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ABSTRACT 

Receiver operating characteristic curve analysis is widely used in biomedical research 

to assess the performance of diagnostic tests. Estimation of receiver operating 

characteristic curves based on parametric approach has been widely used over years. 

However, this is limited by the fact that distribution of almost all diseases in 

epidemiology cannot be established quite easily. Bayesian methods are robust as it 

allows computability and the distributions based on this are flexible. Therefore, 

inference based on parametric distributions can be either misleading or insufficient. 

There is need for generalization of the receiver operating characteristic curve (since, 

the analysis largely assumes that test results are dichotomous) to allow tests to have 

more than two outcomes. The receiver operating characteristic curve was generalized 

to constitute a surface, which uses volume under the surface (VUS) to measure the 

accuracy of a diagnostic test. Dirichlet process mixtures of normals and Mixtures of 

Finite Polya Trees, which are robust models that can handle nonstandard features in 

data in modelling the diagnostic data, were used to model the test outcomes. The 

models proved to address difficulties in modelling continuous diagnostic data with 

skewness, multimodality, or other nonstandard features. Semiparametric and 

Nonparametric models for receiver operating characteristic surface estimation were 

fitted using Markov Chain Monte Carlo with simple Metropolis Hastings steps. The 

mixing parameters, means and variances were updated with random-walk type 

proposals centred at some definite values. The Semi-parametric and Nonparametric, 

parametric approaches were considered for estimating the receiver operating 

characteristic surface’svolume under the surface (VUS). Simulation results indicate 

that even when the parametric assumption holds, these models give accurate results as 

the volume under the surface (VUS) for both methods were greater than 1/6, the value 

of a “useless test” . Graphically, the semiparametric receiver operating characteristic 

surface has the appealing feature of being continuous and smooth, thus allowing for 

useful interpretation of the diagnostic performance at all thresholds. Similarly, the 

non-parametric methods lead substantially to the same conclusions. In summary, to 

overcome the strict assumptions of parametric models, Bayesian semi-parametric 

model involving Dirichlet process mixtures of normals as well as non-parametric 

model that involve mixtures of finite Polya trees can be applied for Receiver 

Operating Characteristics surface estimation as they both have desirable performance.  
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CHAPTER ONE 

INTRODUCTION 

1.1 General background  

Several fields such as computer science, meteorology, biochemistry and medical 

studies use statistical methodologies in classification and formulation of predictive 

inferences (Zhou et al, 2002). For instance in medical studies, the selection of the 

statistical methodology applied to the prediction and classification as well as the 

diagnosis of the status of a subject is of utmost importance. In particular, the accurate 

and timely diagnosis of a patient's condition is crucial to the ultimate treatment of the 

diseased condition. Detecting these conditions and evaluating the prediction of 

patients with disease can be achieved by analysing the clinical and laboratory data 

(Hanley & McNeil, 1982). Inaccurate diagnoses in many real-world biomedical 

settings carry emotionally stressful and financial consequences.  

Results of classification in a diagnostic test can indicate the presence or absence of 

the specific disease-related material or can yield an entire array of non-binary results. 

In the case of non-binary ordinal (subjective) or continuous scales, a threshold value 

can be used for classification such that with results above or below such threshold 

classified as positive or negative for disease, as appropriate. For example, in cancer 

patients in which the progression of the disease is relatively fast, determining the 

stage of the disease is crucial to applying the appropriate treatment, and earlier de-

tection of the stage of the disease can vastly increase survivability of the patient via 

the appropriate medical prognosis (Pepe, 2003).  

Complexity in the classification of a diagnostic test varies depending on technological 

and procedural outlook. From a procedural perspective, the test may only involve 
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one-step, which results in one of only two outcomes, positive or negative, or it may 

involve a vast sequence of procedures that may result in one of an entire spectrum of 

possible classifications.  

Diagnostic tests in the technological point of view may be a classic bacterial culture 

test, or it can be a complex application employing the latest in genetic sequencing 

technologies (Pepe et al., 2001). One of the main criteria that should be considered 

before implementing a diagnostic test is the accuracy of the test. An accurate test is 

one that correctly classifies its test population according to the disease or non-disease 

condition. Inaccurate tests cause those with actual disease to be misclassified as non-

diseased, also known as a "false negative". Conversely, they cause those with no 

actual disease to be misclassified as diseased, also known as a "false positive". False 

negative errors leave diseased subjects untreated. False positive errors open subjects 

to being subjected to unnecessary procedures and emotional stress. Both false 

negatives and false positives may also create disillusionment and distrust within the 

general subjects towards the medical and diagnostic testing community as a whole, 

potentially making data collection more difficult, biased and costly (Zhou et al, 2002). 

In practice, such errors must be kept to a minimum. As such, the accuracy of a 

diagnostic test is of utmost importance and must be thoroughly assessed and 

understood before it can be used. Thorough evaluation of the population of interest, 

the test itself and outcomes of the test is required to effectively assess a diagnostic 

test (Kraemer, 1992).   

1.2 Diagnostic test accuracy measures 

The accuracy is a test's ability to identify a condition correctly when the disease or 

condition is truly present and to exclude the disease or condition when it is actually 
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absent. The accuracy of a test is always measured by comparing the test results to the 

true condition status. Binary test results, that is, the true condition status is either "the 

condition is present" or "the condition is absent" are assumed.  

1.2.1 Sensitivity and Specificity 

Sensitivity and specificity are two basic measures of diagnostic accuracy. The 

contingency table, Table 1 can be used to illustrate the two definitions. Firstly, denote 

the true disease or condition status by the indicator variable D, where 

  {
                                            
                                        

           (1) 

Further, denote the result of the diagnostic test by the indicator variable T. Test results 

indicating the disease or condition's presence are called positive, denoted as T = 1, 

whereas those indicating the disease or condition's absence are called negative, 

denoted as T = 0, where 

  {
                                       
                                   

              (2)  

Table 1 below illustrates a basic count table specifying the different numbers under 

different categories 

Table 1: Basic Count Table 

 

Test results 

True disease or condition status 

Present(D=1) Absent(D=0) Total 

Positive (T=1)             

Negative(T=0)             

Total           

 

In table 1, above the total numbers with and without the condition are  

   and      respectively. The total numbers with the condition whose test result is 

positive and negative are    and    respectively. The total numbers without the 
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condition whose test result is positive and negative are     and    , respectively.  

