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ABSTRACT 

 

This thesis reports on an experimental investigation of rotating optical beams. 

Superpositions of higher-order Bessel beams with rotating intensity profiles were 

generated using a digital holographic experimental technique and the propagation 

properties in free space were investigated. Phase masks of two annular rings, of equal 

width but different radii were digitally generated and imprinted on a spatial light 

modulator. The digital phase masks were illuminated with a linearly polarized He-Ne 

laser beam to obtain superpositions of higher-order Bessel beams of the same order 

but of opposite topological charges and of different orders but same or different 

topological charges depending on the number of times the azimuthal phase in one 

annular ring varied relative to the other ring. The superposition of beams with the 

same order but opposite topological charges resulted in fields with on average zero 

orbital angular momentum but which exhibited a rotation in their intensity profiles. 

On the other hand, the superposition of beams with unequal orders produced orbital 

angular momentum-carrying Helicon beams with rotating intensity profiles. The 

rotation rates of the generated superposition fields were measured for different orders 

and for various values of the difference between the wave-vectors of the 

superimposing beams. The experimental results showed that the intensity profiles 

rotated at constant rates, for example 30.14 rad/m, as the fields propagated and that 

the rotation rates varied linearly with the difference between the wave vectors of the 

superimposing beams and inversely as the order of the beams for zero orbital angular 

momentum beams and inversely as the difference between the orders of the beams for 

Helicon beams.  In addition, the propagation of the rotating optical beams past total 

and partial obstructions of different geometries set on- or off-axis was investigated 

theoretically and experimentally. The experimental results showed that the rotation of 

the intensity profile does not affect the self-reconstruction of rotating Bessel beams. 

However, the position of the obstacle with respect to the propagation axis of the beam 

is important in determining the nature of the reconstruction process of the beams. For 

on-axis obstructions, the reconstructed beam had the form and orientation of the 

unobstructed beam but off-axis obstructions resulted in a beam which does not attain 

the exact form of the unobstructed beam.  
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THESIS OUTLINE 

 

This thesis comprises six chapters. Chapter 1 is the introduction: it gives an overview 

of the subject area of the thesis: rotating optical beams. The chapter highlights briefly 

the emergence and development of the laser as a source of light and as 

electromagnetic radiation. It discusses briefly some laser beams such as Gaussian 

beams and the various novel laser beams. In addition, the chapter presents the 

significance and the objectives of the study and the statement of the problem. 

 

In Chapter two, a review of literature in the area of novel laser beams and in particular 

Bessel and rotating optical fields is presented. The various experimental and 

theoretical methods, which have been used by earlier investigators to generate Bessel 

beams and rotating optical beams are presented in detail along with their limitations. 

Chapter three presents the theoretical background of laser beams but in particular of 

Bessel beams and rotating optical beams. New aspects of the theory on superposition 

of coherent beams are also highlighted.  

 

In Chapter four, the experimental methods used for generating rotating optical fields 

(in particular rotating Bessel beams), for measuring the rotation rates of these fields 

and for investigating their propagation in free space and their propagation dynamics 

past total and partial obstructions are discussed. The experimental layouts are also 
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presented. Chapter five presents the experimental results in form of two-dimensional 

plots and images of the intensity profiles of the rotating beams and of the obstructed 

fields. The images obtained by theoretical simulations are also presented for 

comparison purposes. The results are discussed in detail in the same chapter. Finally, 

Chapter 6 presents a summary of the conclusions and recommendations based on the 

results obtained. Thereafter, a list of the references cited in this thesis is presented. A 

list of publications and conference presentations, the data tables and the MatLab
®
 and 

Mathematica
®
 scripts used, respectively, for generating the digital phase masks and 

for simulating theoretical images are presented in the Appendix for future reference 

and for completeness sake.  
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CHAPTER ONE 

INTRODUCTION 

1.1. Overview 

It is slightly over half a century ago when the laser, both as a source and as a new type 

of electromagnetic radiation was first demonstrated by Maiman (1960). In fact, 2010 

was the international community’s 50 years’ anniversary of the LASER.  When it was 

discovered the laser was considered as a “solution without a problem” (Quimby, 

2006) but over the last five decades it has developed to become one of the most 

versatile tools in almost all scientific and technological fields. Lasers have enabled 

new applications in various fields including the medical and biomedical fields, 

communication as well as material science and processing. New and more accurate 

imaging and diagnostic techniques such as biomedical microscopy (BMM), optical 

holography and interferometry (Hariharan, 1987), digital holographic microscopy 

(DHM) (Moon, Daneshpanah, Anand & Javidi, 2011), elastic light scattering (ELS) 

(Robinson et al., 2011) and holographic optical tweezing (HOT) (Curtis, Koss & 

Grier, 2002) would not have been possible without tailored laser beams. 

 

The development of new laser sources proceeded in tandem with the discovery of new 

laser beams with interesting intensity profiles and propagation properties. These laser 

beams, obtained directly as outputs of laser resonators or through beam shaping of 

ordinary Gaussian beams, have greatly enhanced the applications of lasers. Such laser 
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beams are called novel laser beams, examples of which include Hermite-Gaussian 

beams (HGBs) and Laguerre-Gaussian beams (LGBs) (Pagani & Nasalski, 2005), 

Bessel beams (BBs) (McGloin & Dholakia, 2005), Airy beams (Siviloglou, Brokly, 

Dogariu & Christodoulides, 2007), Mathieu beams (Gutiérrez-Vega et al., 2001) and 

rotating optical fields (Chavez-Cerda, McDonald & New, 1996; Patterson & Smith, 

1996; Pääkkönen et al., 1998). Owing to the unique properties of Bessel beams such 

as self-reconstruction and the ring structure of their transverse intensity profile, 

rotating Bessel beams form the subject of investigation of this thesis. In addition, 

since Bessel beams exhibit self-healing properties, it was of great interest to 

investigate whether rotating Bessel beams also have reconstruction properties. In the 

following section, a brief discussion of Gaussian beams is presented as an 

introduction to the general field of laser beams and in particular rotating beams. 

 

1.2. Introduction to Laser Beams 

The electric field of an optical wave propagating in free space can be described by 

(Peatross & Ware, 2011); 

    , exp( )E r t E r i t  , (1.1) 

where   is the angular frequency of the field (assumed monochromatic) and ‘i’ is the 

complex notation. Such a field obeys the wave equation; 

 
2 2

2

2 2
0

n E
E

c t


  


, (1.2) 
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and propagates with a velocity approximately equal to c n  in a medium of index of 

refraction n , which is assumed to be uniform. The symbol  is the Laplacian 

operator and 0 01c   = 3.0 x 10
8
ms

-1
 is speed of the wave (light) in free space in 

which 0 and 0 are the permittivity and permeability of free space, respectively. 

Applying equation (1.2) to (1.1) and performing explicitly the time derivative gives 

the time-independent Helmholtz equation (Peatross & Ware, 2011); 

 2 2( ) ( ) 0E r k E r   , (1.3) 

where k n c is the magnitude of the wave vector.  In equation (1.3), the trivial time 

dependence has been omitted. Under scalar approximation, equation (1.3) becomes 

the scalar Helmholtz equation;  

 2 2( ) ( ) 0E r k E r   . (1.4) 

A more general solution of equation (1.4) in rectangular coordinates and propagating 

along the z – direction is of the form (Verdeyen, 1995); 

 0( , , ) ( , , )exp( )E x y z E x y z ikz  , (1.5) 

where    is the amplitude factor, exp( )ikz  is the plane wave factor and  , ,x y z is a 

slowly varying complex function which gives a measure of the difference between the 

beam under consideration (such as a laser beam) and a plane wave. Since  , ,x y z

varies slowly with z, then applying equations (1.4) and (1.5) yields the paraxial wave 

equation in cylindrical co-ordinates (Kogelnik & Li, 1966),   

1
2 0i k

r r r z

    
  

   
.                             (1.6) 
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The solution to equation (1.6) with cylindrical symmetry is the fundamental Gaussian 

beam (GB) mode; the transverse electric and magnetic mode, TEM00. It is a beam of 

electromagnetic radiation whose angular distribution is Gaussian. Gaussian beams 

(GBs) are important because they are the fundamental mode of oscillation of laser 

resonators with spherical mirrors (Kogelnik & Li, 1966). In addition, the propagation 

modes of some optical fibres have Gaussian distribution.  

 

The fundamental, symmetric Gaussian beam propagating in the z direction can be 

expressed in cylindrical coordinates as (Kogelnik & Li, 1966); 

 
2 2

0

2
( , ) exp exp exp[ ( )]

( ) 2 ( )( )

r kr
r z i i kz

z R zz


 

 

   
       

   
, (1.7) 

where  
1

2 2 2r x y   is the radial distance measured from the z - axis and    

0arctan( / )z z  is the additional phase shift. The quantity 2
0 0( / )z    is a 

constant characteristic of the beam called the Rayleigh range, where   is the 

wavelength of the radiation and 0 is the beam waist, the minimum radius of the beam 

measured transversely from the propagation axis at the plane z = 0. The parameter 

( )z is the radius of the beam at the point where the transverse amplitude of the field 

is (1/e) of the maximum amplitude and is called the beam width or the spot size and 

given by;  

 

1
2 2

0 2
0

( ) 1
z

z


 


  
    
   

. (1.8) 

http://en.wikipedia.org/wiki/Beam
http://en.wikipedia.org/wiki/Electromagnetic_radiation
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Note that the beam width attains its minimum value 0  at z = 0 but increases as the 

beam propagates along z towards infinity, with the beam divergence being given by

0( / )   . The radius of curvature, ( )R z  of the wavefront of the beam as 

measured from the position of minimum beam width is defined as; 

2
2
0( ) 1R z z

z

  
    
   

.    (1.9) 

From equation (1.9), it follows that ( )R z  as 0z  , that is, the wavefronts 

become plane at the beam waist position. As z  , ( )R z varies linearly with z. 

Figure 1.1 shows the evolution of a GB as it propagates along the z direction.  

 

 

 

 

The first factor in equation (1.7); 

2
0

0 2
( , ) exp

( ) ( )

r
r z

z z




 

 
  

 
,                   (1.10) 

Figure 1.1: The evolution of a GB as it propagates along the z-direction. The inset 

on the left shows the variation of the amplitude of the field in the transverse 

direction (Verdeyen, 1995) 
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is the amplitude factor that shows how the amplitude of the field changes as the beam 

propagates along z. The factor 0 ( )z  ensures energy conservation, that is, as the 

beam expands, the field amplitude decreases in order to keep the total power constant 

(Weiner & Ho, 2003). From (1.10) it is clear that the amplitude falls off rapidly with 

r, decreasing from a peak value at r = 0 to a value (1/e) of the peak value at the beam 

width.   

 

The second factor in equation (1.7) is called the radial phase factor. It describes the 

spherical phase front of the beam, with the radius of curvature R(z) defined in 

equation (1.9). The third factor expresses the change in phase 0arctan( / )kz z z    

of the wave in the direction of propagation and is called the longitudinal phase factor.  

 

1.3. Novel Laser Beams 

There are other solutions of the paraxial wave equation (equation 1.3) having some 

similar properties with GBs but that form a complete and orthogonal set of functions. 

These are called ‘modes of propagation’ and every arbitrary distribution of 

monochromatic light can be expanded in terms of these modes (Kogelnik & Li, 1966). 

For a system with rectangular geometry, these modes constitute Hermite-Gaussian 

laser beams but for systems with cylindrical symmetry, they constitute Laguerre-

Gaussian laser beams. These beams are examples of laser beams that have transverse 

intensity profiles that differ significantly from those of Gaussian laser beams and are 
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called novel laser beams. Other novel laser beams include Airy beams, Mathieu 

beams, Bessel beams and rotating optical beams. Airy beams are non-diffracting laser 

beams with transverse intensity profiles that are described by the Airy function and 

propagate along a parabolic path (Siviloglou et al., 2007). Mathieu beams are 

propagation-invariant optical fields (PIOFs) that are solutions of Helmholtz’s wave 

equation in elliptical coordinates (Gutiérrez-Vega et al., 2001). Since Airy beams, 

Mathieu beams, Laguerre-Gaussian beams and Hermite-Gaussian beams are not the 

subject of the investigation of this thesis, they will not be discussed further. 

 

Bessel beams are propagation-invariant optical beams that are non-singular scalar 

solutions to the free-space Helmholtz’s wave equation and are described 

mathematically by Bessel functions [Durnin, 1987; Durnin, Miceli & Eberly, 1987). 

Zero-order Bessel beams (ZOBBs) have an intensity maximum at the centre while 

higher-order Bessel beams (HOBBs) have a dark central spot – an intensity null – due 

to a phase singularity at that point, surrounded by alternate bright and dark rings 

(McGloin & Dholakia, 2005). HOBBs carry orbital angular momentum (OAM) owing 

to their azimuthal phase variation. Rotating optical fields (ROFs) are novel laser 

beams with transverse intensity profiles that rotate about the propagation axis as the 

beam propagates along the axis (Vasilyeu, Dudley, Khilo & Forbes, 2009). They are 

obtained from superpositions of higher-order modes of novel laser beams such as 

Laguerre-Gaussian beams (Kotlyar, Khonina, Skidanov & Soifer, 2007) and Bessel 

beams (Chavez-Cerda et al., 1996). More discussions of these beams: Bessel and 
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rotating optical beams are presented in Chapter 3 since they form the core of the 

investigation in this thesis.  

 

1.4. Statement of the problem 

This thesis reports on the experimental generation of rotating optical fields (in 

particular rotating Bessel beams) using digital holographic methods. Rotating optical 

beams have been experimentally generated using a variety of techniques. For 

instance, an axicon lens and a physical ring slit aperture, a binary phase diffractive 

axicon, and a complex spatial filter have been applied to generate the beams. 

However, the use of these methods resulted in a limited set of rotating beams and a 

limited flexibility to dynamically control the parameters of the beams. Consequently 

the range of applications of the beams was also limited. 

 

This study sought to address these challenges by applying digital holography to 

generate rotating Bessel beams. In addition, the study investigated the propagation 

properties of the beams in free space and past obstacles of various sizes and 

geometries placed on and off-axis. Theoretical investigation of the rotation and 

propagation of these beams was also undertaken as a means of validating the 

experimental results. 
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1.5. Objectives of the Study 

The objectives of the study are to: 

1. Apply digital holography to experimentally generate rotating optical beams 

2. Investigate experimentally the free-space propagation of rotating optical beams 

3. Measure experimentally the rotation rates of rotating optical beams 

4. Investigate the self-reconstruction dynamics of obstructed rotating optical beams 

 

1.6 Significance of the study 

Laser applications have grown tremendously since the invention of the first laser. 

While a number of the applications have been achieved with ordinary Gaussian laser 

beams, novel laser beams have expanded the scope of these applications.  For 

instance, while optical trapping and manipulation has been possible with GBs, Bessel 

beams have made it possible to trap, simultaneously, two or more micro-particles that 

are spatially separated along the direction of beam propagation owing to their self-

reconstruction property.  In addition, the ring structure of Bessel beams has made it 

possible to simultaneously trap particles with low and high indices of refraction. On 

the other hand, rotating optical beams have opened possibilities for trapping and 

rotating micro-particles, including biological specimens for diagnostics purposes. 

However, the generation of these beams using ordinary methods such as axicon 

lenses, binary phase diffractive optical elements (DOEs) and computer generated 

holograms (CGHs) have limited these applications since only a given set of rotating 
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beams can be generated. In addition, it is difficult to dynamically control the beam 

since the elements are static in nature. Digital holography provides a versatile and 

dynamic method for generating and applying these laser beams since it does not 

require any transparency and chemical or other processing. In addition, the 

understanding of the propagation properties of rotating optical beams, in free space 

and past obstacles of various geometries and sizes, opens endless possibilities for 

existing and new applications.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Rotating optical fields are an interesting class of novel laser beams for whom 

transverse intensity distribution experience a rotation about the propagation axis as 

the beams propagate. The intensity distributions are longitudinally periodic in that the 

original intensity distribution, including the orientation, is reproduced exactly at 

integer multiples of a characteristic propagation distance (Pääkkönen et al., 1998).  

These beams are closely related to exact propagation-invariant optical fields (PIOFs) 

and self-imaging fields (SIFs) and are therefore also called rotating scale-invariant 

optical fields. 

 

Rotating optical fields have attracted increased attention in recent years owing to their 

interesting properties and potential applications in diverse fields but more specifically 

in optical tweezing. These beams have been applied in optical tweezers to rotate 

optically trapped particles. The number of arms in the rotating interference pattern can 

be tailored to match the geometry of the object to be rotated and the pattern can be set 

into continuous rotation by introducing a frequency shift between the interfering 

modes. The speed and/ or the orientation of the trapped particles can be controlled by 

changing the effective path length of one of the interfering beams (MacDonald, 

Paterson, Volke-Sepulveda, Arlt, Sibbett & Dholakia, 2002). In addition, some 
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rotating optical beams have been applied recently to simultaneously trap and rotate 

dielectric particles over a spiral path on the optical axis (Kotlyar et al., 2007) and to 

trap and rotate a Chinese hamster chromosome (Paterson, MacDonald, Arlt, Sibbett, 

Bryant & Dholakia, 2001). Similarly, a special type of rotating beams has been shown 

to induce spiral motion on trapped micro-particles along the beam’s path (Daria, 

Palima & Glückstad, 2011).  

