,1)=1.5;        gcoord(6,2)=0; 

gcoord(7,1)=1.7321;     gcoord(7,2)=1; 

gcoord(8,1)=1.9319;     gcoord(8,2)=0.5176; 

gcoord(9,1)=2;          gcoord(9,2)=0; 

% #################################################### 

% nodal connectivity 

% #################################################### 

nodes(1,1)=1;nodes(1,2)=2;nodes(1,3)=5; 

nodes(2,1)=2;nodes(2,2)=3;nodes(2,3)=6; 

nodes(3,1)=1;nodes(3,2)=5;nodes(3,3)=4; 

nodes(4,1)=2;nodes(4,2)=6;nodes(4,3)=5; 

nodes(5,1)=4;nodes(5,2)=5;nodes(5,3)=8; 

nodes(6,1)=5;nodes(6,2)=6;nodes(6,3)=9; 

nodes(7,1)=4;nodes(7,2)=8;nodes(7,3)=7; 

nodes(8,1)=5;nodes(8,2)=9;nodes(8,3)=8; 

% #################################################### 

% boundary conditions 



64 
 

 
 

% #################################################### 

bcdof(1)=1; 

bcval(1)=57.9164; 

bcdof(2)=4; 

bcval(2)=34.1447; 

bcdof(3)=7; 

bcval(3)=3.78; 

bcdof(4)=3; 

bcval(4)=0; 

bcdof(5)=6; 

bcval(5)=0; 

bcdof(6)=9; 

bcval(6)=0; 

% #################################################### 

% initialization 

% #################################################### 

ff=zeros(sdof,1); 

fsol=zeros(sdof,1); 

kk=zeros(sdof,sdof); 

mm=zeros(sdof,sdof); 

index=zeros(nnel*ndof,1); 

% #################################################### 

% computation and assembly 

% #################################################### 

for iel=1:nel 

    nd(1)=nodes(iel,1); 

    nd(2)=nodes(iel,2); 

    nd(3)=nodes(iel,3); 

    x1=gcoord(nd(1),1);y1=gcoord(nd(1),2); 

    x2=gcoord(nd(2),1);y2=gcoord(nd(2),2); 

    x3=gcoord(nd(3),1);y3=gcoord(nd(3),2); 

    index=feeldof(nd,nnel,ndof); 

    k=felp2dt3(x1,y1,x2,y2,x3,y3); 

    m=felpt2t3(x1,y1,x2,y2,x3,y3); 

    kk=feasmblk(kk,k,index); 

    mm=feasmblm(mm,m,index); 

end 

%################################################################# 

% Time integration using Finite difference and Solution/ output 

%################################################################# 

% 

p(r,phi,t)=besselj(0,mu*r/c)*[Acos(mu*t)+Bsin(mu*t)]*[Ccos(k*phi)+Dsin(k*phi)] 

% Exact general solution 

for in=1:sdof 

    fsol(in)=0; 

end 

sol(1,1)=fsol(5); 

for it=1:nt 

     M=(((dt^2)*inv(mm)*kk)-2*eye(9)); 

    [M,ff]=feaplyc2(M,ff,bcdof,bcval); 
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    fsol=M\ff; 

    sol(1,it+1)=fsol(5); 

end 

%--------------------------------------------------- 

% Analytical solution 

%---------------------------------------------------- 

for i=1:nnode 

    r=gcoord(i,1);phi=gcoord(i,2);t=1; 

    esol(i)=100*(besselj(0,r)*sin(pi*t/4)*sin(3*phi)); 

end 

num=1:1:sdof; 

Results=[num' fsol esol' abs(fsol-esol')]  

figure(1) 

time=0:dt:nt*dt; 

plot(time,sol(1,:)) 

grid 

xlabel('Time'),ylabel('Solution at node 5') 

title('Graphical Presentation') 

figure(2) 

[R,PHI]=meshgrid(1:1/8:2,0:pi/(8*6):pi/6); 

z=fsol; 

Z=[z z z z z z z z z]; 

contourf(R,PHI,Z),colorbar 

grid 

xlabel('radius(r)'),ylabel('angle(\phi)') 

title('Contour Plot') 

figure(3) 

r=[1:1/17:2]; 

phi=[0:pi/(17*6):pi/6]; 

polar(phi,r,'*') 

grid 

title('Polar plot') 

% #################################################### 

% M-files   used in the main program 

% #################################################### 

%[M]*p_tt=[K]*p=0 

%##################################################### 

function [m]=felpt2t3(x1,y1,x2,y2,x3,y3) 

A=0.5*(x2*y3+x1*y2+x3*y1-x2*y1-x1*y3-x3*y2); 

m=(A/12)*[2 1 1;1 2 1;1 1 2]; 

%----------------------------------------------------------- 

function [k]=felp2dt3(x1,y1,x2,y2,x3,y3) 

% Element matrix  for 2D using 3-node linear tringular element 

A=0.5*(x2*y3+x1*y2+x3*y1-x2*y1-x1*y3-x3*y2); 

rc=(x1+x2+x3)/3; 

k(1,1)=(rc*(x3-x2)*(x3-x2)+(y2-y3)*(y2-y3)/rc)/(4*A); 

k(1,2)=(rc*(x3-x2)*(x1-x3)+(y2-y3)*(y3-y1)/rc)/(4*A); 

k(1,3)=(rc*(x3-x2)*(x2-x1)+(y2-y3)*(y1-y2)/rc)/(4*A); 

k(2,1)=k(1,2); 

k(2,2)=(rc*(x1-x3)*(x1-x3)+(y3-y1)*(y3-y1)/rc)/(4*A); 
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k(2,3)=(rc*(x1-x3)*(x2-x1)+(y3-y1)*(y1-y2)/rc)/(4*A); 

k(3,1)=k(1,3); 

k(3,2)=k(2,3); 

k(3,3)=(rc*(x2-x1)*(x2-x1)+(y1-y2)*(y1-y2)/rc)/(4*A); 

%------------------------------------------------- 

function [kk]=feasmblk(kk,k,index) 

% Assembly of element matrices 

edof=length(index); 

for i=1:edof 

    ii=index(i); 

    for j=1:edof 

        jj=index(j); 

        kk(ii,jj)=kk(ii,jj)+k(i,j); 

    end 

end 

%----------------------------------------------- 

function [mm]=feasmblm(mm,m,index) 

% Assembly of element matrices-TRANSIENT TERM 

edof=length(index); 

for i=1:edof 

    ii=index(i); 

    for j=1:edof 

        jj=index(j); 

        mm(ii,jj)=mm(ii,jj)+m(i,j); 

    end 

end 

%----------------------------------------------- 

function [index]=feeldof(nd,nnel,ndof) 

% System dofs 

edof=nnel*ndof; 

count=0; 

for i=1:nnel 

    start=(nd(i)-1)*ndof; 

    for j=1:ndof 

        count=count+1; 

        index(count)=start+j; 

    end 

end 

%---------------------------------------------------- 

function[M,ff]=feaplyc2(M,ff,bcdof,bcval) 

% boundary conditions 

n=length(bcdof); 

sdof=size(M); 

for i=1:n 

    c=bcdof(i); 

    for j=1:sdof 

        M(c,j)=0; 

    end 

    M(c,c)=1; 

    ff(c)=bcval(i); end 
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