The total number in the study is N, where  

                       

Sensitivity (Se) is the test’s ability to detect the condition when the condition is 

present. Sensitivity is the probability that the test result is positive (T = 1), given the 

presence of the disease or condition (D = 1), written as: 

Se = P(T = 1|D = 1)…………………...……………..(3 ) 

Se =         

Specificity (Sp) is the test's ability to exclude the condition without the condition. It is 

the probability that the test result is negative (T = 0), given the absence of the disease 

or condition (D= 0), written as 

Sp = P(T = 0|D = 0)…………………….…………….…( 4) 

 Sp =        

The data can also be summarize by probabilities. The consequences associated with 

the test results are also considered. The test can have two types of errors. One is false 

positive errors and the other is false negative errors. The true positive rate (TPR) and 

false positive rate (FPR) are defined respectively as: 

True Positive Rate = TPR = P(T = 1|D = 

1)………………………….…(5) 

False Positive Rate = FPR = P(T = 1|D = 

0)……………………….…..(6) 

False negative fraction (FNF) is 1-TPF. True negative fraction (TNF) is 1-FPF. Under 

which, sensitivity is known as the TPR and specificity is known as TNR.  
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Under various applications, the terminology for TPR and FPR is often different. In 

biomedical research, the 'sensitivity' (TPR) and 'specificity' (1-FPR) are often 

descriptors of test performance (Cai et al., 2003).  

1.2.2 Predictive values 

The accuracy of a diagnostic test can also be quantified by how well the test results 

predict the true condition status. As such, another important measure of a diagnostic 

test ispredictive value. The predictive values depend on the prevalence of the 

condition, such as in a disease condition. The predictive values are: 

Positive Predictive Value = PPV = P(D = 1|T = 

1),……………...…….(5) 

Negative Predictive Value = NPV = P(D = 0|T = 

0)……………………(6) 

A perfect test is one that predicts the condition perfectly. That is, PPV=1 and NPV=1. 

Contrarily, a useless test is one with no information about the true condition status. As 

such, a test, which does not reflect the true condition status, very well will result in a 

low PPV. The predictive values can tell us how likely the condition is given the test 

result. The values are affected by the prevalence of the condition. Low prevalence of 

the condition may be a reason for a low PPV. In research studies, both the 

classification probability (TPF and FPF) and the predictive values are important and 

there is a direct relationship between the two (Pepe et al., 2001). Suppose the 

prevalence is   = P(D = 1). A result can be directly ascertained from the Bayes' 

theorem: 

     
    

                 
 ……………………………………...…...…….. (7) 

     
                

                               
…………………………………… (8) 
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1.3 Receiver Operating Characteristics Curve Analysis 

1.2.1 Receiver Operating Characteristics curves  

Receiver operating characteristic (ROC) curves are useful for assessing the accuracy 

of medical diagnostic tests (Pepe, 2003). Green and Swets (1966) developed signal 

detection theory in psychophysics, which appeared to be a potential method for 

medical diagnostic testing. 

Lusted (1971) pointed out that this method could be adopted for medical decision 

making and stated that the method could overcome limitations of a single sensitivity 

and specificity pairs. Since then, this method has been the most valuable and popular 

tool for describing and comparing diagnostic tests, particularly in medicine. Making 

predictions has become an essential part in disease diagnosis.  

Analysis of Receiver Operating Curve examines the relationship between sensitivity 

and specificity of a binary diagnostic test. Sensitivity or true positive rate measures 

the proportion of positives correctly classified; specificity or true negative rate 

measures the proportion of negatives correctly classified. Normally, the true positive 

rate TPR is plotted against the false positive rate FPR, which is one minus true 

negative rate. 

Below is a simple illustration of ROC graph.  
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Figure 1: ROC graph (Source: Researcher) 

The graph in Figure 1 above shows TPR rate plotted on the Y-axis against FPR is 

plotted on the X-axis. The ROC graph depicts relative trade-offs between true 

positives and false positives.The ROC plot has many advantages compared to other 

measures of accuracy (Zweig & Campbell, 1993). An ROC curve can visually 

represent the data's accuracy. The scales of the ROC curve plot are two basic 

measures of accuracy, which can be easily read from the plot. 

The ROC curve includes all the possible decision thresholds so that there is no 

requirement to select a particular decision threshold. Because sensitivity and 

specificity are independent of prevalence, the ROC curve is independent of 

prevalence as well (Dwyer 1997). 

The ROC curve is also independent of the scale of the test results. That is, the ROC 

curve does not vary to any monotonic (e.g., linear, logarithmic) transformations of the 

test results, which is a useful property (Campbell, 1994). Another advantage of the 
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ROC curve is that it can provide a direct and visual comparison of two or more tests 

on a single set of scales. It is possible to compare different tests at all decision 

thresholds by constructing the ROC curves. 

1.3.2 Measuring the accuracy of a diagnostic test 

Some summary indices associated with the ROC curve are often used to summarize 

the accuracy of a diagnostic test and provide important information about the ROC 

curve. When the ROC curve is not feasible to plot, such summary measures can also 

provide important information about the ROC curve. Area under the ROC curve 

(AUC) and partial area under the ROC curve (PAUC) are two important summary 

indices, which are particularly useful in certain situations. 

1.3.3 Area under the ROC curve (AUC) 

ROC curve is a useful measure to summarize the accuracy of a diagnostic test. An-

other valuable measure associated with the ROC curve is the area under the ROC 

curve (AUC). The area under the ROC curve takes values between 0 and 1. 

A perfect diagnostic test is one with an area under the ROC curve of 1 and consists of 

two line segments: (0,0)-(0,1) and (0,1)-(1,1). In contrast, a test with an area of 0 is 

perfectly inaccurate. However, perfect diagnostic tests are rare. The area under the 

ROC curve can be interpreted as the average of sensitivity for all possible values of 

specificity. It can also be interpreted as the average value of specificity for all 

possible values of sensitivity. 

The area under the ROC curve is a widely used summary measure for comparing 

ROC curves which is  defined as in Bamber (1975) 

                           ∫                             
 

 
………...………...……….. (9) 
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1.3.4 Partial area under the ROC curve 

Another summary measure associated with the ROC curve is the partial area under the 

ROC curve (PAUC). There is particular interest in the area under a portion of the 

ROC curve. The partial area under the ROC curve is the area between two 

sensitivities, which is defined as 

                      ∫         
  

 
………………………..………………………….. (10) 

where     (0,1). Its values range from   
 /2 for a completely uninformative test to 

  for a perfect test.  

Dwyer (1997) interpreted the partial area under the ROC curve as the probability that 

a randomly chosen subject without the condition will be classified correctly from a 

randomly chosen subject with the condition who tested negative in a diagnostic test. 

The partial area of test performance is appealing for some special cases and is well 

established in many clinical tests. 