 

Several types of rotating optical fields have been theoretically and experimentally 

demonstrated. The intensity profiles of the superpositions of Laguerre – Gaussian 

beams (Kotlyar et al., 2007; Schechner, Pietsun & Shamir, 1996; Kotlyar, Soifer & 

Khonina, 1997; Khonina, Kotlyar, Soifer, Honkanen, Lautanen & Turunen, 1999), 

higher-order Bessel beams (Chavez-Cerda et al, 1996; Paterson & Smith, 1996; 

Pääkkönen et al., 1998; Vasilyeu et al, 2009; Kotlyar et al., 2007; Tervo & Turunen, 

2001) and multi-mode Hyper-Geometric beams (Kotlyar et al., 2007) have been 

shown to experience a rotation and the theoretical conditions necessary for the 

rotation to occur have been derived (Paterson & Smith, 1996, Pääkkönen et al., 1998; 

Vasilyeu et al, 2009;  Kotlyar et al., 2007; Schechner et al., 1996;  Kotlyar et al., 

1997). Other types of ROFs include spiralling and spiral-type beams (Jarutis, 

Matijošius, Trapani, & Piskarskas, 2009; Matijošius, Jarutis, & Piskarskas, 2010; Sun, 

Zhou, Fang, Liu & Liu, 2011; Anguiano-Morales, Salas-Peimbert & Trujillo-

Schiaffino, 2011; Abramochkin & Volostnikov, 1996; Abramochkin, Losevsky & 

Volostnikov, 1997), optical propellers (Zhang, Huang, Hu, Hernandez & Chen, 2010) 
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and optical twisters (Daria et al., 2011). Optical twisters have both their phase and 

amplitude describing a helical profile as the beam propagates in free space while 

optical propellers are optical beams with rotating intensity blades and exhibit self-

trapping features.  

 

2.2 Rotating Bessel Beams 

2.2.1 Bessel Beams 

Bessel beams belong to a special class of laser beams referred to as nondiffracting 

beams. These beams, also called propagation-invariant beams or diffraction-free 

beams are non-singular scalar solutions of Helmholtz’s wave equation in free space 

and are described mathematically by Bessel functions (Durnin, 1987; Durnin et al., 

1987). In addition, the beams have sharply defined transverse intensity distributions 

which are independent of the propagation distance and, like plane waves, have finite 

energy density but infinite energy and are not square-integrable in the transverse 

direction (Durnin, 1987). In comparison with a Gaussian beam of the same parameters 

(same wavelength, central spot size and aperture radius), a zero-order Bessel beam 

(ZOBB) can travel a distance approximately twenty eight times larger than a Gaussian 

beam without changing appreciably in shape and transverse intensity distribution 

(Recami & Zamboni-Rached, 2009). 

 

The first mention of optical beams, other than plane waves, that do not experience 

diffractive spreading was when Stratton (Stratton, 1941) developed a monochromatic 
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solution to the wave equation that was described by a Bessel function and whose 

transverse shape was confined in the vicinity of its propagation axis. Several years 

later, Durnin (1987) and Durnin et al. (1987) demonstrated, theoretically and 

experimentally, the finite-aperture approximations of these exact solutions which are 

now called Bessel beams. Since then, other nondiffracting beams have been realized, 

both theoretically and experimentally. Mathieu beams (Gutiérrez-Vega et al., 2001; 

Gutiérrez-Vega, Iturbe-Castillo & Chávez-Cerda, 2000;  Chávez-Cerda et al., 2002) 

are exact solutions of Helmholtz equation in elliptical cylindrical coordinates and are 

described by Mathieu functions.  They are PIOFs with a highly localized distribution 

along one of the transverse directions and a sharply peaked quasi-periodic structure 

along the other. Parabolic beams (Bandrés, Gutiérrez-Vega & Chávez-Cerda, 2004), 

on the other hand, are nondiffracting beams that are solutions of Helmholtz’s equation 

in parabolic cylindrical coordinates. 

 

Several investigators have described Bessel beams using different formulations. 

Durnin (1987) described Bessel beams as a superposition of plane waves whose wave 

vectors traverse the surface of a cone. The beams can thus be characterized by the 

opening angle of the cone. Individual propagating waves undergo the same phase shift 

over a given propagating distance. Bouchal, Wagner and Olivik (1995) considered 

Bessel beams to be constructed from spherical waves emitted by an annular source 

and then phase-corrected by a lens to eliminate transverse magnification. Another 

formulation (Chávez-Cerda et al., 1996; Chávez-Cerda, 1999) decomposes a Bessel 
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beam into two conical waves, one travelling inwards towards the propagation axis and 

the other travelling away from the axis. These conical waves are described by Hankel 

functions (Chávez-Cerda, 1999) which are fundamental solutions of Helmholtz’s 

wave equation. The superposition of the incoming and outgoing conical waves leads 

to the formation of Bessel beams and other PIOFs.  

    

Bessel beams have interesting properties such as the ring structure of the intensity 

profile, the non-diffracting nature and self-reconstruction. The fundamental Bessel 

beam, also called the ZOBB has an intensity maximum on the beam axis (the core) 

while a HOBB has a dark core, an intensity null, due to a phase singularity at that 

point but in both cases the nondiffracting core is surrounded by alternate bright and 

dark rings (McGloin & Dholakia, 2005; Durnin, 1987). The energy or power carried 

by a Bessel beam is evenly distributed between its rings.  The higher-order Bessel 

beams (HOBBs) carry orbital angular momentum (OAM) which arises due to their 

azimuthal phase variation. Another interesting property of Bessel beams is their self-

reconstruction. This property refers to the ability of a Bessel beam to re-form its 

intensity profile after propagating past an opaque non-absorbing obstacle placed in the 

path of propagation of the beam (McGloin & Dholakia, 2005). At a certain minimum 

distance of propagation beyond the obstacle, called reconstruction distance, the 

intensity profile of the beam is the same as what it would have been at that distance in 

the absence of the obstruction provided the spatial extent of the obstacle is small 
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compared to the size of the beam. This reconstruction is due to the propagation of one 

of the unobstructed conical waves that form the Bessel beam.  

 

Self-reconstruction has been studied widely, both theoretically and experimentally. 

Herman and Wiggins (1991) first suggested that a ZOBB is a type of self-regenerating 

field that heals rapidly following the stoppage of light in any area comparable in size 

with the central spot and this has already been demonstrated experimentally for a 

ZOBB (Bouchal, Wagner & Chlup, 1998). The conical dynamics of Bessel beams 

obstructed on- and off-axis using an opaque circular obstruction have also been 

investigated, numerically and experimentally (Anguiano-Morales, Méndez-Otero, 

Iturbe-Castillo & Chávez-Cerda, 2007). They found that the position, size and form of 

the obstruction affect the individual conical waves and consequently the invariance or 

non-diffractive property of these beams could be lost.  

 

Litvin, McLaren and Forbes (2009) applied a conical projection model, which is 

based on the conical wave formulation, to investigate the reconstruction of Bessel and 

Bessel-Gauss beams beyond obstacles of arbitrary geometries and complex 

orientation. The model predicts whether the beam will reconstruct, where it will 

reconstruct and how the shadow and conical wave regions will change during 

propagation of the beam away from the obstacle. In addition, they found that the 

propagation of the Bessel and Bessel-Gauss beams after the obstacle and the potential 

for reconstruction depended on the geometry and the position of the obstacle in the 
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optical field. The self-reconstruction of Bessel beams in nonlinear media 

(Sogomonian, Klewitz & Herminghaus, 1997; Butkus et al., 2002), of fractional 

Bessel beams (Tao & Yuan, 2004), of tightly focused scalar and vector Bessel-Gauss 

beams (Vyas, Kozawa & Sato, 2011) and of optical airy beams (Broky, Siviloglou, 

Dogariu & Christodoulides, 2008) has been reported. In addition, the possibility of 

creating light beams that are self-healing in directions other than the propagation 

direction has also been demonstrated (Thomson & Courtial, 2008).  Snaking or 

curved trajectory Bessel beams: ZOBBs that can be designed to deviate from straight-

line propagation have been experimentally realized (Morris, Čižmár, Dalgarno, 

Marchington, Gun-Moore & Dholakia, 2010). Such beams can propagate around 

obstructions placed on the optical axis. 

   

Other aspects of Bessel beams have also been investigated. The mode properties of 

Bessel beams (Valyaev & Krivoshiykov, 1989) and the OAM of a HOBB based on a 

vectorial treatment (Volke-Sepulveda, Garcés-Chávez, Chávez-Cerda, Arlt & 

Dholakia, 2002) have been studied. Martelli, Tacca, Gatto, Moneta and Martinelli 

(2010) investigated the Gouy phase shift in Bessel beams and showed that the 

nondiffracting nature of these beams is due to the accumulation of an extra axial 

phase shift (the Gouy phase shift) which is linearly dependent on the propagation 

distance. Hacyan and Jáuregui (2006) studied the general properties of Bessel beams, 

in terms of Hertz potentials, within a fully relativistic framework. They showed that 
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there exists a unique reference frame in which the linear propagation of Bessel beams 

is eliminated and the waves propagate circularly. 

  

Owing to their unique properties Bessel beams have found a variety of interesting 

applications. For instance, the optical manipulation of micron-sized particles, 

including biological samples, using a ZOBB has been demonstrated (Arlt, Garcés-

Chávez, Sibbett & Dholakia, 2001). Using laser powers of about 35 mW 

(corresponding to a power of about 4 mW in the central maximum of the Bessel 

beam), they were able to optically tweeze and manipulate, in two dimensions, silica 

spheres, E. coli and Chinese hamster chromosomes at speeds of about 10 μm/s. 

However, at higher laser powers of about 65 mW, they demonstrated optical guiding, 

alignment and stacking of particles. In optical guiding, the beam’s gradient force is 

used to confine a particle along the propagation axis, in two dimensions, and then the 

radiation pressure propels the particle along the axis of the laser beam. Such transport 

of microscopic particles is important for applications in aerosol science, micro-

biology and nano-technology. Bessel beams are particularly suited for optical guiding 

as compared to Gaussian and other hollow beams owing to their nondiffractive 

propagation. In addition, vertical alignment and subsequent manipulation of elongated 

samples, such as several biological specimens, allows the isolation and transfer of the 

samples from one chamber to another. This is particularly useful in chromosome 

studies where chromatid fragments may need to be spatially separated for polymerase 

chain reactions to be performed (He, Liu, Smith & Berns, 1997).  
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The multi-ringed structure of Bessel beams has made possible the  simultaneous 

trapping of both low- and high-index particles (Volke-Sepulveda, Chávez-Cerda, 

Garcés-Chávez & Dholakia, 2004) while the self-reconstruction property has enabled 

the simultaneous trapping of particles that are spatially separated (Garcés-Chávez, 

McGloin, Melville, Sibbett & Dholakia, 2002). Since the beam has different 

reconstruction distances for different particles depending on their refractive indices, it 

follows that the self-reconstruction effect can be used as a means of characterizing 

particles and biological samples.  Fahrbach, Simon and Rohrbach (2010) have 

demonstrated a prototype of a microscope, microscopy with self-reconstructing 

beams, using self-reconstructing Bessel beams and showed that a holographically 

shaped, scanned Bessel beam reduces scattering artefacts while simultaneously 

increasing image quality and penetration depth in dense media. They showed that 

owing to the self-reconstruction effect, a scanned Bessel beam generated by a 

computer hologram can produce high quality images in strongly scattering media such 

as the human skin and other biological samples. The self-reconstructing and 

propagation-invariant properties of Bessel beams have also been demonstrated to have 

potential applications in optical interconnects (MacDonald, Boothroyd, Okamoto, 

Chrostowski & Syrett, 1996; Yu, Wang, Varela & Chen, 2000; Al-Ababneh & 

Testorf, 2004). It has also been experimentally demonstrated that the OAM and spin 

angular momentum (SAM) of Bessel beams can be transferred to micro-particles and 

cold atoms [He, Friese, Heckenberg & Rubinsztein-Dunlop, 1995); Tabosa & Petrov, 

1999; Garcés-Chávez,  Volke-Sepulveda, Chávez-Cerda, Sibbett & Dholakia, 2002; 

Garcés-Chávez, McGloin, Padgett, Dultz, Schmitzer & Dholakia, 2003). The trapped 
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micro-particles have been shown to rotate, owing to the transferred OAM and SAM, 

and their rotation rates have been measured (Garcés-Chávez, Volke-Sepulveda, 

Chávez-Cerda, Sibbett & Dholakia, 2002; Garcés-Chávez, McGloin, Padgett, Dultz, 

Schmitzer & Dholakia, 2003).  

Bessel beams and in general nondiffracting beams can be generated using a variety of 

techniques, which apply refractive or diffractive optical elements. Durnin et al. (1987) 

reported the first experimental realization of a ZOBB by illuminating, with a 

collimated beam, an annular slit placed at the back focal plane of a positive lens. 

However, this method is very inefficient as most of the intensity of the illuminating 

beam is screened off by the aperture and only a small fraction propagates through the 

annular slit. The axicon, also called a conical lens, has been widely used to generate 

Bessel beams with much higher efficiencies since almost all the incident intensity is 

converted into the Bessel beam. Herman and Wiggins (1991) illuminated an axicon 

with a collimated Gaussian beam to generate a ZOBB while Scott and McArdle 

(1992) generated a similar beam using a rectangular aperture and an axicon 

illuminated likewise. Arlt and Dholakia (2000) obtained a HOBB using an axicon 

illuminated with a Laguerre-Gaussian beam with high conversion efficiencies of close 

to 100%. HOBBs have also been generated using a Mach-Zehnder interferometer in 

which the beam was decomposed into its constituent even and odd spatial components 

and then superimposed using the interferometer (López-Mariscal, Gutiérrez-Vega & 

Chávez-Cerda, 2004). 
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Computer generated holograms (CGHs) (Vasara, Turunen & Friberg, 1989; Paterson 

& Smith, 1996b) and axicon-type CGHs programmed on a spatial light modulator 

(SLM) (Davis, Guertin & Cottrell, 1993; Davis, Carcole & Cottrell, 1996) have been 

used to generate Bessel beams and their superpositions. Chávez-Cerda et al. (1996) 

showed that the superposition of HOBBs results in a periodically reconstructing beam 

with rotating and spiral wave features.  In addition, Davis et al. (1996) showed that 

the intensity of the superposition of the HOBBs appeared as a circular pattern with a 

radius which depended on the order, m, of the Bessel function and that the intensity is 

azimuthally modulated resulting in 2m spots arranged on a circumference. Similar 

intensity patterns were obtained from the superpositions of HOBBs by Vasilyeu et al. 

(2009) using a SLM and a ring slit aperture (RSA). The aperture was divided into two 

rings of equal width but different radii and hence the superimposed beams had 

different wave vectors. The transverse intensity patterns of the superimposed beams 

depicted an interesting feature: the pattern rotated about the propagation axis as the 

beams propagated along the axis. 

 

2.2.2 Rotating Zero-OAM Bessel Beams 

Rotating Bessel beams can be generated by the superposition of two or more HOBBs. 

The superposition of HOBBs of the same order m (same azimuthal phase variation) 

but of opposite handedness results in Bessel beams with zero OAM but whose 

intensity of superposition rotate about the propagation axis as the beams propagate 

(Vasilyeu et al., 2009; Kotlyar, et al., 2007). Litvin, Dudley and Forbes (2011) 
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measured the OAM density of such superpositions and found that while the global 

OAM is zero, the local OAM at various spatial locations is non-zero but changes 

radially across the beam and can be made to oscillate from positive to negative values 

by an appropriate choice of the parameters of the component beams.  The angle of 

rotation of the intensity profile has been predicted theoretically (Vasilyeu et al., 2009; 

Davis et al., 1996) to be given by 2kz m   where Δk is the difference between the 

longitudinal wave vectors of the two superimposed beams and m is the order 

(azimuthal index) of the beams. The rate of rotation of the intensity profile given by 

2d dz k m   is therefore a constant.  The rotation rate, in radians per meter, varies 

linearly with the difference between the longitudinal wave-vectors of the 

superimposing beams but inversely with the order |m| of the beams. Thus, by 

appropriately measuring the angle of rotation of the intensity pattern at various 

propagation distances, it is possible to determine the rotation rate of the intensity 

profile and to investigate the effect of changing the values of Δk and order m on the 

rotation rate. The method by which to execute such a study is outlined in the 

methodology section of this thesis.  

 

2.2.3 Helicon Rotating Bessel Beams 

Helicon beams have an intensity pattern which rotates at a constant rate about the 

optical axis but is otherwise unchanged and their lines of constant intensity trace out 

helices about the optical axis (Paterson & Smith, 1996a). They consist of 
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superpositions of HOBBs of different orders (unequal topological charges) and hence 

carry orbital angular momentum owing to a net azimuthal variation. Helicon beams 

have been realized theoretically and experimentally and the theoretical conditions 

necessary for their rotation have been studied (Paterson & Smith, 1996a; Kotlyar et 

al., 2007).  The rate of rotation of the intensity profile is given by d dz k m     

where 1 2m m m   . Thus, it is possible to achieve high rotation rates with Helicon 

beams obtained from superpositions of HOBBs with large values of m1 and m2 

provided Δm is chosen to be small. The approach followed to determine the rotation 

rates is discussed in the methodology section (chapter 4) of this thesis. 

 

2.3 Rotating Laguerre-Gaussian Beams 

Laguerre-Gaussian beams (LGBs) are higher order solutions of the paraxial wave 

equation with cylindrical symmetry about their axes of propagation. LGBs are 

characterized by two indices l and p, which are the azimuthal and radial mode 

numbers respectively. The index l is an integer which expresses the phase singularity 

order on the beam axis and hence characterizing the beam as an optical vortex with 

topological charge +l and –l, depending on the rotation direction of its helical 

wavefront (Topuzoski & Janicijevic, 2009). The index p is a positive integer. If l = 0 

and p = 0 then a Gaussian beam is represented. The intensity profile of a LGB 

consists of alternate bright and dark rings surrounding a dark or bright central spot. If 

0l   in the transverse cross-section of the beam, then the transverse intensity profile 
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consists of (p+1) bright rings surrounding a dark central spot whereas if l = 0, p 

bright rings surround a central bright spot (Topuzoski & Janicijevic, 2009). 

  

The superposition of two or more LG modes with different optical frequencies can 

result in rotating LGBs but only if certain conditions, as discussed by Kotlyar et al. 

(1997), are satisfied. Unlike for rotating Bessel beams the angular velocity of rotation 

of the intensity profile of rotating LGBs decreases with propagation distance. 

 

2.4 Spiralling and Spiral-type Beams 

Spiralling beams are a special case of Helicon beams and have an intensity pattern 

that is laterally displaced with respect to the optical axis and rotates as a whole around 

the axis as the beams propagate along it (Jarutis et al., 2009; Matijošius et al., 2010; 

Sun et al., 2011; Anguiano-Morales et al., 2011. Spiral-type beams have been 

demonstrated, theoretically and experimentally as modes of a ring resonator with a 

beam rotator (Abramochkin & Volostnikov, 1996) and have been shown to 

correspond to the quantum-mechanical ground states of a charged particle in a 

uniform magnetic field (Abramochkin et al., 1997). Spiralling ZOBB has been 

generated by illuminating, with a Gaussian beam, a combination of a conventional 

axicon and a phase hologram which introduces an equal phase shift of spiral form on 

the beam (Pääkkönen et al., 1998; Peatross & Ware, 2011). Spiralling HOBBs of 

arbitrary order have been realized experimentally by illuminating an aperture axicon 
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and a hologram with a single-ringed Laguerre-Gaussian beam (Sun et al., 2011). The 

spiralling HOBB so produced rotated around the propagation axis with a hollow 

centre. Recently, a spiral wave was generated by illuminating a combination of a lens 

and an amplitude mask which consisted of two incomplete annular slits of equal radii 

but with one-half slightly displaced with respect to the other (Anguiano-Morales et 

al., 2011).  

 

2.5  Generation of Rotating Bessel Beams 

Rotating Bessel beams (RBBs) have been generated using a variety of techniques. 

Davis et al. (1996) used a binary phase diffractive optical element (DOE) written on a 

magneto-optic spatial light modulator (MOSLM) while Kotlyar et al. (2007) used a 

similar DOE written on a liquid crystal SLM to generate rotating zero OAM Bessel 

beams. Recently, spatial light modulators (SLMs) with imprinted digital holograms 

have been used. Vasilyeu et al. (2009) modified the method used by Durnin et al. 

(1987) by using a ring slit aperture, divided into two slits of equal width but different 

radii, placed at the focal plane of a positive lens. The azimuthal phase in each slit 

varied from 0 to 2π equal times but with opposite handedness. The HOBB generated 

by illuminating a liquid crystal SLM imprinted with an appropriate phase hologram 

was incident on the ring slit aperture. 
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Helicon beams have been experimentally generated using a single binary phase 

diffractive axicon element (Paterson & Smith, 1996a). This method of generation of 

Helicon beams relied on the use of odd-numbered conical diffraction orders of a 

binary phase diffractive optical element, and as such only a limited set of rotating 

Bessel beams could be generated.   Pääkönen et al. (1998) used a complex spatial 

filter, which is a diffractive optical element that modulated both the amplitude and the 

phase of the incident field according to some desired amplitude transmittance. They 

found that if the amplitude information of the superimposed fields is completely 

neglected, it does not in general lead to good results for rotating beams. This thesis 

reports, in the methodology section, an appropriate and effective technique for 

generating rotating zero OAM and Helicon beams and for measuring their rotation 

rates. In addition, the method is modified to investigate the propagation dynamics of 

these beams beyond partial and total obstructions set on- and off-axis. 
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CHAPTER THREE 

THEORY 

3.1 Introduction 

Rotating optical fields (ROFs) can be treated as scalar or electromagnetic (vector) 

fields.  In scalar treatment, only the energy density (intensity) of ROFs is considered 

and ROFs have uniformly rotating intensity distributions and propagation-invariant 

radial scales. However, in the vectorial approach the state of polarization of the field 

is considered in addition to the energy density of the field.  Consequently, the 

conditions for the rotation of the field are different for scalar and electromagnetic 

ROFs (Tervo & Turunen, 2001).  

 

Scalar ROFs are like propagation-invariant and self-imaging fields since the intensity 

distribution, including its transverse scale, at any transverse plane z = c, where c is a 

real constant, is exactly the same as at z = 0, except for a rotation by an angle

2 Tz z  , where zT is a characteristic distance, called the Talbot distance, over 

which the intensity distribution of the field undergoes a rotation of 2 radians 

(Pääkönen et al., 1998).  

  

Although the scalar theory does not describe completely the nature of ROFs, it is 

often sufficient for linearly polarized electromagnetic fields in many situations. This 
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is because, although the electric field of a light wave is a vector, the wave field is 

scalar and with paraxial approximation, the polarization is almost uniform near the 

axis of a laser beam with only one component for which the scalar approach is a good 

approximation. In addition, the vector field can always be obtained once the scalar 

theory of a particular optical field has been found (Weiner & Ho, 2003). In the 

following section, we present the scalar theory of ROFs only since it is adequate to 

capture the key aspects of this study. 

 

3.2 Scalar Rotating Optical Fields 

Durnin and co-workers (Durnin, 1987; Durnin et al., 1987) showed that there exists a 

family of propagation-invariant optical beams that are exact non-singular solutions of 

the wave equation (equation 1.2). Such scalar optical beams are not subject to 

transverse spreading, have finite energy density and have sharply defined intensity 

distributions. These beams can be expressed mathematically, in the form first 

presented by Whittaker and Watson (1927), as; 

 
2

0
( , , 0, ) exp[ ( )] ( )exp[ ( cos sin )]z rE x y z t i k z wt A ik x y d


       , (3.1) 

where 2 2 2 2 2( ) (2 )z rk k k c      in which k is the wave number,   is the 

angular frequency, 
83.0 10 /c m s   is the speed of light in free space and   is the 

wavelength of the beam. The quantity ( )A  is the complex angular spectrum of the 

field. The optical intensity of the field, which is defined by equation (3.1) does not 

depend on the coordinate z  and hence obeys the condition (Durnin, 1987); 
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2 2

( , , 0, ) ( , , 0, )E x y z t E x y z t   . (3.2) 

The intensity distribution is independent of the coordinate along the propagation axis 

(the z - axis) except for a linear rotation as the beam propagates. This implies that the 

intensity distribution at the transverse plane 0z   is exactly the same as at the plane

0z  .  In cylindrical coordinates  , ,r z  and  , ,r zk k k k , the angular 

spectrum of the field in equation (3.1) is given by (Tervo & Turunen, 2001), 

        
2

0 0
, , exp , exp[ cos ,z r r r rE r z ik z k A k k ik k dk dk



   


    (3.3) 

where r ,   and z are the radial, azimuthal and longitudinal coordinates respectively 

and rk , k and zk  are the wave vectors in the three directions respectively. The 

propagation-invariance condition (equation 3.2) can then be rewritten, to define the 

rotation of the intensity profile, as (López-Mariscal, 2003); 

      
2 2

, ,0 exp[ , , ] , , ,E r i r z E r z z z          (3.4) 

where 2 z   is a constant that specifies the direction of rotation and the 

longitudinal period of the field,   is an arbitrary real function and z is the change in 

the propagation distance. Applying equation (3.4) on equation (3.3) gives the angular 

spectrum as (Tervo & Turunen, 2001); 

      z
0

( J exp exp exp d 0m r m r r

m

a k k r im i r z i m k z k
 



                  ,

 (3.5) 
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where Jm rk r  is the Bessel function of the first kind of order m and, 

     
2

0
expm

m r r ra k i k A k k imk dk


     
(3.6) 

is obtained by applying the Jacobi-Anger expansion (Arfken & Weber, 2001).  

Since equation (3.5) must hold for all r and  then the integrand must vanish, giving 

     z + 2r z z m k z n        ,    (3.7) 

where n is an integer. Since the phase change  z  must be continuous and  0 0   

then 0n  . Thus zk assumes only discrete values given by zm zok k m    where

zok k is a positive real constant (Tervo & Turunen, 2001). The angular spectrum of 

the field now consists of a discrete set of concentric rings, called Montgomery’s rings 

(Montgomery, 1967; Saastamoinen, Tervo, Vahimaa & Turunen, 2004) with radii 

 
1
22 2

r zmk k k  .      (3.8) 

Equation (3.8) implies that the transverse components of the wave vectors must be 

confined to the set of Montgomery’s rings. These are a set of concentric rings of well-

defined radii representing the spatial frequencies within which the angular spectrum 

of longitudinally periodic fields is confined (Montgomery, 1967). The width of the 

rings decreases as the order of the field increases. For a set, M, of allowed values of m 

for which 0 zmk k   and ( )m m ma a k , the field expression becomes (Tervo & 

Turunen, 2001); 



31 

 

 

 

1

( ) ( )exp[ ( )]
M

m m r zm

m

E r z a J k r i m k z


   .    (3.9) 

If zmk k , then it follows from (3.8) that 0rk  and hence the angular spectrum 

represents that of a plane wave. If 0zmk  , then the field does not propagate in the z-

direction. However, if the zk values do not belong to a discrete set, then the field 

describes a non-periodic rotating beam. The distance over which the field completes a 

full rotation is defined by equation (3.4) and is given by 2 /R zz m k  . 

 

3.3 Bessel Beam Modes 

The integrand in equation (3.1) can be expressed as; 

    
2

0
( , ) exp cos sinrV x y A ik x y d



       , (3.10) 

where all the symbols are as defined earlier. Equation (3.10) represents a 

superposition of homogeneous plane waves, of wave number rk and amplitude ( )A  , 

which propagate in all directions in the x-y plane (Turunen & Friberg, 2009). The 

Fourier expansion of the amplitude ( )A  can be expressed as; 

 ( ) exp( )m

m

A a im 




  , (3.11) 

where the Fourier coefficients ma  are defined by 

 
2

0

1
( )exp( )

2
ma A im d



  


  . (3.12) 
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In polar coordinates ( , )r   and employing the Bessel function identity 

 
2

0
( ) exp[ ( cos )]

2

m

m

i
J x i m x d



  




  , (3.13) 

where mJ  is the Bessel function of the first kind and order m. By letting 2 m

m mC i a , 

then the general expression for propagation-invariant optical fields (equation 3.1) can 

be expressed as a superposition of Bessel functions as (Chávez-Cerda et al., 1996); 

      , , exp exp( )z m m r

m

E r z ik z C J k r im 




  , (3.14) 

where the time-dependence in equation (3.1) has been omitted. In the simplest special 

case, 0mC  for all but one value of m and equation (3.14) then represents Bessel 

field modes with rotationally symmetric transverse intensity distributions of the form 

2( ) ( )m rI r J k r
 
(Turunen & Friberg, 2009). The complex amplitude of the transverse 

electric field of the Bessel field mode is obtained, from equation (3.14), as (McGloin 

& Dholakia, 2005); 

      , , exp[ ]m r zE r z J k r i k z m   . (3.15) 

These free-space Bessel modes can be generated using Bessel filters synthesized on a 

computer by digital holographic methods (Valyaev & Krivoshiykov, 1989). 

 



33 

 

 

 

3.3.1 Fundamental Bessel Field Mode 

The fundamental Bessel field mode, also called the zero-order Bessel beam (ZOBB), 

is obtained from equation (3.15) by letting the azimuthal order m be zero. Thus; 

      0, , expr zE r z J k r ik z   (3.16) 

with a transverse intensity distribution 2

0( ) ( )rI r J k r  and a binary-valued (0 or   

radians) phase distribution (Turunen & Friberg, 2009). The intensity distribution 

exhibits a narrow axial peak surrounded by a set of alternate dark and bright rings 

concentric about the axis of the beam. The intensity and phase distributions of the 

ZOBB are shown in the theoretical plots in figure 3.1. The full width at half 

maximum (FWHM) of the central peak is 2.25 / rr k and the first zero is located at

2.405 / rr k (Turunen & Friberg, 2009). 

 

 

  

Figure 3.1: Intensity (a) and phase plots (b) of a zero-order Bessel beam. The 

alternate white and dark blue annular areas in (b) represent phase jumps from 

0 to 2π.     
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3.3.2 Higher-order Bessel Field Modes  

High-order Bessel Beams (HOBBs) are described by higher order ( 1m  ) Bessel 

functions and their transverse intensity distributions, 2 ( )m rJ k r  have a singularity 

(intensity null) on the beam axis and hence have a non-diffracting dark core rather 

than a bright one (McGloin & Dholakia, 2005). The transverse electric field is 

represented by equation (3.15), where sinrk k  and coszk k   in which  is the 

half angle of the cone of wave vectors constituting the Bessel beam and is given by

 1tan r zk k  . The phase of a HOBB varies continuously from 0 to 2  a total of 

m times in one azimuthal revolution and consequently the field possesses orbital 

angular momentum and hence exhibits an azimuthally spiral-like phase profile with a 

vortex at the z-axis. The size of the dark core increases with increase in the order m of 

the HOBBs. The intensity and phase distributions of various HOBBs are shown in 

figure 3.2.   

 

Figure 3.2: The intensity (top row) and phase distributions (bottom row) of 

higher-order Bessel beams of azimuthal orders m = 1 (‘a’ and ‘d’), m = 2 (‘b’ 

and ‘e’) and m = 3 (‘c’ and ‘f’).  



35 

 

 

 

3.3.3 Rotating Bessel Fields 

Bessel beams can be considered as a set of plane waves propagating on a cone, such 

that each plane wave undergoes the same phase shift kz∆z over a given propagating 

distance ∆z (McGloin & Dholakia, 2005). The angular spectrum of a Bessel field is a 

ring in k-space and hence a Fourier transform of the ring results in a Bessel beam in 

configuration space. This is the basis of the first experimental generation of Bessel 

beams by Durnin et al. (1987). The superposition of two Bessel fields can therefore be 

considered as the interference of two sets of waves, with each set traversing a cone of 

half-angle whose magnitude is determined by the radial and longitudinal wave-vectors 

of the propagating waves. Consider the superposition of two HOBBs of orders equal 

in magnitude but of opposite topological charges, that is, of orders m and –m 

respectively. Let the two beams propagate with slightly differing wave-vectors. Figure 

3.3 shows the digitally generated annular rings used to superimpose the Bessel fields 

and the geometrical illustration of the interaction of the two interfering Bessel beams. 

The physical ring slit aperture is replaced by the digital annular rings (shown on the 

left) with non-zero azimuthal phase variation. The shaded region beyond the Fourier 

lens, of focal length f , is the invariance region. 
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The transmission function of the ring slit aperture is 

 

2 2

2 2

exp( )

( , ) exp( )

0 elsewhere,

i c i

o c o

im r r r

t r im r r r



 

 

 

   


     



 (3.17) 

where ir  and or  are the radii of the two annular rings respectively and   is the width 

of each ring-slit (see figure 3.3), which were chosen to be equal. The far-field of the 

ring-slit aperture is given by the Kirchhoff-Huygens diffraction integral as (Vasilyeu 

et al., 2009); 
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 (3.18) 

The field contribution from the two ring-slits, in the far field, is given, respectively by 

Figure 3.3: A geometrical illustration of the formation of rotating Bessel 

beams through the superposition of higher-order Bessel beams.  
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and 
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Hence the total field, in the far field, due to the two ring-slits is simply the sum of the 

individual contributions from slits, which on simplification gives 

    1 1 2 2( , , ) ( )exp ( ) ( )exp ( )m r z m r zE r z J k r i k z m J k r i k z m      , (3.21) 

in which the approximation  sin sinr c ck k k r f kr f  has been applied. k1r, 

k2r and k1z, k2z are, respectively, the radial and longitudinal wave-vectors of the two 

beams. The intensity of superposition, which is given by 

*( , , ) ( , , ) ( , , )I r z E r z E r z   is directly obtained from equation (3.21) as 

 2 2

, 1 2 1 2( , , ) ( ) ( ) 2 ( ) ( )cos( 2 )m m m r m r m r m rI r z J k r J k r J k r J k r kz m        , (3.22) 

where  
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and ir  and or are the radii of the inner and outer annular rings respectively and f is 

the focal length of the Fourier lens. One can simplify equation (3.22) by making the 

approximation that 1 2r rk k and hence 1 2( ) ( ) ( )m r m r m rJ k r J k r J k r  and applying the 
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Bessel function identity
2 2( ) ( 1) ( )m

m r m rJ k r J k r   , the intensity of the superposition 

,m mI  is proportional to 

  2 ( ) 1 cos 2m rJ k r kz m     , (3.24) 

where rk is the average radial wave-vector of the two fields. If the longitudinal wave-

vectors of the superimposing beams are equal, 0k  and hence 

 2 2

, 2 ( )cos ( )m m m rI J k r m  . (3.25) 

With this approximation one can readily note from equation (3.25) that the intensity 

of the superposition field is modulated in the azimuthal co-ordinate by the function

2cos ( )m .  From the properties of the cosine function, it follows that the number of 

intensity maxima in the intensity of superposition is twice the order m of the beams. 

Thus the superposition of an m
th

 order Bessel beam with its mirror image (–m
th

 order 

Bessel beam) produces a resultant intensity pattern having 2|m| lobes, or ‘petals’, 

arranged on the circumference of the set of rings defined by the enveloping Bessel 

function (radial only).  