Generally, ROC curve is the main tool used in ROC analysis. It can be used to address 

a range of problems, including: 

1. Determining a decision threshold that minimizes error rate or 

misclassification cost under given class and cost distributions. 

2. Identifying regions where one classifier outperforms another. 

3. Identifying regions where a classifier performs worse than chance. 

4. Obtaining calibrated estimates of the class posterior. 

In most of the recent diagnostic studies, the evaluation of diagnostic accuracy in 
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ordered three-class problems have suggested the use of receiver operating 

characteristic surfaces as a direct generalization of the ROC curve.  

ROC surfaces have been proposed for the evaluation of diagnostic accuracy in 

ordered three-class classification problems as a direct generalization of the ROC 

curve (Nakas & Yiannoutsos, 2004).  

1.4 Receiver Operating Characteristic Surface 

Let {   | i=1,....,  } and {   | j=1,....,   } be two test outcomes for “ Healthy” and 

“Diseased” populations, respectively. Then the estimated AUC can be expressed as: 

   ̂   
 

    
∑ ∑           

  
   

  
   …………………………………………….. (13) 

This scheme can be generalized to 3-class case as follows: Let the three classes be 

“Healthy (H)”, “Transition (T)” and “Diseased (D)”. Further, let the associated test 

outcomes be    ,     and    for “Positive (diagnosed D)”, “Transition (diagnosed T)” 

and “Negative (diagnosed H)” respectively.     and    are used as the cut off points 

where            , to obtain a similar table as 2-class case (table 1). This can be 

summarized in table 2 below. 

Table 2:  Classification of diagnostic test outcomes into three groups 

 True disease or condition status 

Healthy  Transition Diseased TOTAL 

Test results Positive                 

Transition                  

Negative                  

TOTAL                
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It follows then that  

True Positive Rate=                     =            

True Transition Rate =                  ) =               

True Negative Rate =                     =             

If the various misclassifications are ignored, that is. no specificities are concerned, 

then theVUS can be expressed as,                 (Nakas & Yiannoutsos 

2004).Consider a diagnostic test in which subjects can be classified into three 

different ordered categories. A continuous diagnostic test for all subjects can be 

performed and their test results can be recorded. 

Let                      
)
T
denote test results on    subjects from Class 1;                

                     
)
T
 denote test results on   subjects from Class 2; and 

                     
)
T
denote test results on    subjects from Class 3. 

The test results for the individuals from the three classes are modelled according to 

the distribution       and   ; continuous probability distributions on ℝn
.  

The test results          ( i =1,…,  ) are independent and identically distributed. with 

distribution   ; the test results     (j =1,…,  ) are independent and identically 

distributed. with distributions   ; and the test results     ( k =1,….,  ) are 

independent and identically distributed with distributions   . The test results   , 

   and    are mutually exclusive or independent to each other.   

A decision rule, based on specifying two ordered decision thresholds     , which 

classifies each subject into one of the three classes can be defined as follows: 
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IF      ,, THEN assign subject to Class 1. 

ELSE IF          assign subject to Class 2. 

ELSE assign to Class 3. 

The procedure is repeated for                 to make diagnostic decisions 

for all subjects (Nakas & Yiannoutsos, 2004). The probabilities of correct 

classification into three classes for the pair of thresholds (     ) can be computed. 

                          Correct classification of Class 1, 

                            –        Correct classification of Class 2, 

                  –        Correct classification of Class 3. 

A three-dimensional space forming the ROC surface is obtained when the 

probabilities (        ) are plotted for all cutoff points (  ,  ), with     , in the 

support of the diagnostic marker measurements.  

By writing   -the correct classification probability for the intermediary or transition 

class, as a function of   and   ,the equation for defining an ROC surface for the test 

can be written as:                                    

             {
     

                
             

           
         

                                                                                                           
 

                     …………………………………...…….………….. (14)              

From the definition above, for both arguments the map (      )  ROCS (      ) is 

monotone non-increasing. ROC curve for binary test is a representation of the 

relationship between the correct classification probabilities for two classes (sensitivity 

and specificity). Similarly, ROC surface represents the three-way trade-off among the 

correct classification probabilities for the three classes. According to Scurfield (1996), 

two other equivalent forms of defining ROC surface is the use of   or   as functions 

of the two other elements. The current form of expression is chosen for algebraical 
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simplicity to presenting the results. However, the statistical inferences remain 

invariant for the three choices.  Below is an illustration of ROC surface. 

 

Figure 2: Receiver Operating Characteristics Surface (Nakas & Yiannoutsos, 2004) 

According to Gu et al. (2008) the accuracy of the estimation of the entire ROC surface 

can be measured by the integrated absolute error (IAE). 

    ∫ ∫       ̂ 

 
                            

 

 
……………………….……...( 15) 

Where      ̂         is an estimate of              

In summary, the ROC surface and VUS are two measures which are extensions of the 

two-class ROC curve and AUC. 

1.4.1 Volume under the ROC surface 

Volume under the ROC surface (VUS) be considered as a measure of accuracy of a 

diagnostic test in a single summary value. This can be defined as: 

    ∫ ∫                    
 

 

 

 
………………………………….…..(16) 

Mossman (1999) outlines the generalization of the two dimensional area under the 

ROC curve by representing VUS mathematically to an equivalent probability defined 

as               for   ,     and     randomly selected from the three classes, 
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respectively.  

It is noted that when the distributions   ,   and    are identical or completely overlap, 

hence a useless test then the volume under surface is equivalent to 1/6 and the value 1 

when the three populations are perfectly discriminated in the anticipated ordering 

(Mossman, 1999). In two-category classification, rejecting the null hypothesis that 

AUC is equal to 1/2 would imply that the test is able to differentiate between the two 

classes with a probability higher than that of a random guess (Pepe, 2003).   

For a three-category classification, it is required that the test to have at least some 

ability to differentiate three categories instead of only two categories. If the null 

hypothesis that VUS is equal to 1/6 is rejected, it can only be argued that the test is 

not the one that completely guesses the three classes. In fact, the test with a VUS 

greater than 1/6 might be able to differentially pick out one class but completely guess 

the other two classes (Mossman, 1999).  

In that case, the test is still useless for a three-category classification and cannot be 

recommended for use. For any three-category classifier, it has several pairwise AUCs. 

Tests with any of these pairwise AUC values being too close to 1/2 should be 

screened out. The lower bound of VUS in three-category ROC analysis should be 

jointly considered with the lower bound of AUC in pairwise two-category ROC 

analysis (Obuchowski, 2005). 