 

The intensity profile of the resultant field rotates about the azimuthal coordinate as the 

beam propagates along the z direction. To see how the rotation arises, consider 

equation (3.24): the term in square brackets determines the angular position of the 

resultant lobes along the circumference of the Bessel rings.  Since for any two 

superimposed beams, ∆k and order m are constants, the azimuthal coordinate, which 
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gives the angular position of the petals changes with the propagation distance of the 

beam and hence the entire intensity profile rotates about the common centroid, the 

centre of the dark core. The angle of rotation has been predicted (Vasilyeu et al., 

2009; Kotlyar et al., 2007] to be given by 

 
2

k
z

m



 , (3.26a)  

and the rate of rotation of the intensity profile, given by 

 
2

d k

dz m

 
 , (3.26b) 

 is a constant.  The rotation rate, in radians per meter, varies linearly with the 

difference between the longitudinal wave numbers of the superimposing beams but 

inversely with the order |m| of the beams. Thus, by appropriately measuring the angle 

of rotation of the intensity pattern at various propagation distances, it is possible to 

determine the rotation rate of the intensity profile and to investigate the effect of 

changing the values of Δk and order m on the rotation rate. The method by which the 

investigation of the rotation rate was done is outlined in chapter 4 and the results are 

presented and discussed in chapter 5 of this thesis.  

For Helicon RBBs, which are superpositions of two HOBBs with distinct orders, 1m  

and 2m , the complex amplitude of the resultant field is 

    
1 2 1 2, 1 1 1 2 2 2( , , ) ( )exp ( )expm m m r z m r zE r z J k r i k z m J k r i k z m            . (3.27) 

The intensity of the superposition is given by the proportionality 
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1 2 1 2 1 2

2 2

, 1 2 1 2( , , ) ( ) ( ) 2 ( ) ( )cos[ ( ) ]m m m r m r m r m rI r z J k r J k r J k r J k r kz m       , (3.28) 

where 1 2m m m   , the absolute difference between the orders of the two beams. 

The rate of rotation of the intensity profile is given, from equation (3.28) by 

 
d k

dz m

 



. (3.29) 

From this expression of rotation rate, it follows that it is possible to achieve high 

rotation rates with Helicon beams obtained from superpositions of HOBBs with large 

values of m1 and m2 provided that Δm is chosen to be small. However, high rotation 

rates are only possible with zero global OAM RBBs of lower m values. If the angular 

displacement of a given petal in the intensity pattern is measured at various distances 

along the propagation axis and plotted as a function of the propagation distance, a 

linear variation is predicted (by equation 3.26a) whose slope gives the rate of rotation 

of the intensity profile of the Helicon beam. Similarly, the investigation of the rotation 

rates of Helicon RBBs is presented in chapter 4 and the results are discussed in 

chapter 5 of this thesis. 

  

3.3.4 Self-reconstruction of Bessel Beams 

Self-reconstruction is the regeneration of electromagnetic energy and hence the 

intensity profile of a beam (in particular a Bessel beam) after propagating past an 

opaque obstacle placed in its path. The Bessel beam reconstructs its amplitude and 

phase beyond the obstruction, provided that the spatial extent of the beam is larger 
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than that of the obstacle. The minimum distance beyond the obstacle at which the 

beam reforms its intensity structure is called the reconstruction distance, zmin, and is 

given by (Litvin et al., 2009) 

 
min

2 tan

z

r

k D
z D

k 
  , (3.30) 

where D is the diameter of the obstacle and  , measured in radians, is the half-angle 

of the cone traversed by the wave vectors of the beam. For the generation of Bessel 

beams using an annular slit and a positive lens, r f  , where r  is the radius of the 

annular slit and f is the focal length of the lens. If an axicon is used,  1n   , 

where n is the refractive index of the axicon material and   is its opening angle. The 

reconstruction distance is shown in figure 3.4 which illustrates geometrically the 

reconstruction effect. 

 

The reconstruction property has been explained in detail using the conical wave 

approach (Anguiano-Morales et al., 2007), which considers the cone of wave vectors 

constituting the Bessel beams as consisting of two conical waves (CWs), an incoming 

conical wave (ICW) and the other, an outgoing conical wave (OCW). These CWs can 

be represented by Hankel functions of the second kind, (2)

0 ( )rH k r , and of the first 

kind, (1)

0 ( )rH k r ,  respectively (Chávez-Cerda, 1999); 

  (1)

0 0( )exp( ) ( ) ( ) exp( ),r z r r zH k r ik z J k r iN k r ik z   (3.31) 

  (2)

0 0( )exp( ) ( ) ( ) exp( ),r z r r zH k r ik z J k r iN k r ik z   (3.32) 
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where 0 ( )rJ k r  and ( )rN k r are the zero-order Bessel and Newman functions 

respectively. The ICW generates the OCW and on traversing the propagation axis 

interferes with it to reconstruct the Bessel beam.  

 

 

 

The incoming conical waves interact in region 2 and are blocked by the obstacle 

which casts a shadow into region 3. However, the parts of the incoming waves that 

are not blocked by the obstruction proceed into and interact in region 4. The length of 

the shadow region measured along the propagation axis, z, and beyond the obstacle is 

the reconstruction distance, zmin, beyond which the Bessel beam reconstructs. 

Although in a Bessel beam, locally, light travels parallel to the propagation axis, the 

energy flux follows the direction determined by the cone of wave vectors (Anguiano-

Morales et al., 2007). Thus reconstruction occurs as a result of the parts of the conical 

waves that are not obstructed by the obstacle.  When the obstruction is circular and 

placed on-axis, the edge waves create a diffracting Bessel intensity pattern, which 

Figure 3.4: Geometrical illustration of self-reconstruction.  
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appears as a bright spot at the centre and is called the Poisson or Arago spot (Lucke, 

2006). 

 

3.4 Spatial Light Modulators 

The performance of optical information processing and data storage systems has been 

greatly enhanced by the discovery of the spatial light modulator. A spatial light 

modulator (SLM) is an electro-optic device that is capable of converting data in 

electronic or in incoherent optical form into spatially modulated coherent optical 

signals (Goodman, 1996). Since a SLM is digitally programmable, it can be used to 

impose a given set of information on an optical wave by spatially modulating its 

amplitude distribution (and hence its intensity) or its phase distribution or both. In 

principle, a SLM is a device which allows the user to change the phase, intensity or 

polarisation of a light field in an arbitrary way. It can hence serve the purpose of 

interfacing in many optical information processing systems to provide input to and to 

extract information from the system (Goodman, 1996).  Generally, the performance 

requirements for a good SLM include flat-panel, light weight, low driving voltages 

and low power consumption (Yeh, 1993)]. In addition, high fill factor and high 

diffraction efficiency are essential performance parameters. 

 

There are several SLM technologies but the most important ones include liquid crystal 

(LC), magneto-optic (MO), deformable mirror (DM), micro-channel plate (MCP) and 

multiple-quantum-well (MQW) SLMs (Goodman, 1996). In the section that follows, 
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the basic construction and operation of liquid crystal spatial light modulators 

(LCSLMs) is presented briefly since the SLM applied in this investigation is the LC 

type.  

 

3.4.1 Liquid Crystals 

Liquid crystals (LCs) are technologically important electro-optical materials owing to 

their many unique physical and electro-optical properties. In addition to the solid and 

liquid phases, liquid crystals exhibit intermediate phases called the liquid crystal 

mesophase in which they flow like liquids yet possess some physical properties of 

crystals (De Gennes, 1974).  There are several types of liquid crystals but the most 

common ones are thermotropic, lyotropic and polymeric LCs. Thermotropic LCs are 

of three types: nematics, cholesterics and smectics and are the most widely used and 

studied in terms of their linear and non-linear optical and electro-optical properties. 

 

LCs exhibit extraordinarily large optical nonlinearities over the entire visible-near 

infrared-infrared spectral region. These nonlinear optical and electro-optical 

phenomena include optical phase conjugation, degenerate and non-degenerate wave 

mixing, self- focusing and self-phase modulation, optical parametric amplification 

and photorefractive effect (Khoo, 1995). Due to these nonlinear effects, liquid crystals 

have found extensive applications in the electronic display industry, information 

processing and storage, spatial light modulation and communication. Owing to their 
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high optical anisotropy (different indices of refraction for different axes of the 

molecule) LCs may be used as phase, polarisation or intensity modulators. It is this 

optical behaviour, the change in the optical properties of the LC due to a reorientation 

of its director as a result of the application of an electric or optical field that is 

exploited in spatial light modulators. When a field is applied, the LC molecules 

reorient depending on the direction of the field. When the direction of the field is 

reversed the direction of the molecules undergo a rotation, changing the polarization 

characteristics of the LC (Khoo, 1995). 

 

3.4.2 Liquid Crystal SLMs 

There are several types of LCs that have been applied in SLM manufacture, but the 

most commonly used are the ferroelectric and nematic LCs (Goodman, 1996).  

Ferroelectric SLMs have shorter switching times but they often have a binary output 

and are sensitive to shock and vibration. Although nematic SLMs are slower, they 

have a greater dynamic range and better amplitude uniformity. They are therefore 

often used for applications where 2π phase only modulation is necessary.  

 

LCSLMs operate on the principle of electrically controlled birefringence. The 

operation is based on ‘the reorientation of the director axis of the LC material by an 

applied field (electric or optical), which causes a change in the refractive index of the 

LC material. The field induces a dipole in the LC molecules, which interacts with the 
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field to produce a torque that rotates the molecules.  This manifests itself as a spatially 

dependent phase change to any light travelling through the liquid crystal. LCSLMs 

may be addressed in two ways: using an electric field applied via electrodes on a 

silicon wafer (electrically addressed SLM, EASLM) or optically, using an incident 

light focussed on a photosensitive material sandwiched between two transparent 

electrodes (optically addressed SLM, OASLM) (Barbier & Moddel, 1997).  

 

For a reflective EASLM, polarized light reaches the LC via the transparent electrode, 

is reflected off the shiny pixel electrodes but modulated by the orientation impinged 

on the LC by electric field applied on the pixels. Figure 3.5 illustrates the construction 

of an EA LCSLM. Examples of EA LCSLMs include those manufactured by Boulder 

Nonlinear Systems (BNS) (2010) and HoloEye Photonics (2010). Figure 3.6 shows a 

picture of an EA LCSLM from Holoeye Photonics. 

 

 

 

Incident polarized light       Reflected modulated light 

Pixel 

Transparent Electrode 

Pin Grid Array Package 

VLSI circuitry 

 

Cover Glass 

Liquid 

Crystal 

Figure 3.5: A cross-section of the construction of a typical reflective EA 

LCSLM.  
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Electrically addressed LCSLMs have fast update rates and high resolution but they 

suffer from poor surface flatness, produce pixelation artefacts and often create poor 

phase modulation due mainly to the type of liquid crystal used (Preece, 2011). In 

optically addressed LCSLMs, the input optical beam (the writing beam) activates 

photo-receptors in a photoconductive layer to generate suitable charge distribution 

(Barbier & Moddel, 1997). Figure 3.7 shows a reflective optically addressed LCSLM 

and the beam geometry. In the transmissive mode, the readout and writing beams 

impinge on the LC layer from the same side and the transmitted readout beam is the 

modulated signal. The dielectric reflector is excluded. OA LCSLMs are primarily 

manufactured by Hamamatsu (2010), have good optical flatness owing to the lack of 

electronics and can create more than 2π phase changes. However, they are slower to 

update and require intensity modulation (Preece, 2011). 

Figure 3.6: A picture of a reflective EA LCSLM manufactured by Holoeye 

Photonics (Holoeye Photonics, 2010). In the foreground is the LCD in which 

the whitish rectangular region is the active sensor area of the SLM. The black 

unit in the background comprises the electronics unit. 
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The effectiveness of an SLM depends on its ability to produce a specific amplitude 

and/or phase modulation independently in each addressable pixel. For SLMs based on 

liquid crystals, the actual modulation that can be achieved depends on the 

polarizations of the incident and transmitted beams (Ferreira & Belsley, 2010). Since 

the actual modulation in relation to a given beam’s polarization is not known in 

advance, then any SLM must be characterized for the particular wavelength and 

polarization of the beam. The purpose of performing the calibration is to verify that 

for one’s working wavelength a phase shift from 0 to 2π is achieved over all the 256 

addressable phase (or grey) levels. If the phase shift for the assigned grey-levels does 

not fall in the range from 0 to 2π then the voltages applied to the electrodes of the 

pixels need to be adjusted appropriately so as to achieve the correct phase modulation 

(Dudley, 2011).  

 

Dielectric 

reflector 

Antireflection layer 

Glass substrate 

ITO layers 

 Spacer 

Alignment layer 

Modulated 
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Incident readout 

beam 

Incident writing 

beam 

LC layer 

Photoconductive 

layer, α-Si:H 

Figure 3.7: A cross-section of the construction of a typical reflective OA LCSLM. 
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3.4.3 Factors affecting the efficiency of a LCSLM 

The efficiency of a LCSLM is affected by several factors such as diffraction 

efficiency, fill factor, reflectivity, angle of incidence, temperature and thickness of LC 

layer. In addition, there are several performance characteristics of an SLM, which 

include space bandwidth product (SBP), response time, contrast, dynamic range, 

sensitivity, and spectral response. These characteristics have been discussed in good 

detail by Neff, Athale and Lee (1990). As examples, only diffraction efficiency and 

fill factor are discussed briefly in this section.  

 

Diffraction Efficiency 

Diffraction efficiency is the ratio of the intensity diffracted into the first order to the 

incident optical intensity (Goodman, 1996). Ideally, an SLM modulates the light 

incident on it according to the phase digitally imprinted on it, such that the reflected 

or transmitted light undergoes the desired phase change. However, in practice, 

fabrication errors may lead to phase errors in the uneven etch depths or uneven etch 

areas resulting in the appearance of the zero order, for most commercially available 

SLMs (Wong & Chen, 2008). Thus a good fraction of the incident light either remains 

unchanged or is changed in way that is undesirable (Preece, 2011). Diffraction 

efficiency of the SLM then gives a measure of that proportion of the incident light 

whose phase has been modulated in a desirable way, that is, according to the phase 

imprinted on the SLM. 
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Fill Factor 

Fill factor is the ratio of the active diffracting area of the SLM to the total contiguous 

area occupied by the array of pixels. The presence and sizes of gaps between the 

charged pixels in EA LCSLMs introduces undesirable diffraction effects. Since the 

gaps are not charged they are regions of zero field and hence will cause diffraction of 

incident light depending on their relative sizes. This effect reduces the overall 

efficiency of the SLM by throwing a certain amount of reflected light into unwanted 

diffraction orders or even leaving some of the reflected light unaltered by the SLM. In 

addition, polarization coupling may occur owing to the improperly modulated regions 

between electrodes and the director deformations may propagate elastically into the 

interpixel region causing undesired phase and amplitude distortions of the propagating 

light (Stockley, Subacius & Serati, 1999). 

 

3.4.4 Modulation Transfer Function of a LCSLM 

The performance of any optical information processing system involving an SLM is 

determined greatly by the transmission characteristic of the SLM, which is described 

by its modulation transfer function (MTF) (Goodman, 1996).  The MTF of an SLM is 

a function of the spatial frequency of the input signal and represents the capability of 

transferring the modulation depth from the input to the output signals (Hsieh, Hsu, 

Paek & Wilson, 1999).  It can be defined as the diffraction efficiency of the 

displaying grating pattern, which is measured at the Fourier plane of the SLM. It 

describes the LCSLM’s capability to display patterns at different spatial frequencies. 
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The MTF of a LCSLM can be analytically determined using the Fourier series 

expansion technique. Since a LCSLM is a pixelated structure, it can be considered as 

a grating of period N pixels assumed to be in a squared structure with a fill factor of r.  

Thus the MTF of the LCSLM is (Hsieh et al., 1999),  
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For the LCSLM, the minimum period is 2N  , which corresponds to the pattern of 

ON and OFF for every alternate pixels. In general, the MTF of a LCSLM is high at 

high grating frequencies but is uniform at low frequencies. Further, it is not affected 

by the fill factor except for the grating with maximum spatial frequency (N = 2). 
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3.5  Computer Generated Holograms (CGHs) 

3.5.1 Introduction 

A hologram is a recorded interference pattern between a wavefront, scattered from an 

object, and a coherent wave, called the reference wave. A hologram is usually 

recorded on an optically flat surface, but contains information about the entire three-

dimensional wavefield. This information is coded in the form of bright and dark micro 

interferences, usually not visible for the human eye due to the high spatial 

frequencies. The object wave can be reconstructed by illuminating the hologram with 

the reference wave again. This reconstructed wave is indistinguishable from the 

original object wave. An observer sees a three-dimensional image which exhibits all 

the effects of perspective and depth of focus (Schnars & Jüptner, 2002). 

 

Conventional holography requires the existence of a real physical object in order for a 

hologram to be produced. However, in computer generated holograms (CGHs) images 

of objects that do not exist in the real physical world can be easily created. Computer 

generated holography refers to the use of analytical methods to create holograms by 

means of a digital computer, which are then transferred to a transparency by means of 

a suitable output device (such as a plotter of a printer) (Goodman, 1996). Such 

holograms enable the generation of wavefronts with any desired amplitude and phase 

distribution and are thus very useful for a wide range of applications. 
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Computer generated holography was invented by Brown and Lohmann (1966) as a 

means of creating wavefronts that could be defined mathematically. The design of 

CGHs is based on detour phase, which refers to the phase shift introduced to the light 

diffracted from an aperture in a sample cell in a hologram (Lee, 1990). A computer 

generated hologram (CGH) consists of many apertures of various sizes at various 

locations shifted differently from a two-dimensional array of a periodic pattern of 

sample points. At a certain diffraction angle, the position of the aperture relative to the 

centre of the sample cell determines the phase of the diffracted light while the size of 

the aperture determines the amplitude of the light (Lee, 1990). Thus, light incident on 

the CGH will be modulated differently both in amplitude and in phase by different 

sample apertures. 

 

Computer generated holography has two defining features. First, the object need not 

exist and hence idealized wavefronts describing a virtual object can be produced. 

Secondly, hologram synthesis is the reverse of the usual diffraction process, that is, 

the nature of the image is prescribed or known and the corresponding diffracting 

object, which is the hologram, is being determined (Tricoles, 1987). The creation of a 

CGH involves two main steps (Goodman, 1996; Hariharan, 1987): the first being the 

determination, by calculation, of the complex fields that the object would produce in 

the hologram plane if it existed. This process involves determining the appropriate 

number of sampling points for the object and the hologram and executing the correct 

discrete Fresnel or Fourier transform on the object fields usually using the fast Fourier 



54 

 

 

 

transform (FT) algorithm (Cochran et al., 1967). The second step involves using the 

computed values of the discrete FT to produce a transparency (the hologram) which 

reconstructs the object wave when it is suitably illuminated (Hariharan, 1987).  

 

There are several types of CGHs, which include the binary detour-phase holograms, 

the kinoform and the referenceless on-axis complex hologram (ROACH). The binary 

detour-phase holograms consist of many transparent dots on an opaque background 

and their transmittance assume only the values of zero and unity (Lohmann & Paris, 

1967). These holograms use the detour-phase method to modulate the phase of the 

incident light. The kinoform is a CGH in which all the cells are completely 

transparent so that the moduli of all the Fourier coefficients are arbitrarily set equal to 

unity and only the phase of the transmitted light is controlled in accordance with the 

phase of the computed Fourier coefficients (Hariharan, 1987). Kinoforms have the 

advantage that they can diffract all the incident light into the final image, unlike 

binary holograms, but they eliminate entirely the amplitude information of the object 

by assuming that the phases of the Fourier coefficients carry majority of the 

information about the object (Goodman, 1996). This assumption applies particularly if 

the object is diffuse and hence its points can be assigned random and independent 

phases. ROACH is similar to the Kinoform but utilizes a multilayer colour film as a 

recording medium to control both the amplitude and phase of the Fourier coefficients 

(Chu, Fienup & Goodman, 1973). Different layers of the film are exposed selectively 

by light of different wavelengths. When illuminated with monochromatic light, one 
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layer of the film absorbs while other layers are transparent and hence cause phase 

shifts according to the variations in the film thickness and refractive index (Hariharan, 

1987).  In this way the amplitude and phase of the transmitted beam are modulated by 

the hologram. 

 

Several materials have been applied as holographic recording media to produce 

CGHs. These include silver halide photographic emulsions, dichromated gelatin, 

photoresists, photopolymers, photochromics, photothermoplastics, and 

photorefractive crystals (Smith, 1977; Bartolini, 1977; Urbach, 1977; Staebler, 1977; 

Hariharan, 1980; Duncan & Staebler, 1977). Although some of these materials have 

significant advantages for specific applications, none meets all the requirements  for 

the ideal holographic recording medium, that is, spectral sensitivity well matched to 

available laser wavelengths, linear transfer characteristics, high resolution and low 

noise and either inexpensive or have the ability to be recycled indefinitely (Hariharan, 

1987). 

 

3.5.2 Digital Holography 

Digital holography came into being when charged-coupled device (CCD) cameras 

with appropriate numbers and sizes of pixels and fast computers became available. 

The Fresnel or Fourier holograms are recorded directly by the CCD and stored 

digitally (Schnars & Jüptner, 2002). As compared with CGHs, digital holograms do 
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not require any film material or any chemical or other processing and hence the speed 

and flexibility of hologram preparation is greatly enhanced. In digital holography, the 

analog photographic film or plate used to record conventional holograms is replaced 

by a digital detector array that records the hologram and a computer that stores it. The 

reconstruction of the wavefield, which is done optically by illumination of a 

hologram, is performed by numerical methods. The numerical reconstruction process 

is based on the Fresnel–Kirchhoff integral, which describes the diffraction of the 

reconstructing wave at the micro-structure of the hologram (Schnars & Jüptner, 

2002). In the numerical reconstruction process, the intensity as well as the phase 

distribution of the stored wavefield can be computed from the digital hologram. This 

offers new possibilities for a variety of applications such as for measuring shape and 

surface deformation of opaque bodies and refractive index fields within transparent 

media. Other applications include digital holographic imaging (DHI) and digital 

holographic microscopy (DHM), which permits a high resolution, multi-focus 

representation of engineered surfaces and living cells (Kemper, Langehanenberg 

& Von Bally, 2007). 

 

As in conventional holography a digital hologram can be recorded in-line or off axis. 

A digital off-axis hologram is recorded by superimposing a plane wave and the wave 

scattered from the object at the surface of a CCD. The resulting hologram is 

electronically recorded and stored.  During reconstruction the virtual image appears at 
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the position of the original object and the real image is formed at the same distance, 

but in the opposite direction from the CCD, as the object (Schnars & Jüptner, 2002). 

   

3.6 Objective Lens in Infinity-corrected Optical Systems 

In infinity-corrected optical systems, the objective lens (also called the microscope 

objective) produces a flux of parallel light imaged at infinity (often called infinity 

space) but which are brought to focus at an intermediate image plane by a lens 

(sometimes called a tube lens) placed behind and some distance from the objective 

lens (Olympus, 2011). The distance between the objective lens and the tube lens is 

called the infinity space since the flux of light travel parallel before being focussed by 

the tube lens. The infinity space can be of any appropriate length, neither too small 

nor too large. If the space is too small, the number of auxiliary optical components 

that can be placed between the tube lens and the objective is limited. On the other 

hand, if the space is too large, the amount of peripheral light waves that can be 

collected by the lens reduces significantly, resulting in images that have darkened or 

blurred edges (Olympus, 2011).  

 

The objective and the tube lens form a compound objective lens system, which 

produces an image at an intermediate plane, a finite distance behind the lens and 

whose magnification could be different from the specified magnification of the 

objective lens. The effective magnification, effm , of the objective lens in the infinity-
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corrected setup (which is the magnification between the object space and the 

intermediate image plane) depends on the focal length, Tf , of the tube lens and the 

focal length, of , of the objective lens and is given by (Thorlabs, 2011) 

 
0

t
eff

f
m

f
 . (3.36) 

The focal length, of , of the objective is determined from the dimensions of the 

objective and its working distance (see the dimensional drawing in figure 3.8) 

(Olympus, 2011).  
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Figure 3.8: A dimensional drawing of the objective lens showing the various 

lengths (Olympus, 2011) 
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The focal length of the objective lens is the sum of the length d (measured physically 

on the actual objective lens) and the working distance, which is usually specified by 

the manufacturer. For the RMS 10x Olympus Plan N Achromat objective used in this 

study (see figure 4.6), the working distance was specified as 10.6 mm (Olympus, 

2011).  
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CHAPTER FOUR 

METHODOLOGY 

4.1 Introduction 

In this chapter, the experimental methods applied to generate the two rotating Bessel 

beams (RBBs) and to investigate their propagation properties are described in detail. 

Section 4.2 outlines the digital generation of RBBs and section 4.3 outlines the 

experimental investigation of the rotation rates of their intensity profiles. Section 4.4 

presents the experimental investigation of the propagation dynamics of totally and 

partially obstructed RBBs for on-axis and off-axis obstructions. In addition, the 

experimental determination of the magnification of the objective lens in infinity-

corrected configuration and for the various obstacles used in this investigation is also 

presented in this section. This experimental work was done in Prof. Andrew Forbes’ 

laboratory at CSIR’s National Laser Centre (NLC), Pretoria, South Africa with 

funding from the African Laser Centre. Prof. Forbes is the Chief Scientist and the 

research group leader, Mathematical Optics group at NLC.  

  

4.2 Digital Generation of Rotating Bessel Beams  

A linearly polarised He–Ne laser beam (of wavelength  = 632.8 nm and beam radius 

of about 0.5 mm) was expanded using a 6x telescope and directed onto the liquid 

crystal display (LCD) of a spatial light modulator (SLM) (HoloEye, PLUTO-VIS, 
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with 1920 x 1080 pixels, each of width 8 µm) over an active sensor area of 

approximately 15 x 9 mm
2
. The SLM had a fill factor of about 90% and was 

calibrated for a 2 phase shift at 632.8 nm. The experimental set-up is shown in 

figure 4.1. The technique implemented in this set-up applies digitally generated ring-

slits imparted on the phase-only SLM instead of the physical ring-slit applied by 

Vasilyeu et al. (2009).  The technique involved digitally imprinting alternating sets of 

pixels on the LCD with phase values that are out of phase by using a digitally 

generated checkerboard phase pattern, which resulted in the light reflected from the 

LCD being scattered from its initial direction of propagation (the direction of the zero 

order). The redistribution of the zero order intensity was necessary because a major 

limitation of computer generated holograms is the intensity in the zero order that 

arises from phase imperfections in the hologram (Preece, 2011).  
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Figure 4.1: Experimental set-up for generating superpositions of higher order 

Bessel beams. P: Polarizer; L1, L2 and L3: lenses ( 1f  = 25 mm, 2f  = 150 mm, 

3f  = 200 mm); M: mirror; LCD: Liquid crystal display of spatial light 

modulator; O: Objective lens; CCD: CCD camera. 
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Figure 4.2 shows a photograph of the actual experimental set-up that is illustrated 

diagrammatically in figure 4.1. The experimental technique enabled the creation of 

digital holograms that acted as pure amplitude functions, which were used to encode 

annular ring transmission functions of full widths 56 μm, 108 μm, 180 μm, 220 μm, 

264 μm and 344 μm respectively. Each annular ring ‘amplitude’ transmission function 

was sub-divided into two ring slits of equal width. The ring slits were encoded with 

azimuthal ‘phase’ transmission functions, of opposite handedness, from azimuthal 

order 1m  to 6m  . In this way, the phase-only SLM operated in both amplitude and 

phase mode and hence allowed the reproduction of Durnin’s ring-slit (Durnin, 1987; 

Durnin et al., 1987) but with the flexibility to control the phase within the annular 

rings.  

 

 

 

 

Figure 4.2: A photograph of the experimental set-up used to digitally generate 

rotating Bessel beams. L1, L2: lenses; CCD: camera; SLM: spatial light 

modulator; PC: computer. The mirror M after lens L2 is not shown in the 

picture. 
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Examples of phase patterns addressed to the SLM for the generation of zero OAM 

RBBs and Helicon beams are shown in figures 4.3 and 4.4, respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.3: Images of the digitally generated phase masks imprinted on the 

SLM for the generation of zero OAM RBBs.  

Figure 4.4: Images of the digitally generated phase masks imprinted on the 

SLM for the generation of Helicon RBBs.  
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In images ‘a’ to ‘e’ (the top row) of figure 4.3, the phase in both rings varies three 

times but with opposite handedness and the values of Δk are 130 m
-1

, 89 m
-1

, 83 m
-1

, 

41 m
-1

 and 21 m
-1

 respectively. In the bottom row (images ‘f’ to ‘j’), the annular rings 

have the same value of Δk, that is 89 m
-1

 but the number of times the azimuthal phase 

varies is m = ±1,  m = ±2, m = ±4, m = ±5 and m = ±6 respectively. In the top row of 

figure 4.4 (images ‘a’ to ‘e’), the phase in the outer rings varies two times while in the 

inner ring it varies three times but with opposite handedness. The values of Δk are 130 

m
-1

, 89 m
-1

, 66 m
-1

, 41 m
-1

 and 21 m
-1

 respectively. In the bottom row (images ‘f’ to 

‘j’), the annular rings have the same value of Δk, 82 m
-1

, but the order of the 

azimuthal phase variation in the rings changes from m1 = 3, m2 = -1; m1 = 3, m2 = -

2; m1 = 4, m2 = -2; m1 = 5, m2 = -2 and m1 = 6, m2 = -2 respectively. 

 

A blazed grating of 13 pixels per period was added to the phase patterns to separate 

the non-diffracted and diffracted components reflected from the SLM (the diffraction 

efficiency of the SLM was more than 80%). Figure 4.5 shows the checkerboard 

pattern, the blazed grating, the annular rings and the digital hologram (which is a 

combination of the checkerboard pattern, the grating and the annular rings) imprinted 

on the SLM. The Fourier transform field, at the focal plane after L3 (see figure 4.1) 

was magnified with a 10x objective and captured on a charge-coupled device (CCD) 

camera (Spiricon, LBA-FW-SCOR-7350115). The objective and camera were 

positioned on x-y translation stages which were set on an optical rail in order to 

investigate the propagation of the resulting field. In the phase patterns (Figures 4.3 
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and 4.4) the ring-slit is divided into two annular rings each possessing an azimuthal 

phase of equal order but opposite handedness and hence the resultant rotating field 

has zero global OAM (Vasilyeu, 2009; Davis et al., 1996). 

  

 

 

 

 

 

 

 

 

The experimental images of the intensity profiles resulting from the superposition of 

different HOBBs are shown in figures 5.3 and 5.10 of chapter 5 for zero OAM and 

Helicon RBBs respectively. Also shown in the same figures are the phase patterns 

imprinted on the SLM to obtain the superpositions and the theoretical images of the 

same superpositions.  

Figure 4.5: Images of (a) the checkerboard with period 2Γ and transmission 

function κ(x, y), (b) the blazed grating with period Λ and transmission function 

ξ(x,y), (c) the annular rings with radii r1 and r2, width w and transmission 

function γ(x,y) and (d) the digital hologram imprinted on the SLM, which is a 

combination of the checkerboard, the grating and the annular rings. The inset 

in (c) shows the azimuthal phase variation (from 0 to 2π, in the annular rings: 

three times in the inner ring and five times in the outer ring but in the opposite 

direction).  
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4.3  Determination of Rotation Rates of Rotating Bessel Beams 

4.3.1  Zero Orbital Angular Momentum Rotating Bessel Beams 

In order to determine the rotation rates of the zero OAM rotating Bessel beams, two 

higher order Bessel beams (HOBBs) of the same azimuthal order but of opposite 

handedness were superimposed using the method outlined in section 4.2. The 

difference, Δk, in the wave numbers of the two superimposed HOBBs, which was 

determined by the radii of the two annular rings using equation 3.23 were 130 m
-1

, 89 

m
-1

, 83 m
-1

, 66 m
-1

, 41 m
-1

 and 21 m
-1

 respectively. The choice of these values was 

guided by the fact that, through several experimental trials, it was found that for 

values of Δk larger than 130 m
-1

, the ring slits would transmit too much light and the 

superposition field would be very intense. On the other hand, values of Δk smaller 

than 21 m
-1

 produced a superstition field with very low intensity. Six values of Δk 

were chosen since they would be sufficient in showing trends in rotation rates. For 

each value of Δk, the superposition field was obtained for six different orders of 

azimuthal phase variation, that is, m = ±1, ±2, ±3, ±4, ±5 and ±6. Images of the 

resultant intensity profiles of the superposition fields were captured at various 

distances, measured from the Fourier lens and along the propagation axis. Examples 

of the experimental images captured and showing the changing angular position of a 

particular ‘petal’ at various distances along the propagation axis are shown in figures 

5.4 of chapter 5. The angular position of the centroid of a selected ‘petal’ was 

calculated for each frame at a particular propagation distance. The angular shift or 

rotation angle, determined as the change in the angular position of the centroid of the 
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particular ‘petal’ was then plotted as a function of the propagation distance, z, of the 

field. Examples of some of the plots are presented in figures 5.5, 5.6 and 5.7 of 

chapter 5. The rotation rate of the intensity profile of the field was determined from 

the slope of the straight line which best fits the measured data. The rotation rate was 

plotted as a function of the difference, Δk, in the wave numbers and as a function of 

the order m of the superimposed HOBBs. The plots are presented in figures 5.8 and 

5.9, respectively, in chapter 5. 

 

4.3.2 Helicon Rotating Bessel Beams 

Helicon Bessel beams were generated using the experimental set up shown in figure 

4.1 by superimposing two HOBBs of unequal topological charges. This was achieved 

by using digital phase masks in which the azimuthal phases in the two annular rings 

varied from 0 to 2π unequal number of times but with the same or opposite 

handedness. For example, in the annular ring shown in Figure 4.5(c), the azimuthal 

phase in the inner ring varied three times in the clockwise sense (m1 = -3) and five 

times in the outer ring in the same direction (m2 = -5). The rotation rates of the 

Helicon beams were then determined following the method outlined in section 4.3.1. 

The Δk values for the Helicon beams were the same as those for the zero OAM 

rotating Bessel beams except for two Helicon beams for which the Δk value was 121 

m
-1

. Figure 4.4 shows examples of the phase patterns imprinted on the SLM to 

digitally generate the Helicon beams. Experimental images of the resultant intensity 

of superposition of the Helicon beams are shown in figure 5.10 of chapter 5.  
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Examples of the experimental images captured and showing the changing angular 

position of a particular ‘petal’ at various distances along the propagation axis are 

shown in figure 5.11 of chapter 5. The angular shifts or rotation angles of various 

intensity profiles at various propagation distances and the rotation rates of the 

intensity profiles were determined following the method described in section 4.3.1. 

The plots of angular shifts as a function of propagation distance and of rotation rates 

as a function of the difference 1 2m m m   between the azimuthal orders of the 

superimposed HOBBs and as a function of the difference, Δk, in the wave numbers of 

the two HOBBs are presented and discussed in chapter 5.  

 

4.4 Propagation Dynamics of Obstructed Rotating Bessel Beams 

This section outlines the experimental method by which the propagation of 

significantly and partially obstructed ZOAM and Helicon RBBs was investigated. 