1.5 Problem statement 

Receiver operating characteristic curve analysis is widely used in biomedical research 

to assess the performance of diagnostic tests. However, cases whereby test outcomes 

are more than two requires generalisation of the receiver operating characteristic 
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curve to constitute a surface, which uses volume under the surface to measure the 

accuracy of a diagnostic test. Constructing three-dimensional ROC surfaces to 

evaluate accuracy of continuous diagnostic tests over years have been widely based 

on parametric approaches.  

There is vast literature on pureparametric approaches to estimation of three-

dimensional ROC surfaces. However, in medical practice, the distribution of most 

diseases especially in epidemiology cannot be established quite easily. Therefore, 

strict assumptions of parametric distributions for the diseases can result in misleading 

or insufficient inference.  

Parametric models are often not sufficiently flexible to capture skewness, 

multimodality, or other nonstandard features of the data. Therefore, there is necessity 

of implementation of alternative models such as Bayesian methods which have 

proved to be robust as it allows computability and the distributions based on this are 

flexible. In the past little had been discussed on Bayesian semiparametric and non-

parametric methods for modelling diagnostic tests due to computational issues 

associated with the intractable distributions. However, with the advancement of 

computational tools, modelling of diagnostic data can be achieved through the 

Bayesian methods.  

In particular, this research finds the need to adopt the semi parametric based on DPM 

and non-parametric estimation based on MFPT of three-dimensional ROC surfaces to 

overcome strict assumptions of parametric modelling of diagnostic data.  

1.6 Justification 

The volume under the three-class ROC surface has extensive applications in various 

areas since it provides a global measure of differences between or among populations. 
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Specifically, in biomedical diagnosis, it is imperative to have desirable levels of 

performance for diagnostic markers. Cancer studies for instance, has been an area 

under focus as the disease prevalence is notably on the rise. Therefore, study will be 

worthwhile in providing insight to the performance of the diagnostic tests and 

subsequent inferences. 

1.7 Objectives 

1.7.1 General objective 

The broad objective of the study was to estimate the ROC surface based on Bayesian 

semi parametric and non-parametric methods.  

1.7.2 Specific objectives 

1. To estimate the ROC surface under semi parametric estimation procedures. 

2. To estimate the ROC surface under non-parametric estimation procedures. 

3. To compare the estimated ROC surfaces under both semi parametric 

estimation and non-parametric estimation procedures. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The measure of accuracy of a test introduced is often based upon decision thresholds, 

which may be difficult to detect. Lusted (1971) illustrated a way in which it could 

overcome the limitation of a single sensitivity and specificity pair, which he first 

applied to psychophysics. Lusted argued that the method could overcome the 

limitation by considering all of the decision thresholds. By applying the receiver 

operating characteristic (ROC) curve, the accuracy of a diagnostic test can be 

described without the limitations of decision thresholds. Lusted stated that ROC 

curves offer an ideal means of examining the performance of the diagnostic tests. 

Subsequently, the ROC curve has been the most valuable and most widely used tool 

to describe and compare diagnostic tests in various disciplines of medicine.  

2.2 Receiver Operating Characteristics Curve 

ROC curve, is a plot of the sensitivity of a diagnostic test versus the false-positive 

rate. ROC curves were originally developed for electronic signal-detection theory 

(Peterson et al, 1954). ROC curves and ROC analysis have subsequently formed the 

basis of statistical decision theory, having been applied to various medical and 

nonmedical studies, including studies of human perception (Drury & Fox, 1975) and 

military monitoring (Swets, 1977).  

In medical diagnostic testing, the main interest is measuring the observer’s abilities 

for interpreting test results rather than the criteria used for such decisions. As such, 

Lusted (1971) discussed how in medical diagnostics, a distinction must be made 

between the observer’s cognitive and sensory abilities to interpret the test results for 
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detecting the condition and the observer’s criteria used in deciding whether a 

condition is present or absent. 

Swets and Pickett (1982) discussed how ROC curves display all possible cut points 

and thus can estimate the frequency of various outcomes at each cut point. 

Furthermore, ROC curves can apply previously generated probabilities of the 

condition, as well as calculations of the costs and benefits of correct and incorrect 

decisions, to determine the optimum cut point. They were also the first to study the 

analysis of multi reader studies in which several observers interpret the test results of 

the same sample of patients. They identified several sources of variability, as well as 

correlations in multi reader studies and then created a methodology for estimating and 

comparing the test accuracy for such studies. 

The first to use the Gaussian model for estimating the ROC curve were Green and 

Swets (1966). They assumed the numerical value of a sensory event (defined as X) 

affects the observer’s confidence about whether the condition is present or absent. 

They also assumed a cut point (defined as t) such that if X < t and X > t, then the 

observer will choose the hypothesis that the condition is absent and present, 

respectively. Additionally, they assumed the Gaussian distribution of t under each 

hypothesis.  

Furthermore, Dorfman and Alf (1968, 1969) proposed maximum-likelihood estimates 

for the parameters of a binormal ROC curve, and provided methodologies for 

obtaining the variance-covariance matrix and the corresponding confidence intervals. 

The most widely used summary measure for the test accuracy of ROC analysis is the 

area under the ROC curve (AUC).  Hanley and McNeil (1982) provided a relatively 

simple methodology to estimate AUC without having to assume the distribution of the 
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test results. Interestingly, they noted that AUC is equivalent to the Wilcoxon 2-sample 

test statistic. They developed a method for calculating sample size for studies that 

apply the ROC curve area. Several other nonparametric methodologies have 

subsequently been developed for estimating and comparing ROC curves. 

McClish (1989) stated that AUC was a global measure of a test’s accuracy. He 

provided parametric methods for estimating and comparing the partial area under the 

ROC curve. These parametric methods are based upon a binormal model and parallel 

the MLEs of the area under the total ROC curve. Many statistical methods were 

developed shortly after these investigations for the estimation of the ROC analysis for 

two-way classification. 

2.3 Three-Way ROC 

Many real-world classification problems involve more than just two categories and 

the extension of the two-way ROC analysis is needed. Scurfield (1996) first mapped 

the mathematical definition of a proper ROC measure for more than two categories. 

These diagnoses have an ordered gradation of illness from notdiseased to seriously 

illFor example, cognitive function declines from normal function to mild impairment, 

tosevere impairment or dementia. Another example would be the stage of cancer 

progression at the time of detection, from localized cancer through distant metastases 

alreadypresent.  

There is need for statistical methods are needed for the assessment of diagnostic 

accuracy whenthe true disease status has an ordinal scale. This would necessitate the 

dichotomization of the binary gold standard so that the existing methods for binary 

classification can beapplied subsequently. 
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In the recent past, ROC methodology was then extended to multiple-class diagnostic 

problems by introducing a three-dimensional ROC surface. Mossman (1999) 

introduced the concept of three-class ROC analysis into medical decision making. 