Prior to the investigation, the sizes of individual petals and petal patterns for various 

values of order m of the superimposing HOBBs were determined. This was necessary 

in order to make appropriate choices of the obstacles for obstructing the petals and the 

petal patterns in the intensity profiles of the beams. In addition, since the sizes of the 

petals as captured by the CCD camera depended on the magnification of the objective 

lens (microscope objective), there was need to calibrate the objective lens to 

determine the actual magnification attained in the set-up. The section thus begins with 

the determination of the magnification of the objective lens. 
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4.4.1  Calibration of the Objective Lens  

In the experimental investigation of the propagation dynamics of RBBs, an Olympus 

Plan N Achromat RMS 10x objective lens of numerical aperture 0.25 and 

characterized for visible light was used. The effective focal length of the objective 

was worked out as 17 mm [115] following the method described in section 3.7. In this 

investigation, a tube lens of a focal length of 200 mm was used owing to difficulties 

in obtaining one with a focal length of 170 mm. The theoretical magnification for the 

objective in the infinity-corrected configuration was then (200 mm/17 mm) = 11.765, 

using equation 3.36. Figure 4.6 shows a picture of the objective clearly indicating the 

manufacturer’s specifications (Thorlabs, 2011).  

 

 

 

 

 

Figure 4.6: A picture of the objective lens showing the manufacturer’s 

specifications (Thorlabs, 2011). The yellow band is the colour code for a 

magnification of 10x. 
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The magnification of the objective was experimentally determined using the set-up in 

figure 4.7. A He-Ne laser was expanded four times and directed onto an object at the 

focal plane of the objective, a distance 17 mm in front of it. Various objects of known 

sizes: three opaque circular disks of diameters 200 μm, 400 μm and 600 μm 

respectively and four circular apertures (pin-holes) of diameters 1.2 mm, 1.5 mm, 1.9 

mm and 2.0 mm respectively were used. The magnified image of each object was 

focussed by a tube lens of focal length 200 mm placed at a distance of 55 mm (the 

infinity space) behind the objective lens onto a CCD camera set at the focal plane of 

the tube lens. The experimental images of some of the objects used are shown in 

figure 5.1 of chapter 5. The ‘image size’ was then plotted as a function of the ‘object 

size’ and the slope of the linear fit gave the magnification of the objective lens as 

11.515. The plot is shown in figure 5.2 of chapter five. 
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Figure 4.7: Experimental layout for the determination of the magnification of the 

objective lens. L1, L2 and L3: lenses (f1 = 50 mm, f2 = 200 mm); M1 and M2: 

mirrors; P: object plane; O: objective lens; L3: tube lens (f3 = 200 mm); CCD: 

camera. Distances d1 (focal length of objective) and d2 (length of the infinity 

space) were 17 mm and 55mm, respectively. 
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The distances between the objective and the tube lens and between the tube lens and 

the CCD camera were maintained throughout the investigation of the propagation 

dynamics of RBBs and hence the value of the magnification applied for the remaining 

experiments reported in this section. In addition, using the set up in figure 4.7, the 

sizes (diameters) of the petals in various intensity patterns of the superposition fields 

were determined in order to select and use appropriately sized obstacles. 

 

4.4.2  Investigation of the Propagation of Significantly Obstructed RBBs 

The propagation of various RBBs past different obstacles set on- or off-axis with 

respect to the propagation axis of the beams was investigated. The resultant intensity 

patterns (‘petal’ pattern) of the RBBs were obstructed significantly using opaque 

circular disks centred on the propagation axis of the beams and the propagation of the 

obstructed field beyond the obstacles was investigated.  

A linearly polarized Gaussian laser beam of radius of about 0.5 mm and average 

power of 2 mW at 633 nm from a He–Ne laser (ThorLabs HRP020) was expanded 

and collimated using a 6x telescope.  Figure 4.8 shows the experimental set up for 

investigating the propagation of the obstructed RBBs. The collimated laser beam was 

then directed onto a phase-only liquid crystal display (LCD) spatial light modulator 

(HoloEye, Pluto NIR) with 1920 pixels x 1080 pixels each of width 8 μm. The spatial 

light modulator (SLM) had an active sensor area of about 15 mm x 9 mm, a fill factor 
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of 87% and was calibrated for a 2π phase shift at 633 nm. The RBBs were digitally 

generated following the method discussed in section 4.3.  
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The ‘petal’ patterns of the zero OAM RBBs: m = ±1, Δk = 120 m
-1

; m = ±2, Δk = 430 

m
-1

; m = ±3, Δk = 66 m
-1

; m = ±3, Δk = 120 m
-1

 and the Helicon RBBs: m1 = 4, m2 = -

2, Δk = 120 m
-1

 and m1 = -3, m2 = -5, Δk = 120 m
-1

 were obstructed significantly (the 

obstacle was set on-axis so as to block off completely the petal structure) using three 

opaque disks of diameters 200 μm, 400 μm and 600 μm respectively  set at the focal 

plane of the Fourier lens, which coincided with the focal plane of the objective lens. 

The light field propagating beyond the obstruction was magnified by the 10x 

Figure 4.8: Experimental set-up for investigating the propagation of RBBs past 

various obstructions. P: Polarizer; L1, L2, L3: lenses ( 1f  = 50 mm, 2f  = 200 mm, 

3f  = 200 mm); M: mirror; LCD: Liquid crystal display of spatial light 

modulator; D: Plane of obstruction; O: Objective lens ( of  = 17 mm); L4: Tube 

lens of focal length 4f  = 200 mm; CCD: CCD camera. The length, isd  of 

infinity space was 55 mm. 
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objective (Olympus Plan N Achromat RMS 10x) in the infinity-corrected 

configuration and captured by a CCD camera (Spiricon USB SP620U of pixel size 4.4 

μm, resolution 1600 pixels x 1200 pixels, active sensor area 7.1 mm x 5.4 mm and 

wavelength range 190–1550 nm). By setting the camera–objective lens combination 

on an optical rail, the propagation of field at various transverse planes beyond the 

obstruction was easily investigated. The experimental results and the discussions are 

presented in chapter 5 of the thesis. 

 

4.4.3 Investigation of the Propagation of Partially Obstructed RBBs 

In this section, the experimental investigation of the propagation of partially 

obstructed RBBs is reported. The propagation of RBBs with partially obstructed 

‘petal’ patterns, with partially obstructed single petals and with significantly 

obstructed single petals was investigated using the set-up in figure 4.8. The zero 

OAM RBBs m = ±1, Δk = 120 m
-1

; m = ±2, Δk = 66 m
-1

; m = ±3, Δk = 66 m
-1

; m = 

±3, Δk = 120 m
-1

 and m = ±6, Δk = 120 m
-1

  and the Helicon RBBs: m1 = 4, m2 = -2, 

Δk = 120 m
-1

 and m1 = -3, m2 = -5, Δk = 120 m
-1

  were generated digitally following 

the technique discussed in section 4.3 and obstructed using two opaque disks 20 μm 

and 400 μm and two pins, pin 1 and pin 2, respectively. The obstructions were set off-

axis with respect to the propagation axis of the beams. Pin 1 had a tip width of 30 μm 

while pin 2 had a width of 95 μm at the tip. Images of some of the obstacles are 

shown in figure 5.1 of chapter 5. The field propagating beyond the obstructions was 
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similarly investigated, for each obstruction and beam, at various transverse planes 

beyond the obstruction. The experimental results and the discussions are presented in 

section 5.6 of chapter 5 of the thesis. 
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS 

5.1  Introduction 

This chapter presents the results of all the experimental investigations described in 

chapter 4. The results of the digital generation of zero OAM and Helicon RBBs, the 

experimental determination of the rotation rates of the RBBs, the calibration of the 

objective lens in infinity-corrected configuration and the investigation of the 

propagation dynamics of obstructed RBBs are presented and discussed. In addition 

and where possible, theoretically simulated results are presented and compared with 

the experimental results.  

5.2  Magnification of the Objective Lens in Infinity-corrected Mode 

The images of some of the objects used in the determination of the magnification of 

the objective lens in infinity corrected configuration are shown in figures 5.1(a) and 

(b). The opaque disk in figure 5.1(b) and the pin in 5.1(c) were also used as obstacles 

in the investigation of the propagation dynamics of obstructed RBBs. From the 

measured sizes of the obstacles, the magnification of the objective lens was 

determined by the plot of the image sizes as a function of the object sizes. Figure 5.2 

shows a plot of the image size as a function of the object size. The magnification is 

given by the slope of the linear fit to the plot. 



76 

 

 

 

 

 

Figure 5.1: Images of some of the objects used in the calibration of the objective 

lens (‘a’ and ‘b’) and in the investigation of the propagation dynamics of 

obstructed RBBs (‘b’ and ‘c’); (a) Pinhole of diameter 1.2 mm, (b) opaque disk of 

diameter 400 μm and (c) pin of tip width 95 μm.  
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Figure 5.2: Plot of image diameter, id  as a function of object diameter, od . 

Inset is the trend line equation showing a slope of 11.515. 
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The experimental value of the magnification of the objective lens, that is, 11.515, 

agrees well with the theoretical value of 11.765 (see section 4.4.1), with a percentage 

error of 2.12%, showing that the experimental method attained a good degree of 

accuracy in the calibration of the objective lens.  

 

5.3  Rotation Rates of Zero-OAM Rotating Bessel Beams 

The two HOBBs reflected off the SLM LCD display were superimposed and the 

superposition field was captured at various transverse planes at specific propagation 

distances measured from the Fourier plane and along the propagation axis. The 

resulting intensity patterns of the superposition fields for various values of order m, 

that is m =1, 2, 3, 4, 5 and 6, as observed in the Fourier plane, are depicted in the 

middle row of figure 5.3. The images were approximately 0.2 mm x 0.2 mm in the 

Bessel zone. The orders, m1 and m2, of the two beams and hence of their azimuthal 

phases were equal in magnitude but of opposite handedness, that is, 2 1m m  . The 

intensity of superposition consists of a ‘petal’ structure in which the number of 

‘petals’ equals to twice the order m of each of the two superimposed beams. The 

‘petals’ (also called ‘lobes’) are points of maximum intensity (due to constructive 

interference) while the dark regions between the ‘petals’ are points of minimum 

intensity (due to destructive interference of the two fields). 
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Figure 5.3: Experimental images (middle row) and the corresponding theoretical 

images (bottom row) of zero OAM RBBs of various orders of equal magnitude 

but opposite topological charges: m =1(‘g’ and ‘m’), m = 2 (‘h’ and ‘n’), m =3 

(‘i’ and ‘o’), m = 4 (‘j’ and ‘p’), m = 5 (‘k’ and ‘q’) and m = 6 (‘l’ and ‘r’). The 

top row shows the corresponding digital holograms imprinted on the SLM to 

generate the experimental images.  

 

From equation (3.25), it can be deduced that the intensity of superposition is 

modulated in the azimuthal coordinate by the function  2cos m . From the properties 

of the cosine function, it follows that the number of intensity maxima in the intensity 

of superposition is twice the order m of each of the superimposing beams. 

  

The top row in figure 5.3 shows the digital holograms imprinted on the SLM in order 

to implement the superposition of the two fields and hence generate the experimental 

images. These digital SLM phase masks were generated using MatLab
®
 Software 

(Knight, 2000). The bottom row shows the theoretical images of the superposition, for 
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various values of order m, obtained by simulation using Mathematica
®
 Software 

(Shifrin, 2008). The MatLab
® 

and Mathematica
® 

scripts used are shown in 

Appendices B and C, respectively. The agreement between the experimental images, 

figures 5.3(g) to 5.3(l) and the corresponding theoretical images, figures 5.3(m) to 

5.3(r) is excellent showing that the experimental technique is highly accurate for such 

experiments. From the images it is evident that the spatial extent of the dark core of 

the intensity of superposition increases with increase in the order, m, of the 

superimposing beams. Consequently, the radius of the circular path described by the 

‘petal’ pattern also increases with increasing order. This is because the ‘petals’ or 

‘lobes’ are arranged on the circumference of the set of rings defined by the enveloping 

Bessel function (radial only) of the first kind (equation 3.13), whose radius increases 

with increase in the order m of the function. The intensity profile rotates about the 

propagation axis as the field propagates along the axis, that is, each ‘petal’ in the 

intensity pattern experiences an angular shift in position as the propagation distance, 

measured from the Fourier plane, increases. As an example, figure 5.4 shows the 

intensity profiles captured at various propagation distances for the zero OAM RBB 

for which m = 2 and the difference, Δk in the longitudinal wave vectors of the two 

beams was 83 m
-1

.    
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It can be observed from figure 5.4 (images ‘a’ to ‘i’) that there is a change in the 

angular position of the petals as highlighted by the white line, which illustrates a 

rotation in the field as it propagates. Image ‘j’ shows the Gaussian beam that was 

incident on the SLM to generate the rotating beams. As expected, the petal structure 

appears at the beginning of the propagation invariance region with low intensity, 

which attains a maximum mid-way through the invariance region, and then decreases 

again as the conical waves separate out back to an annular ring structure. However, 

while the scale of the pattern is invariant, the intensity profile rotates about the 

propagation axis. The angular shift of the intensity pattern as a function of 

propagation distance was deduced using the coordinates of the centroid of a given 

‘petal’. The coordinates were obtained by manually selecting the pixel at which the 

peak value of the ‘petal’ intensity occurred. The standard deviation in the angular shift 

of the ‘petal’, was determined by assuming that the manually selected coordinate was 

Figure 5.4: Experimental images (‘a’ to ‘i’) of the intensity profiles of the 

superimposed field, for 2m  , 83k  m
-1

 captured at intervals of 10 mm along 

the propagation axis.  
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within a one-sixth range of the petal’s diameter from the true centroid, that is, the 

standard deviation,   in the angular shift is given by; 

 arctan arctan
18

D

R R





   
    

   
, (5.1) 

where D is the diameter of the ‘petal’, R is the distance from the centre of the field to 

the centroid of the ‘petal’ and   is the standard deviation in the petal’s position. 

Since the standard deviation in the ‘petal’ position is scaled as a function of R and R 

increases with the order, m, as is evident from figure 5.3, then the standard deviation 

θσ also scales as a function of the order, m (see figure 5.6). For the example plotted in 

figure 5.5, the standard deviation in the θ is 66 mrad. The absolute error in the 

propagation distance, given by the smallest increment on the optical rail on which the 

detection system was mounted, was 1 mm. Figure 5.5 shows a plot of the angular shift 

as a function of the propagation distance for m = ±3 and Δk = 66 m
-1

.  
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Similar graphs were obtained for various values of m  for a given value of Δk and 

also for various values of Δk for a given value of order m. The corresponding 

experimental rotation rates were similarly determined from the slope of the linear fit 

to each plot and are shown adjacent to each plot. As an example, the plots of the 

petal’s angular shift as a function of propagation distance for Δk = 66 m
-1 

and for m = 

1, 2, 3, 4, 5 and 6 are presented on the same axes in figure 5.6 while figure 5.7 

presents similar plots for four values of Δk (41 m
-1

, 83 m
-1

, 88 m
-1

 and 130 m
-1

) and 

for m = 2. 
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Figure 5.5: Plot of the angular shift (rotation angle) of a ‘petal’, for the 

intensity pattern, 3m   and 66k  m
-1

 as a function of the propagation 

distance, z. The rotation rate, 9.626 rad/m, of the pattern is given by the slope 

of the linear fit.  
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Figure 5.6: Plots of the petal’s angular shift as a function of propagation 

distance, z for Δk = 66 m
-1 

and for various values of order m. The rotation 

rate, R of the pattern is indicated on each plot. 

Figure 5.7: Plots of the petal’s angular shift as a function of propagation distance, 

z for four values of Δk (41 m
-1

, 83 m
-1

, 88 m
-1

 and 130 m
-1

) and for m = 2. The 

rotation rates of the intensity patterns are indicated on the plots.                                                                           
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The plots in figures 5.5, 5.6 and 5.7 show that, as expected from the expression 

2kz m  , the angular shift (the rotation angle) of the ‘petals’ and hence of the 

intensity profile varies linearly with the propagation distance of the field. In addition, 

for a given order m of the superimposing beams the angular shift varies linearly with 

the difference, Δk, between the longitudinal wave vectors of the two fields. However, 

it varies inversely with m for a given value of Δk. These experimental results agree 

well with the theoretical predictions from equation (3.26a). The experimental data 

was also interpreted by plotting the rotation rate as a function of the order of the 

azimuthal phase variation, m, and of the difference, Δk, between the two longitudinal 

wave-vectors of the superimposed beams. The plots are shown in figures 5.8 and 5.9 

respectively.  
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Figure 5.8: Plots of the rotation rate of the intensity pattern as a function of the 

order, m of the superimposed beams, for six different values of Δk (21 m
-1

, 41 

m
-1

, 66 m
-1

, 83 m
-1

, 89 m
-1

 and 130 m
-1

). The dashed lines are the theoretical fits.   
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Figure 5.8 shows that an increase in the magnitude of m results in a hyperbolic 

decrease in the rotation rate but from figure 5.9, it is evident that an increase in Δk, 

which was achieved by increasing the width of the inner and outer annular rings, 

increased the rotation rate of the ‘petal’ structure linearly. Figures 5.8 and 5.9 both 

show good agreement between the experimental data (symbols) and the theoretical 

fits (dashed lines). The error, R in the rotation rate was determined by the error, S

in the slope of the graph of the petal’s angular shift, θ, as a function of the propagation 

distance, z, by making use of the following relationship; 

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

R
o

ta
ti

o
n

 r
a

te
, 

d
θ

/d
z
 (

ra
d

/m
)

Change in longitudinal wave vector, Δk (in m-1)

m = ±1

m = ±2

m = ±3

m = ±4

m = ±5

m = ±6

Linear (m = ±1)

Linear (m = ±2)

Linear (m = ±3)

Linear (m = ±4)

Linear (m = ±5)

Linear (m = ±6)

Figure 5.9: Plots of the rotation rate of the intensity pattern as a function of the 

difference in longitudinal wave vectors, Δk, for six different values of order, m 

of the superimposed beams. The dashed lines are the theoretical fits.   
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z z

  


 
   , (5.2) 

where  is the standard deviation in the angular position of the petal determined 

using equation (5.1), z is the median of the propagation intervals at which the field is 

captured and n is the number of intervals. For example, for the case when m = 3, R

was found to be 0.5 rad/m. The radius of each ring-slit could be accurately measured 

to within a single pixel. Taking this absolute error for the radii of the two ring-slits 

into account, the absolute error for the difference between the two wave vectors was 6 

m
-1

.  

 

For all the results shown thus far, the azimuthal phase within the outer ring-slit varied 

from white to black (0 to 2π) in an anticlockwise direction and that in the inner ring-

slit in a clockwise direction. Inverting the handedness of the two ring-slits resulted in 

the field rotating with the same rate, but in the opposite direction.  

5.4  Rotation Rates of Helicon Beams 

The resulting intensity patterns of the Helicon beams, as observed in the Fourier 

plane, for various values of order Δm but same values of Δk are presented in the 

middle row of figure 5.10. The top row of figure 5.10 shows SLM phase masks used 

to digitally generate the beams while the bottom row shows the corresponding 

theoretical images simulated using Mathematica
®
 software. Figure 5.11 shows the 

intensity profile of three Helicon beams captured at various transverse planes at 
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specific propagation distances measured from the Fourier plane and along the 

propagation axis. 

  

 

 

 

  

Figure 5.10: Experimental images (middle row) and the corresponding 

theoretical images (bottom row) of Helicon RBBs formed by the 

superposition of HOBBs with Δk = 83 m
-1

 and of orders m1 = 3, m2 = -1(‘f’ 

and ‘k’), m1 = 3, m2 = -2 (‘g’ and ‘l’), m1 = 4, m2 = -2 (‘h’ and ‘m’), m1 = 5, 

m2 = -2 (‘i’ and ‘n’), and m1 = 6, m2 = -2 (‘j’ and ‘o’). The top row shows the 

SLM phase holograms used to generate the experimental images.  
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From figures 5.10 and 5.11, it follows that the intensity pattern of the Helicon RBBs 

consists of a ‘petal’ structure in which the number of ‘petals’ in each ring equals to 

the absolute difference, 1 2m m between the azimuthal orders of the superimposed 

HOBBs.  This experimental result follows from the properties of the cosine function 

in the theoretical prediction in equation (3.25). In addition, there is excellent 

agreement between the experimental and the theoretical images, showing that the 

experimental method applied was appropriate and accurate. From figure 5.11, it is 

apparent that the various Helicon beams rotate but at different rotation rates. A 

comparison of the rotation of the Helicon beam Δk = 83 m
-1

, m1 = 3 and m2 = -1(top 

Figure 5.11: Experimental images captured at intervals of 10 mm and showing 

the clockwise rotation of the intensity profile of Helicon RBBs:  Δk = 83 m
-1

, m1 

= 3 and m2 = -1(top row); Δk = 83 m
-1

, m1 = 4 and m2 = -2 (middle row) and Δk 

= 130 m
-1

, m1 = 4 and m2 = -2 (bottom row). The images in each column were 

captured at equal propagation distances measured from the Fourier plane: 

The white line in the images shows the angular positions of the ‘petals’ at 

various propagation distances.   
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row) with that of Δk = 83 m
-1

, m1 = 4 and m2 = -2 (middle row) shows that the former 

rotates faster than the latter. Similarly the Helicon beam Δk = 130 m
-1

, m1 = 4 and m2 

= -2 (bottom row) rotates faster than Δk = 83 m
-1

, m1 = 4 and m2 = -2 (middle row). 

These experimental results agree well with the theoretical prediction in equation 

(3.29) and are confirmed by the plots, shown in figure 5.12, of the angular shift of the 

‘petals’ as a function of propagation distance for the three Helicon beams in figure 

5.11. From the experimental and theoretical images in figure 5.10, it is clear that, as 

expected, the radii of the circular envelope of the ‘petals’ and  the size of the dark 

core of the intensity pattern increases with increase in the absolute difference 

1 2m m between the orders of the two superimposing beams.  In addition, the images 

in figure 5.11 show that the intensity of the ‘petals’ is low towards the start and end of 

the invariance region but is a maximum around the centre of the region. This is due to 

the fact that the centre of the invariance region is at the focal plane of the Fourier lens.   
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The theoretical rotation rates of the three Helicon beams, using equation (3.29), are 

respectively 20.75 rad/m, 13.83 rad/m and 21.67 rad/m and the associated percentage 

errors are 3.0%, 5.6% and 2.9%, respectively. Thus the experimental results of the 

rotation rates of the Helicon beams agree well with theoretical predictions. 
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Figure 5.12: Plots of petal’s angular shift as a function of propagation distance 

for the Helicon RBBs:  Δk = 83 m
-1

, m1 = 3 and m2 = -1; Δk = 83 m
-1

, m1 = 4, m2 = 

-2 and Δk = 130 m
-1

, m1 = 4 and m2 = -2. The rotation rates of the intensity 

profiles of the beams are shown adjacent to the plots. 
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5.5  Propagation Dynamics of Obstructed Rotating Bessel Beams 

5.5.1  Theoretical Results 

In order to demonstrate the self-reconstruction of RBBs theoretically, analytical 

simulations were implemented by directly solving the Fresnel integral [17] using the 

discrete Fourier transform (DFT) (Sundararajan, 2001). The results of the simulation 

for the partial obstruction of the petal patterns of two zero OAM rotating Bessel 

beams; |m| = 1, Δk = 120 m
-1

 and |m| = 3, Δk = 120 m
-1

 respectively and one Helicon 

beam, m1 = -3, m2 = -5, Δk = 120 m
-1

 are shown in figure 5.13.  For the zero OAM 

RBBs, a single petal was significantly obstructed while for the Helicon RBB, the petal 

was partially obstructed.  

 

 

 

Figure 5.13: Theoretical images of the self-reconstruction of RBBs: zero OAM 

Bessel beams (top and middle rows) and a Helicon beam (bottom row). Images 

(a), (d) and (g) are at the plane of obstruction while the other images are at (b) 

18 mm, (c) 23 mm; (e) 8 mm, (f) 18 mm, (h) 4 mm and (i) 8 mm along the 

propagation axis and beyond the obstruction.  



92 

 

 

 

The beams in figure 5.13 were theoretically generated for the wavelength λ = 633 nm, 

radial wave vectors k1r = 63,494 m
-1

, k2r = 79,863 m
-1

, difference in longitudinal wave 

vectors Δkz = 120 m
-1

 and radii 0.00128 m and 0.001616 m respectively for the inner 

and outer annular rings. From figure 5.13, it is clear that the three beams reconstruct 

at different reconstruction distances: 23 mm, 18 mm and 8 mm respectively. This is 

because the sizes of the obstructions, as seen from images (a), (d) and (g) are 

different. The minimum reconstruction distance zmin varies linearly with the size of the 

obstacle (see equation 3.30). However, although the sizes of the obstacles in (d) and 

(g) are almost the same, the Helicon RBB reconstructs much faster (zmin = 8 mm) than 

the zero OAM RBB |m| = 3, Δk = 120 m
-1

 (zmin = 18 mm) because the single petal in 

the Helicon beam was partially obstructed but in the case of zero OAM beam it was 

significantly obstructed. The self-reconstruction of the beams results in a 

redistribution of electromagnetic energy and hence intensity among the petals. This 

can be seen by comparing the intensities of corresponding petals in the last two 

images of each row in figure 5.13.   

 

5.5.2 Propagation of Significantly Obstructed Zero-OAM RBBs 

The intensity (petal) patterns of the two zero OAM RBBs, namely; |m| = 1, Δk = 120 

m
-1

 and |m| = 3, Δk = 120 m
-1

 were significantly obstructed on-axis using a 400 µm 

opaque disk centred at the propagation axis and set at the focal plane of the Fourier 

lens. The propagating field after the obstruction was captured at various transverse 

planes (or distances) along the propagation axis. Figures 5.14 and 5.15 show the 
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intensity patterns of the obstructed beams (top rows) and unobstructed beams (bottom 

rows), taken at corresponding transverse planes, at various propagation distances for 

the two beams respectively. 

 

 

 

Figure 5.14: Experimental images (top row) showing the propagation of the 

significantly obstructed zero OAM rotating Bessel beam, |m| = 1, Δk = 120 m
-1

, at 

various distances beyond the plane of obstruction of the 400 μm opaque disk: (a) 

0 mm, (b) 18 mm, (c) 23 mm, (d) 28 mm and (e) 33 mm.  
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Figure 5.15: Experimental images (top row) showing the propagation of the 

significantly obstructed zero OAM rotating Bessel beam, |m| = 3, Δk = 120 m
-1

, at 

various distances beyond the plane of obstruction of the 400 μm opaque disk: (a) 

0 mm, (b) 18 mm, (c) 23 mm, (d) 29 mm and (e) 33 mm.  

 

The theoretical reconstruction distance, zmin calculated from equation (3.30) for the 

400 µm on-axis obstruction is 28 mm. From figures 5.14 and 5.15, it is evident that 

the two zero OAM RBBs reconstruct at a distance of about 28 mm from the plane of 

obstruction, and hence the experimental reconstruction distances agree with the 

theoretical value. A comparison of the images of the obstructed and unobstructed 

beams in figures 5.14 and 5.15 shows that the intensity patterns have the same 

orientation and symmetry (see for instance images 5.14 ‘e’ and 5.14 ‘j’) indicating 

that the obstruction does not affect the rotation of the beams. In addition, although the 

two beams have different rotation rates (54.14 rad/m and 18.40 rad/m respectively) 

they reconstruct at the same distance showing that the rotation rates of the beams do 

not affect their minimum reconstruction distances.  
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5.5.3 Propagation of Significantly Obstructed Helicon RBBs 

The ‘petal’ patterns of the two Helicon RBBs, namely; m1 = -3, m2 = -5, Δk = 120 m
-1

 

and  m1 = 4, m2 = -2, Δk = 120 m
-1

 were significantly obstructed on-axis using the 400 

µm opaque disk centred at the propagation axis and set at the focal plane of the 

Fourier lens. The propagating field after the obstruction was captured at various 

transverse planes (or distances) along the propagation axis. Figures 5.16 and 5.17 

show the experimental images of the intensity patterns of the obstructed beams at 

various transverse planes along the propagation axis for the two beams respectively. 

Also shown in the bottom rows of the figures are the intensity profiles of the 

unobstructed beams at distances corresponding to those of the obstructed beams. 

 

 

 

 

 

 

Figure 5.16: Experimental images (top row) showing the propagation of 

significantly obstructed Helicon rotating Bessel beam m1 = -3, m2 = -5, Δk = 120 

m
-1

, at various distances beyond the plane of obstruction of the 400 μm opaque 

disk: (a) 0 mm, (b) 18 mm, (c) 23 mm, (d) 28 mm and (e) 33 mm.  
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It can be deduced from figures 5.16 and 5.17 that the reconstruction distances of the 

two Helicon beams are also about 28 mm from the plane of obstruction. Thus the 

experimental reconstruction distances agree with the theoretically predicted value of 

28 mm. Similarly the reconstructed intensity patterns have the same orientation and 

symmetry as the unobstructed pattern at the same distances from the plane of 

obstruction.   In addition, the rotation of the beams does not affect their reconstruction 

(note that the two Helicon beams have different rotation rates, 62.23 rad/m and 22.35 

rad/m respectively, but their reconstruction distances are the same). However, from 

figure 5.17, it is evident that beam does not reconstruct fully: the propagating field 

does not regain the full profile of the unobstructed pattern. It is possible, for example, 

that the Poynting vector rotation leads to a flow of energy from the unobstructed petal 

Figure 5.17: Experimental images (top row) showing the propagation of 

significantly obstructed Helicon rotating Bessel beam, m1 = 4, m2 = -2, Δk = 120 

m
-1

, at various distances beyond the plane of obstruction of the 400 μm opaque 

disk: (a) 0 mm, (b) 15 mm, (c) 20 mm, (d) 25 mm and (e) 30 mm.  
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to the obstructed petal, in addition, to the energy transfer from the conical waves that 

bypass the obstruction.  

 

5.6 Propagation of Partially Obstructed Rotating Bessel Beams 

This section reports the propagation dynamics of the rotating beams for which a 

single petal in the intensity pattern was partially or significantly (fully) obstructed. 

The obstruction size was in most cases of the same order as that of the petal, and thus 

not more than 20% of the total beam size. In the results that follow the obstruction is 

shown in one of the frames of the data, indicating the relative size of the obstruction 

to the ‘petal’ and the ‘petal’ pattern.  

5.6.1 Partial Obstruction of a Single Petal 

A single petal of the Helicon beam Δk = 120 m
-1

, m1 = -3, m2 = -5 was obstructed 

partially using a pin of tip width of about 30 μm. In addition, single petals of the zero 

OAM beams: Δk = 120 m
-1

, m1 = +3, m2 = -3 and Δk = 66 m
-1

, m1 = +3, m2 = -3 were 

obstructed partially using the pin of width 30 μm and an opaque disk of diameter 20 

μm respectively. The field propagating beyond each obstruction was captured at 

different distances measured from the plane of obstruction along the propagation axis. 

Figures 5.18 and 5.19 show the self-healing dynamics of the three beams respectively. 

The bottom row (images ‘f’ to ‘j’) in figure 5.18 shows the images of the unobstructed 

beam at the same distances as the corresponding images in the top row. 
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Figure 5.18: Experimental images (top row) showing the propagation of 

Helicon beam, m1 = -3, m2 = -5, Δk = 120 m
-1

 for which a single petal was 

partially obstructed by a pin tip of width 30 μm. The images were captured 

at distances: (a) 0 mm, (b) 2 mm, (c) 4 mm, (d) 6 mm and (e) 8 mm beyond 

the plane of obstruction.  

 

 

Figure 5.19: Experimental images showing the propagation of zero OAM 

beams: Δk = 120 m
-1

, m1 = +3, m2 = -3 (images ‘b’ to ‘f’) and Δk = 66 m
-1

, m1 = 

+3, m2 = -3 (images ‘h’ to ‘l’) after obstruction by a pin of tip width 30 μm and 

an opaque disk of diameter 20 μm respectively.  
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Images ‘b’ to ‘f’ in figure 5.19 were captured at 0 mm, 4 mm, 8 mm, 12 mm and 16 

mm respectively while images  ‘h’ to ‘l’ were at 0 mm, 2 mm, 4 mm,  6mm and 14 

mm respectively from the plane of obstruction. Images ‘a’ and ‘g’ are the 

unobstructed intensity patterns of the two beams at the plane of obstruction, z = 0 mm.  

 

From figures 5.18 and 5.19 it can be observed that although some form of 

reconstruction of the intensity patterns occurs, the reconstructed beams do not attain 

the exact nature of the initial patterns. A redistribution of electromagnetic energy 

occurs resulting in some petal(s) becoming more intense than the other petal(s). As 

the beam propagates the petals exchange energy such that a petal that is more intense 

at a particular plane becomes less intense after some propagation distance. In addition, 

some petals get distorted in shape in the process of reconstruction. This is clearly 

evident from a comparison of the obstructed and unobstructed images in figure 5.18 

and the top row of figure 5.19. However, from the bottom row of figure 5.19, it is 

apparent that the reconstructed intensity pattern (image ‘l’) is similar to the 

unobstructed pattern (image ‘g’) except for a shift in the angular position of the petals, 

which can be attributed to the rotation of the intensity profile of the beam. The 

difference in the self-healing dynamics of the two beams in figure 5.19 could be 

attributed to the fact that the pin used as an obstacle in the top row partially obstructs, 

not just the single petal, but also a part of the intensity pattern adjacent to the petal. 

However, the 20 μm opaque disk in figure 5.19(h) partially obstructs only the single 

petal and does not obstruct any intensity in the surrounding region of the petal. 
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Further, since the disk did not obstruct fully the single petal, diffraction of light 

around the circular disk occurred, which appeared as diffraction rings concentric 

about the petal and the Poisson’s spot at the centre of the petal in images 5.19(h) and 

5.19(i).  

 

The theoretical reconstruction distance of the Helicon beam, Δk = 120 m
-1

, m1 = -3, 

m2 = -5 for the 30 μm pin obstruction is 6.6 mm. From figure 5.18 the obstructed petal 

first reappears at a distance of about 8 mm but the initial form of the pattern occurs at 

23 mm from the plane of obstruction. In the top row of figure 5.19, the petal 

reconstructs at a distance of about 8mm and hence the theoretical and experimental 

reconstruction distances agree fairly well. 

 

5.6.2 Significant Obstruction of a Single Petal 

In this section the propagation of rotating beams after significant obstruction of a 

single petal (similar to partial obstruction of the petal pattern) is presented. A single 

petal of the zero OAM beam Δk = 120 m
-1

, m1 = +1, m2 = -1 was significantly 

obstructed using a pin of tip width 95 μm. Similarly, single petals of the zero OAM 

beam: Δk = 120 m
-1

, m1 = +3, m2 = -3 and the Helicon beam Δk = 120 m
-1

, m1 = +4, 

m2 = -2 were obstructed partially using the pin of width 30 μm. The field propagating 

beyond each obstruction was captured at different distances measured from the plane 

of obstruction along the propagation axis. Figures 5.20, 5.21 and 5.22 show the 
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propagation dynamics of the three beams respectively. The bottom rows show the 

experimental images of the unobstructed beam at the same distances as the 

corresponding images in the top row. The intensity patterns rotate in the clockwise 

direction, in figures 5.20 and 5.21, and in the anticlockwise direction in figure 5.22 as 

the beams propagate. 