Nakas and Yiannoutsos (2004) were the first to consider the estimation of the volume 

under the ROC surface for ordered three-class problems by using U-statistic theory. 

They also considered the volume under the ROC surface(VUS), and its relation to the 

probability of correctly ordered observationsfrom the three groups. They studied a 

continuous diagnostic test of neuropsychological battery to detect the presence of 

HIV-related cognitive dysfunction (AIDS dementia complex (ADC)), which 

generates three test outcomes: unimpaired, ADC stage 0.5, and ADC stage 1 to 3.  

The multiple test outcomes would render the conventional ROC analysis unable to 

assess the accuracy of the test. In the three-class diagnostic problem studied by Nakas 

and Yiannoutsos (2004), a diagnostic marker resulting in continuous measurements is 

used for the discrimination of three classes of patients from three distinct possibly 

overlapping distributions of marker measurements. Here, a usual assumption is that 

subjects from class 3 tend to have higher measurements than subjects from class 2 and 

the latter tend to have higher measurements than subjects from class 1. 

The three-group ROC surface generalizes the populartwo-group ROC curve, which in 

recent years has attracted much theoreticalattention and has been widely applied for 

analysis of accuracy of diagnostictests. For these diagnostic tasks, one potential 

solution is todichotomize the gold standardat one or two cut-off points so that the 

existing methods for binary classification canbe applied. However, Obuchowski 

(2005) has shown that creating this artificial binarygold standard can induce a bias in 

the estimation of the test's accuracy. 
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2.4 ROC analysis 

The difficulty in generalizing the ROC curve to more than two disease classes results 

fromthe fact that a decision rule for a K-group classification will produce K true class 

ratesand K(K-1) false class rates. Li and Fine (2008) further proposed the estimation 

of the volume under the ROC surface (VUS) and the hypervolume under the ROC 

manifold (HUM). They also provided the estimation of the multiple-class ROC 

measures and applied the multiple-class ROC analysis as a model of selection 

criterion in microarray studies.  

 

Li and Zhou (2009) considered non-parametric and semi parametric estimation of the 

ROC surfaces by approximating the asymptotic ROC surfaces with multivariate 

Brownian bridge processes. 

In medical research, it is also important to evaluate the various factors that can 

influence the medical performance. Great interest has been shown in developing 

methods for combining biomarkers. Statistical regression analysis has recently been 

studied to make inferences about such factors and biomarkers.  

Han (1987) originally developed the maximum rank correlation estimator (MRC), 

which was considered as a generalized regression model of nonparametric analysis. It 

has recently been applied to assess classifications because of its close relationship to 

the ROC curve. Optimization algorithms that maximize the area under the ROC curve 

have also recently been proposed. Pepe (2003) developed optimal prognostic scores 

by applying binary regressions.  The optimal linear combination is attained from 

several available diagnostic biomarkers from which it is seeked to maximize the area 
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under the ROC curve among all the possible linear combinations in the binary data 

analysis. 

Enrique et al. (2004) suggested how to obtain the confidence interval for the 

generalized ROC criterion, conditional on given covariate values and derived some 

inferences under the normal distribution assumption. Theory of the consistency of the 

optimal confidence interval is based upon the argument which comes from Sherman 

(1993), relying on a general method for establishing the limiting distribution of a 

maximization estimator. 

Models for uncertain data distributions based on mixtures of standard components, 

such as normal mixtures, underlie mainstream approaches to density estimation, 

including kernel techniques, nonparametric maximum likelihood, and Bayesian 

approaches using mixtures of Dirichlet processes (Ferguson 1974). The latter provide 

theoretical bases for more traditional Semiparametric and non- parametric methods, 

such as kernel techniques, and hence a modeling framework within which the various 

practical problems of local versus global smoothing, smoothing parameter estimation, 

and the assessment of uncertainty about density estimates may be addressed.  

Semiparametric and non- parametric approaches, a formal model allows these prob-

lems to be addressed directly via inference about the relevant model parameters. 

These issues are discussed using data distributions derived as normal mixtures in the 

framework of mixtures of Dirichlet processes, essentially the framework of Ferguson 

(1983). West (1990) discussed these models in a special case of the framework by 

developing approximations to predictive distributions based on a clustering algorithm 

motivated by the model structure and draws obvious connections with kernel 

approaches.  
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For single test designs, Erkanli et al. (2006) used truncated Dirichlet process mixture 

models and Branscum et al. (2006) developed mixture of finite Polya trees models for 

Bayesian nonparametric ROC data analysis when true infection status is unknown. 

Bayesian parametric multivariate ROC methodology was developed recently by Choi 

et al. (2006). Hall and Zhou (2003) developed a multivariate distribution-free 

frequentist approach.  

The utility of Polya trees (PT) and mixtures of Polya trees (MPT) priors for providing 

robust, flexible inferences in statistical modelling has been demonstrated within 

several prominent domains of statistics including linear regression (Hansonand 

Johnson, 2002), generalized linear models (Hanson, 2006). Most applications to date 

have involved modelling univariate data because, unlike Dirichlet process priors, the 

initial development of PT priors focused on continuous distributions supported on the 

real line (Ferguson, 1974). Heckerling (2001), proposed a simple parametric 

frequentist approach under the assumption that test results all follow normal 

distributions.  

Li and Zhou (2009) develop a frequentist nonparametric and semiparametric 

approach. The nonparametric approach is based on the empirical counterparts of the 

distribution functions of the test results in each group, whereas the semiparametric 

approach attempts to generalize a parametric (normal) functional form of the ROC 

surface. However, this latter approach, as pointed out by the authors, relies heavily on 

the normality assumption.   

Parametric models are often not sufficiently flexible to capture skewness, 

multimodality, or other nonstandard features of the data. Inácio et al. (2011) proposed 

a Bayesian nonparametric approach that uses a mixture of finite Polya trees (MFPT) 



24 

 

model to estimate the ROC surface. Bayesian nonparametric models allow for 

broadening the class of models under consideration, and hence for a widely applicable 

approach that can be used for practically any population and for a large number of 

diseases and diagnostic measures. Particularly, an important feature of Polya tree 

priors, besides that they can accommodate most forms of data, is that they can include 

a parametric distribution in the larger non-parametric family. This generalization has 

the potential to make the inference robust to departures from an assumed parametric 

distribution while still having good performance if the actual distribution is the 

parametric one. 