 

 

 

 

 

  

Figure 5.20: Experimental images (‘a’ to ‘e’) showing the reconstruction of the 

partially obstructed petal pattern of zero OAM beam Δk = 120 m
-1

, m1 = +1, m2 

= -1 at various distances from the plane of obstruction: (a) 0 mm, (b) 8 mm 

(0.38zmin), (c) 13 mm (0.62zmin), (d) 18 mm (0.86zmin) and (e) 23 mm (1.1zmin).  
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Figure 5.21: Experimental images (‘a’ to ‘d’) showing the reconstruction of 

the petal pattern of the zero OAM beam Δk = 120 m
-1

, m1 = +3, m2 = -3 after  

significant obstruction of a single petal at various distances from the plane 

of obstruction (a) 0 mm  (b) 8 mm (1.22zmin)  (c) 13 mm (1.98zmin) (d) 18 mm 

(2.75zmin).  

Figure 5.22: Experimental images (‘a’ to ‘e’) showing the reconstruction of 

the partially obstructed petal pattern of the Helicon beam Δk = 120 m
-1

, m1 

= +4, m2 = -2 at distances; 0 mm, 8 mm (1.22zmin), 13 mm (1.98zmin), 18 mm 

(2.75zmin) and 23 mm (3.51zmin) from the plane of obstruction. 
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From figures 5.20, 5.21 and 5.22, it is clear that the reconstruction dynamics of beams 

with significantly obstructed single petals are similar to those of beams with partially 

obstructed single petals (section 5.6.1). As the beams propagate, the petals exchange 

electromagnetic energy and some petals get distorted in shape in the process of 

reconstruction. This is clearly evident from a comparison of the obstructed and 

unobstructed images in figure 5.20 and from the theoretical results in figure 5.13. The 

experimental results, shown in figures 5.20 and 5.21 compare well with the theoretical 

results in figure 5.13. In the three cases of petal obstruction, the obstacle was set off-

axis. It is clear from the results in figures 5.18 - 5.22 that the self-reconstruction 

dynamics of rotating beams after propagating past off-axis obstructions are different 

from those arising from on-axis obstructions (see figures 5.14 – 5.17). For example, 

for on-axis obstruction, the reconstruction process does not affect the shapes of the 

petals unlike for the case off-axis obstruction. In addition, the petals in a given 

intensity pattern reconstruct uniformly for on-axis obstruction but for off-axis 

obstruction there appears to be a flow of energy from the unobstructed petal to the 

obstructed petal, in addition to the energy transfer from the conical waves that bypass 

the obstruction.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Introduction 

This chapter outlines the conclusions deduced from the experimental results on the 

digital holographic generation of rotating optical fields (in particular rotating Bessel 

beams), the investigation of their propagation in free space and the determination of 

the rotation rates of their intensity profiles. In addition, the chapter presents 

conclusions on the investigation of the dynamics of dynamics of self-reconstruction of 

RBBs using obstacles of various sizes and geometries that are positioned at different 

locations in the beam profile with respect to the axis of the beam. The chapter also 

presents recommendations, based on the conclusions, for possible future work on the 

problem area and the general area under study.  

 

6.2 Conclusions 

In this work, two types of rotating Bessel beams have been successfully generated 

using a technique based on digital holography. In addition, the propagation of these 

beams has been investigated and the rotation rates of their transverse intensity profiles 

in free space have been successfully measured. The self-reconstruction dynamics of 

rotating Bessel beams, past on and off-axis partial and total obstructions of various 
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geometries, have also been investigated. The experimental technique that was 

implemented to generate rotating Bessel beams using digital holographic imprints of 

their respective angular spectra on a spatial light modulator is a simple and effective 

method for generation of such optical beams. From a comparison of the theoretical 

and experimental intensity profiles of the beams, it is clear that there is very good 

agreement showing that the experimental method was very successful. 

 

The Superposition of two higher order Bessel beams of equal azimuthal orders but 

opposite topological charges and of distinct azimuthal orders was found to result in a 

superposition field whose transverse intensity profile rotates about the propagation 

axis as the field propagates along the axis in free space.  The transverse intensity 

profile consists of ‘petals’ or ‘lobes’, which are regions of maximum intensity, 

arranged on the circumference of the Bessel rings. For the superposition of HOBBs 

with equal orders but of opposite handedness (that is, zero OAM RBBs), the number 

of lobes in the intensity profile is equal to twice the absolute value of the order of 

each beam. For the superposition of HOBBs with distinct orders (that is, Helicon 

RBBs) the number of ‘petals’ was found to be equal to the absolute difference 

between the orders of the superimposed beams.  

 

The rotation rates of zero OAM RBBs and of Helicon RBBs were established to vary 

linearly with the difference in the longitudinal wave numbers of the two superimposed 

HOBBs. However, the rotation rates of zero OAM RBBs varied inversely with the 
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order of each of the superimposed beams and that of Helicon RBBs varied inversely 

with the absolute difference between the orders of the two superimposed HOBBs. In 

addition, it was found that Helicon RBBs have higher rotation rates, even when the 

topological charges of the component fields were large, as compared to zero OAM 

RBBs which required low topological charges to attain high rotation rates. 

 

Rotating Bessel beams were found to reconstruct after propagating past obstacles 

whose dimensions were small compared to the size of the beam. The rotation of the 

intensity profile did not affect the reconstruction of RBBs. However, the position of 

the obstacle with respect to the propagation axis of the beam was important in 

determining the nature of the reconstruction process of the beam. For on-axis 

obstructions, the reconstructed intensity pattern had the form and orientation of the 

unobstructed beam, at the same propagation distance, but off-axis obstructions 

resulted in a beam which did not attain the exact form of the unobstructed beam. A 

redistribution of the intensity (electromagnetic energy) of the petals was found to 

occur as the rotating beams propagated beyond the obstruction, that is, the petals 

exchanged energy in the process of reconstruction such that a petal that was more 

intense at a particular propagation distance became less intense at subsequent 

distances along the propagation axis.   
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6.3  Recommendations 

Although significant work has been done in this investigation and useful results 

obtained, there is still much ground to cover in this field of rotating optical fields so as 

to fully understand them and open opportunities for the wide range of applications of 

these beams. In view of this, the following recommendations are therefore put forth. 

1. This study has shown that by varying the extent of the annular shaped spectra 

and the order of the beams imprinted on the SLM, arbitrarily fine control over 

the rotation rates of the intensity profile can be achieved. It is this ability to 

control the rotation rate of these rotating fields and the fact that high rotation 

rates are possible with Helicon rotating Bessel beams that make RBBs ideal 

for controlled rotation of trapped particles in optical trapping and 

manipulation. Thus the implementation of optical trapping using these beams 

is therefore a possible aspect for future investigation, especially in view of the 

fact that optical tweezing is now an emerging diagnostic tool in medical and 

biomedical fields. In addition, owing to their ‘petal’ intensity structure and 

their reconstruction properties, RBBs may be of interest to the optical trapping 

and tweezing community for customized OAM density fields that may be used 

to trap multiple objects in a column. 

 

2. In this investigation, RBBs have been studied as scalar rotating optical fields. 

However, theoretical studies have shown that electromagnetic (vectorial) 

rotating optical beams have different propagation properties including 
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different conditions for rotation of their intensity profiles. It would be of great 

interest to generate vector rotating Bessel fields using the same or any other 

appropriate experimental technique and to investigate the effect of the 

polarization state of the fields on the rotation and propagation of these beams. 

 

3.  The propagation of RBBs in free space is, to some extent, now understood. It 

is recommended that there is need to investigate the propagation of these fields 

in wave guides such as optic fibres and significantly aberrated media to 

determine how these media affect the propagation properties of the beams. 

 

4. This study has shown that RBBs possess the property of self-reconstruction. 

The experimental results obtained have shown good agreement with 

theoretical predictions. However, further studies may need to be carried out to 

fully characterize the dynamics of self-reconstruction of RBBs with 

obstructions of different and even complex geometries. 

 

5. The RBBs generated in this study are superpositions of HOBBs, which are 

examples of canonical optical vortices. It would be of great interest to extend 

this study to generate experimentally non-canonical optical vortices and to 

investigate the propagation properties of their superpositions. On the same 

note, one could explore the possibility of applying the same method used in 

this study to experimentally generate superpositions of multiple (more than 

two) HOBBs and investigate their propagation and the parameters affecting 



109 

 

 

 

their rotation. The author of this thesis has already done some theoretical 

simulations on the same. 

 

6. The energy exchange between the petals during the process of reconstruction 

could be as a result of the rotation of the Poynting vector which leads to a flow 

of energy from the unobstructed petal to the obstructed petal, in addition to the 

energy transfer from the conical waves that bypass the obstruction. It would be 

of interest to construct an experimental set-up to investigate this idea. 

 

7. Finally, although the overall optical efficiency of the experimental set-up was 

not a consideration in this study, the efficiency of the system can be made 

close to the efficiency of the SLM by illuminating the digital holograms with 

an annular field from a conical telescope (two inward facing axicons, suitably 

separated). This is particularly important in set-ups in which highly intense 

beams are needed, such as in optical trapping. 
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APPENDIX B: MATLAB
®
 SCRIPT FOR GENERATING SLM PHASE 

MASKS 
clc; 

clear all; 

close all; 

N=1080; 

M=1920; 

SLM_bin=zeros(N,M); 

R1=181; 

L1=-3; 

L2=-5; 

for n = 1 : N 

    for m = 1 : M 

        r(n,m) = sqrt((m-M/2)^2+(n-N/2)^2); 

        if r(n,m) < R1; 

            SLM_bin(n,m) = mod(L1*(atan2((n-N/2),(m-M/2))),2*pi); 

        else   

             SLM_bin(n,m) = mod(L2*(atan2((n-N/2),(m-M/2))),2*pi);  

         end 

    end 

end 

check=zeros(N,M); 

for n=1:N 

    for m=1:M 

        n1=floor(n/5); 

        m1=floor(m/5); 

        if mod(n1+m1,2)==0 

           check(n,m)=pi;%0 .5; 

        else 

           check(n,m)=0; 

        end 

    end 

end 

rmin=round (110); 

rmax=round (150); 

for n=1:N 

    for m=1:M 

        r(n,m)=sqrt ((n-N/2)^2+(m-M/2)^2); 

        if r(n,m)<=rmax& r(n,m)>=rmin; 

           bin_check(n,m)=SLM_bin(n,m); 

        else 

           bin_check(n,m)=check(n,m); 

        end 

    end 

end 

imshow (mod(bin_check,2*pi)./max(mod(bin_check(:),2*pi)); 
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APPENDIX C: MATHEMATICA
®
 SCRIPTS FOR SIMULATION OF RBBS 

C1: Script for Simulating Zero-OAM Rotating Bessel Beams 

 

C2: Scripts for Simulating Helicon Bessel Beams 

 

Or 

 

kr 80855;

dk 83;

myI m_, r_, phi_, z_ : Abs BesselJ m, kr r ^2 1 Cos dk z 2 m phi

Table DensityPlot myI 3, Sqrt x^2 y^2 , ArcTan y, x , z ,

x, 0.000000005 kr, 0.000000005 kr ,

y, 0.000000005 kr, 0.000000005 kr ,

PlotPoints 100, Axes False, Frame False , z, 1

k1r 69942;

k2r 80855;

k1z 9920764;

k2z 9920681;

m1 5;

m2 3;

myI r_, phi_, z_ : Abs BesselJ m1, k1r r Exp I k1z z m1 phi

BesselJ m2, k2r r Exp I k2z z m2 phi ^2

Table DensityPlot myI Sqrt x^2 y^2 , ArcTan y, x , z ,

x, 0.000000005 k1r, 0.000000005 k1r , y, 0.000000005 k1r, 0.000000005 k1r ,

PlotPoints 100, Axes False, Frame False , z, 0, 1, 0.5

k1r 69942;

k2r 80855;

k1z 9920764;

k2z 9920681;

dkz k1z k2z;

myI m1_, m2_, r_, phi_, z_ : Abs BesselJ m1, k1r r ^2 BesselJ m2, k2r r ^2

2 BesselJ m1, k1r r BesselJ m2, k2r r Cos dkz z m1 m2 phi

Table DensityPlot myI 5, 3, Sqrt x^2 y^2 , ArcTan y, x , z ,

x, 0.000000005 k1r, 0.000000005 k1r , y, 0.000000005 k1r, 0.000000005 k1r ,

PlotPoints 100, Axes False, Frame False , z, 0, 1, 0.5
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APPENDIX D: DATA TABLES 

Table D-1: Image diameter, id  and object diameter, od (Data for figure 5.2) 

 

Object 

diameter, 

do (mm) 

0.2 0.4 0.6 1.2 1.5 1.9 2.0 

Image 

diameter, 

di (mm) 

3.52 5.37 7.92 14.30 19.05 22.88 23.78 

 

 

 

Table D-2: Petal’s rotation angle and propagation distance for the zero OAM 

RBB m = 3, Δk = 66/m (Data for figure 5.5) 

 

 

Propagation 

distance (m) x-coordinate y-coordinate  x-value  y-value y/x

 Arctan 

(y/x)

Rotation 

Angle θ

0.125 628.929 501.647 44.364 67.851 1.529 0.992 0.000

0.135 636.758 496.428 52.193 62.632 1.200 0.876 0.116

0.145 641.977 485.989 57.412 52.193 0.909 0.738 0.254

0.155 644.587 480.770 60.022 46.974 0.783 0.664 0.328

0.165 652.416 475.550 67.851 41.754 0.615 0.552 0.440

0.175 655.026 467.721 70.461 33.925 0.481 0.449 0.543

0.185 657.635 462.502 73.070 28.706 0.393 0.374 0.617

0.195 660.245 457.283 75.680 23.487 0.310 0.301 0.691

0.205 662.855 449.454 78.290 15.658 0.200 0.197 0.794

0.215 662.855 441.625 78.290 7.829 0.100 0.100 0.892

0.225 660.245 433.796 75.680 0.000 0.000 0.000 0.992
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Table D-3: Petal’s angular shift,   and propagation distance, z  for various values of order, m (Data for figure 5.6) 

 

 

Propagation 

Distance (m)
Rotation 

Angle θ

Propagation 

Distance (m)

Rotation 

Angle θ

Propagation 

Distance (m)

Rotation 

Angle θ

Propagation 

Distance (m)

Rotation 

Angle θ

Propagation 

Distance (m)

Rotation 

Angle θ

Propagation 

Distance (m)

Rotation 

Angle θ

0.13 0.000 0.125 0.000 0.125 0.000 0.125 0.000 0.125 0.000 0.115 0.000

0.14 0.340 0.135 0.098 0.135 0.116 0.135 0.121 0.135 0.125 0.125 0.025

0.15 0.756 0.145 0.387 0.145 0.254 0.145 0.194 0.145 0.157 0.135 0.057

0.16 0.949 0.155 0.571 0.155 0.328 0.155 0.258 0.155 0.218 0.145 0.120

0.17 1.191 0.165 0.664 0.165 0.440 0.165 0.366 0.165 0.293 0.155 0.208

0.18 1.427 0.175 0.881 0.175 0.543 0.175 0.461 0.175 0.371 0.165 0.250

0.19 1.911 0.185 0.893 0.185 0.617 0.185 0.475 0.185 0.418 0.175 0.298

0.20 2.348 0.195 1.073 0.195 0.691 0.195 0.567 0.195 0.463 0.185 0.349

0.21 2.548 0.205 1.254 0.205 0.794 0.205 0.625 0.205 0.555 0.195 0.401

0.22 2.762 0.215 1.394 0.215 0.892 0.215 0.683 0.215 0.599 0.205 0.458

0.23 2.915 0.225 1.536 0.225 0.992 0.225 0.799 0.215 0.496

m = 6m = 1 m = 2 m = 3 m = 4 m = 5
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Table D-4: Petal’s angular shift,   and propagation distance, z  for various 

values of Δk (Data for figure 5.7)  

 

 

 

 

 

 

Table D-5: Rotation rates and order, m for various values of Δk (Data for figure 

5.8) 

 

 

 

z (m) θ (Rad) z (m) θ (Rad) z (m) θ (Rad) z (m) θ (Rad)

0.145 0.1148 0.155 0.2026 0.155 0.3001 0.155 0.2477

0.155 0.2430 0.165 0.4900 0.165 0.5431 0.165 0.5695

0.165 0.2874 0.175 0.6689 0.175 0.7684 0.175 0.9384

0.175 0.5096 0.185 0.8490 0.185 0.9893 0.185 1.1845

0.185 0.5526 0.195 1.0484 0.195 1.2716 0.195 1.5987

0.195 0.6111 0.205 1.3078 0.205 1.4119 0.205 1.8443

0.205 0.6892

dk = 41/m dk = 83/m dk = 89/m dk = 130/m

Δk = 21 Δk = 41 Δk = 66 Δk = 83 Δk = 89 Δk = 130

1 9.80 21.60 30.14 40.33 48.47 60.91

2 6.19 10.07 15.18 21.34 23.66 31.61

3 2.95 6.30 9.63 13.06 16.99 19.55

4 2.90 5.32 7.51 10.25 13.65 14.63

5 1.57 4.06 6.43 7.63 9.58 10.71

6 1.90 4.13 5.27 7.45 7.62 9.76

Rotation rates for various values of Δk (Rad/m)Order 

m