The research seeked to complement the modelling of diagnostic data of the test 

measurement using a three-sample density ratio model. The advantage of applying 

density ratio models into the ROC surface analysis is that it not only allows estimation 

of the ROC surface semi parametrically but also enables implementation of the 

method easy as the usual procedures in many statistical software packages can be 

employed. 
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CHAPTER THREE 

SEMI-PARAMETRIC AND NONPARAMETRIC ESTIMATION  

3.1 Introduction 

This chapter defines the methods to be used in the estimation of the parameters under 

semi parametric and non-parametric estimations. It also outlines the conditions and 

assumptions therein.  

3.2 Semi-parametric Estimation using DPM of normals model 

Suppose that the normal means and variances,  come from some prior distribution 

     on     . If      is uncertain and modeled as a Dirichlet process, then the data 

come from a Dirichlet mixture of normals (Escobar 1995; Ferguson 1983; West 

1990).  

In particular, it is supposed that              a Dirichlet process defined by  , a 

positive scalar, and       a specified bivariate distribution function over     .    

   is the prior expectation of       so that                 for all       , 

and   is a precision parameter, determining the concentration of the prior for             

about       .Write parameters of concern as                  

A key feature of the model structure, and of its analysis, relates to the discreteness 

of    under the Dirichlet process assumption (Ferguson, 1973.) Briefly, in any 

sample   of size n from        there is positive probability of coincident values. Thus, 

given  , a sample of size n  from    , the subsequent estimates represents a new, 

distinct probability values. In practical density estimation, suitable values of will 

typically be small relative to the initial prior     . Dirichlet process mixture models 

are based on Dirichlet process priors for the primary parameters.  
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Such a model assumes that the prior distribution function itself is uncertain drawn 

from a Dirichlet process in standard notation such as in Antoniak (1974). Hsieh and 

Turnbull (1996), considered similar estimation methodology for binary ROC curves. 

For this research, the methodology was extended to accommodate three group test 

outcomes as a generalization of the binary ROC curves. 

A generic function that performs ROC surface analysis based on Dirichlet process 

mixture of normals models for density estimation was considered (Escobar & West, 

1995).A diagnostic test in which subjects can be classified into three different ordered 

categories was assumed.  

Considering                      
)
T
test results on    subjects from Class 1;                

                     
)
T
 test results on    subjects from Class 2; and     

                 
)
T
test results on     subjects from Class 3. 

The test results for the individuals from the three classes are modeled according to the 

distribution     
,     

and     
; continuous probability distributions on ℝn

. Functional 

form of Dirichlet Process Mixtures of Normals for    is given by: 

        
 ∫   (   |    

     
)     

     
     

  

    
         

     
  

This can be substituted for           as well. The distribution for    (distribution for 

the non-diseased or healthy group) can be expressed as follows: 
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where, the baseline distribution is the conjugate normal-inverted-Wishart,  

    
        

               
          

         

Similarly for      (distribution for the transition or suspicious group) 
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It was assumed the baseline distribution is the conjugate normal-inverted-Wishart,  

    
        

               
          

         

Finally, for      (distribution for the diseased group) 
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It was also assumed that the baseline distribution is the conjugate normal-inverted-

Wishart,  

    
        

               
          

         



28 

 

To let part of the baseline distribution fixed at a particular value, the corresponding 

hyperparameters of the prior distributions were set to null in the hyperprior 

specification of the model.  

Although the baseline distribution,     
,     

and     
, are conjugate priors in the 

model specifications, the algorithms with auxiliary parameters described in 

MacEachern and Muller (1998) and Neal (2000) are adopted. 

The ROC surface using a Monte Carlo approximation to the posterior 

means       
     ,       

     , and       
     , which is based on MCMC samples 

from posterior predictive distribution for a future observation.   ,    and    are the 

vectors containing the diagnostic marker measurements in the non-diseased, transition 

or suspicious group and diseased subjects, respectively. The optimal cut-off point is 

based on the efficiency test, EFF = TP + TTR+TN, and is built on Cohen’s kappa as 

defined in Kraemer (1992). 

3.3 Bayesian nonparametric method based on Mixtures of Finite Polya trees 

The nonparametric model developed involves finite Polya tree priors for the 

distributions   ,   and   . Freedman (1963), Fabius (1964), and Ferguson (1974) are 

the most notable pioneers of Polya tree priors. However, Lavine (1992, 1994), became 

the natural starting point for understanding their potential use in modeling data while 

Hanson (2006) considered some computational details. Recent applications of these 

priors in ROC curve analysis can be found in Branscum et al. (2008) and in Hanson et 

al. (2008). 

According to Lavine (1992), polya trees form a class of distributions for random 

probability measure which is an intermediate between Dirichlet processes and tailfree 
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processes (Tail-free processes are stochastic processes that can be defined to have 

trajectories on the space of probability distributions). Polya trees offers better 

approach to Dirichlet processes since they can allow construction of probability 1 to a 

set of continuous or absolutely continuous probability measures, whereas their 

advantage over more general tailfree processes is their much greater tractability.  

Another advantage is that in some sampling situations results in posterior mixtures of 

Dirichlet processes, can only lead to just a single posterior Polya tree.  

3.3.1 Properties of polya trees 

Let                be the        product            ,     ⋃    
  

and    be the set of infinite sequences of elements  of  . Further,      has Beta 

distribution with parameters     and     

1. Dirichlet processes are special cases of Polya trees. A Polya tree is a Dirichlet 

process if, for every,                  

2. Some Polya trees assign probability 1 to the set of continuous distributions. 

Polya trees can accommodate most forms of data. A finite Polya tree prior with J 

levels on a random probability measure F augments a standard family of cumulative 

distributions { : F  with 2
J
-1 additional parameters x that stochastically adjust 

the density (.)f  to place additional mass in areas where data are seen more often than 

expected under (.)f . The idea of centering the Polya tree at a parametric family is 

that if the data really follow the parametric family, the Polya tree should be more 

efficient than other nonparametric priors. 

A finite Polya tree for a distribution F is constructed by dividing the sample space 
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into finer-and-finer disjoint sets using successive binary partitioning. Denote the 

series of nested partitions by 1,..., J  where, for  1,    jj J   a 

refinement of the partition  j  in that each set in  j  is the union of two sets in 1 j . 

At level j J  the tree, the sample space is partitioned into 2 j  sets each with a 

corresponding branch probability.  The products of the branch probabilities that lead 

to sets at level j provide the marginal probabilities of those sets. The sets that partition 

the sample space at the j-th level of the tree are denoted by ( , ), 1,...,2 ,  jB j k k and 

the standard parametrization defines 1 1( , ) ( (( 1) / 2 ), ( ) / 2 )) 

    j jB j k F k F k , for a 

parametric distribution F .  The corresponding random branch probabilities, denoted 

by
,j kX , are modeled according to the independent gamma distributions, namely, 

                 with
, 1 ,1 , 1,..., , 1,...,2 1.     j

j k j k j J kX X  

The weight parameter 0c determines how concentrated F is around F . Larger 

values of c  lead to inferences that approach those for a parametric analysis, whereas 

small values allow less concentration and thus lead to a more nonparametric analysis. 

In practice, c  often set to a fixed value. For instance, setting 1c allows for a great 

deal of prior flexibility. For this work, c  will be fixed, although a prior distribution 

could be placed on it for general MFPT models as discussed by Hanson (2006). The 

notation ~ FPT ( ,  )JF F c  is used to denote that F has a finite Polya tree prior with J 

levels, centered at F with weight parameter c . Finite Polya tree priors treat   as a 

constant, while mixtures of finite Polya trees model  with a prior distribution, 

(d ).p   In general, mixtures of Polya trees are useful when a standard parametric 

Bayesian analysis is suspect because the family of sampling densities is not known 

exactly. The standard Bayesian analysis requires specification of a family of sampling 
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densities and prior densities for some parameter.  

3.3.2 Inference for VUS based on mixtures of finite Polya trees (MFPT) priors 

To obtain the nonparametric estimator of ROC surface, all the distribution functions 

in (14) shall be replaced with their empirical counterparts. The estimator shall be 

constructed as: 

             

{   ̂   
  ̂           ̂   

  ̂           
  ̂         

  ̂       

                                                                                                           
 

 …………………………………………………. (20) 

Where  ̂,   ̂and   ̂are the nonparametric distribution functions for test results from 

the three classes, respectively.  The model to be used is a specified hierarchical model 

involving the specification of independent mixture of finite polya tree priors for iG , 

(i=1, 2, 3) conditional on hyperparameters.  

The general non-parametric model is 

       ,         , and         

                  
   ), 

          

Random   is centered at     
= ( , ) i iN whereθ ( , )i i iN   . Let , ,{ } i i j kX denote 

the set of branch probabilities for   . The mixing parameters i  have independent 

normal priors ( , ) i i
N a b whereas  i  have independent gamma priors Gamma 

( , ) i i
a b , all with fixed hyperparameters. The levels of the finite Polya trees are set 
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equal to Jiand determine the level of detail that is accommodated by the model.  

Similarly, the weight parameter ic  was also fixed. The likelihood function is 

proportional to 

∏               
  
   ∏   (   |     )

  
    ∏              

  
   …………….…. (21) 

With   being the density corresponding to  . The cumulative distribution function is 

           .  The joint posterior distribution is approximated via Markov Chain 

Monte Carlo (MCMC) methods. Given the likelihood function, the expression of the 

ROC surface in formula (14) can be computed.  The mixture of finite Polya trees 

model was fitted using MCMC with simple Metropolis–Hastings steps. The mixing 

parameters μi and σi are updated with random-walk-type proposals centered at the 

previous values. 
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CHAPTER FOUR 

RESULTS AND ANALYSIS 

4.1 Introduction 

This chapter gives a presentation of results in the form of tabulations graphs. 

Discussion of the results was also made. All graphical and numerical computations 

were conducted in R version 3.1.0 (R Development Core Team, 2014) 

4.2 Semiparametric Bayesian density estimation and ROC surface estimation. 

The simulation study to assess the performance of the Non-parametric estimation 

method covers   test scores for the three classes generated from three different normal 

populations:                           and              , where sample sizes    

and   , and   were set to 100, 50 and 100. The means are ordered to ensure that the 

observations are monotonically increasing while the sample sizes were considered 

under conditions for diagnostic tests in clinical practice (Jokiel-Rokita& Pulit, 2013).  

To fit the Semiparametric Bayesian density estimation, Dirichlet Process Mixtures 

(DPM) of normals model for density estimation was used. The prior parameters are 

defined as;  =1 gives the value of the precision parameter,    replicated for the 

values i=1,2 and 3 gives the mean of the normal part of the baseline distribution. In 

addition,   
  of a solution of scale matrix gives the hyperparameters of the inverted 

Wishart prior distribution for the scale matrix,  , of the inverted Wishart part of the 

baseline distribution.  

Further,    represents the hyperparameters of the inverted Wishart part of the baseline 

distribution.     and        gives the hyperparameters for the gamma prior 

distribution of the scale parameter    of the normal part of the baseline distribution.  
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The    and    parameters replicated for the values 1,2 and 3 fitted in the posterior 

distribution represents the scale parameter of the normal part of the baseline 

distribution and the scale matrix of the inverted-Wishart part of the baseline 

distribution respectively.  

4.3 Properties of the fitted semiparametric distribution 

4.3.1 Posterior Inference of Parameters under Semiparametric estimation 

The fitted density estimation using DPM of normals model for the test outcomes    , 

representing the non-diseased subjects to obtain Posterior Inference of Parameters. 

The      the scale parameter of the normal part of the baseline distribution and 

solution of the matrix       of the inverted-Wishart part of the baseline distribution 

was computed. The results are summarized in the Table 3 below. 

Table 3: Posterior Inference of Parameters for      (test outcomes for diseased) 

          

0.03252    0.76822    

Dirichlet Process Mixtures model of normals for the test outcomes   , representing 

the transition or suspicious group was also fitted. The Posterior Inference of 

Parameters for the scale parameter of the normal part of the baseline distribution  

  and solution of the matrix        of the inverted-Wishart part of the baseline 

distribution was computed. The results are summarized in table 4 below. 

Table 4: Posterior Inference of Parameters for      (test outcomes for diseased) 

          

0.02477     0.65813    
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Lastly, the density estimates for the test outcomes    representing the diseased 

subjects using Dirichlet Process Mixtures DPM of normals model were fitted.  The 

Posterior Inference for the scale parameter of the normal part of the baseline 

distribution parameters   and solution of the matrix        of the inverted-Wishart 

part of the baseline distribution were obtained. The results are summarized in table 5 

below. 

Table 5: Posterior Inference of Parameters for      (test outcomes for diseased) 

          

0.02197    0.73261    

4.3.2 Posterior parameters for     under semiparametric estimation 

The posterior parameters   and       summarized by time series MCMC scans and 

fitted line for the parameter values for     (test outcomes for the non-diseased group) 

were also computed. Figure 3 below gives a summary of the parameter plots. 

 

Figure 3: Posterior parameters for     under semiparametric estimation 

It was evident that the chains for the posterior parameters; the scale parameter of the 

normal part of the baseline distribution   and solution of the matrix       of the 

inverted-Wishart part of the baseline distribution depicts stationarity at the true 

parameter values. The line plots of the two posterior parameters for the 1000 
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iterations of the Metropolis Hastings steps sampler produced smooth plots. 

4.3.3 Posterior parameters for    under semiparametric estimation 

The posterior parameters plot for    (test outcomes for the transition or suspicious 

group) were also computed.  MCMC scans and fitted line for the parameter values for 

   and       were summarized in figure 4 below.  

 

Figure 4: Posterior parameters for     under semiparametric estimation 

It was evident that the MCMC iterates for the posterior parameters converges to the 

true parameter values for the 1000 iterations of the Metropolis Hastings steps sampler. 

The sampler produced smooth plots as well. In particular, it was found out that the 

scale parameter of the normal part of the baseline distribution   and solution of the 

matrix and       of the inverted-Wishart part of the baseline distribution portrays 

some stationary state near the true parameter values.  

4.3.4 Posterior parameters for    under semiparametric estimation 

The posterior parameters for     (test outcomes for the diseased group) summarized 

series MCMC scans and fitted line was computed. The plots for the posterior 

parameters   and       were represented in figure 5 below.  
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Figure 5: Posterior parameters for     under semiparametric estimation 

For the posterior parameters for     (test outcomes for the diseased group) it was also 

apparent that the 1000 MCMC iterates for the posterior parameters converges to the 

true parameter values. It was also evident that the Metropolis Hastings steps sampler 

produced smooth plots. In general, it was evident that the posterior parameters   and 

      were stationary as they approach the true parameter values.  

4.3.5 Data plots under semiparametric estimation 

It was evident from these plots of posterior parameters;    and       that the 

process appear to be stationary. All plots suggested that convergence was achieved 

after 1000 iterations of the Metropolis Hastings steps Sampler. Inference thereof is 

that each plot seemed to confirm that the parameter posterior parameters converged to 

stationarity after 1000 or so iterations. Further, the fitted distribution was analysed by 
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comparing it with the data plots and kernel density estimate plots. It was shown that 

the posterior distribution curve- DPM of normals model curve fit and kernel density 

estimate curve fit for the data. The kernel density estimate curve fits for the posterior 

estimates represented by faint line while dark line represented the posterior 

distribution curve fit.  

4.3.6 Distribution of     (test outcomes for the nondiseased group) under 

Semiparametric estimation 

The data plot for     (test outcomes for the non-diseased group)was represented using 

a histogram. The posterior distribution of the test outcomes for the non-diseased 

group and curve fits for DPM of normals model and kernel density estimate were also 

fitted on the same data plot. Figure 6 below shows the data plot, DPM of normals 

model curve fit and kernel density estimate curve fit. 

 

Figure 6: Distribution of     (test outcomes for the nondiseased group) under 

Semiparametric estimation 

Figure 6 above shows that plot forY1i (test outcomes for the nondiseased group) 

portrays that the data assumes some distribution, evident in the presence of peaks. 

TheDPM of normals model posterior distribution fit for the test outcomes is a near 

symmetric curve fit indicating that the posterior distribution fits the data well. 

Thekernel density smooth curve fit further confirmed that   that the DPM of normals 
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model fits the data convincingly. 

4.3.7 Distribution of    (test outcomes for the transition or suspicious group) 

under Semiparametric estimation 

The plots for     (test outcomes for the transition or suspicious group) were 

computedusing a histogram. The posterior distribution of the test outcomes for the 

transition or suspicious group and curve fits for DPM of normals model and kernel 

density estimate were also fitted on the same data plot. DPM of normals model curve 

fit and kernel density estimate curve fit are shown in figure 7 below.  

 

Figure 7: Distribution of     (test outcomes for the transition or suspicious group) under 

Semiparametric estimation 

 

The presence of peaks in data plot for    (test outcomes for the transition or 

suspicious group) portrays that the test outcomes assumes some distribution. TheDPM 

of normals model posterior distribution fit for these test outcomes was a near perfect 

symmetric curve or normal distribution fit indicating that the posterior distribution fits 

the data well. Thekernel density smooth curve fit further confirmed that   that the 

DPM of normals model fits the data convincingly, especially a true parameter values. 
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4.3.8 Distribution of    (test outcomes for the diseased group) under 

semiparametric estimation 

The data for    (test outcomes for the diseasedgroup) was also plottedusing 

ahistogram. The posterior distribution of the test outcomes for the diseasedgroup and 

curve fits for DPM of normals model and kernel density estimate were also fitted on 

the same data plot. DPM of normals model curve fit and kernel density estimate curve 

fit are shown in figure 8 below.  

 

Figure 8: Distribution of     (test outcomes for the diseased group) under 

Semiparametric estimation 

The histogram or data plot representing posterior distribution of   (test outcomes for 

the diseased group) reveals that the test outcomes follow some distribution. The fit 

TheDPM of normals model posterior distribution for these test outcomes lacked 

smooth fit though it exhibited peak at true parameter values. Thekernel density 

smooth curve fit and the DPM of normals model curve fit were found to be adjacent 
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indicating that the DPM of normals model fits the data well.  

4.4 Semiparametric Estimation of ROC surface 

Having seen that the properties semiparametric bayesian density estimators; the 

posterior parameters were desirable, samples were  drawn to estimate the ROC 

surface.  

Random samples for the three test outcomes using the DPM of Normals procedures. 

These data represents test outcomes of a simulated diagnostic test that classifies 

disease or condition into three ordered groups namely D- (non diseased), D0 

(transition or suspicious) and D+ (diseased). It was assumed that the test outcomes are 

ordinal and that the simulated diagnostic test classifies the groups without overlap. 

Table 6 below provides a summary of the test outcomes drawn from the distribution.  

Table 6: Simulated diagnostic test Raw Data Summary for Semiparametric model 

 

 

 

 

 

 

4.4.1 ROC surface plot 

From the simulated diagnostic test classification of test outcomes, a three way ROC 

surface corresponding to the three test outcomes was plotted. The Semiparametric 

model defined in to estimate the ROC surface plot were used. Figure 9 below 

represents three dimensional surface plot depicting trade-offs between the predictive 

measures for classification of the three test outcomes.  

Simulated diagnostic test Raw Data Summary for Semiparametric model 

 n=Sample size  = means  

D-  (non diseased) 100 0.1313193 

   (transition/suspicious) 50 0.1606993 

D+ (diseased) 100 0.1867411 
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Figure 9: Three-dimensional ROC surface plot depicting tradeoffs between the 

predictive measures for classification of the three test outcomes under 

semiparametric model 

Figure 9 above represents a plot to estimate the ROC surface under the 

semiparametric model assumptions. It was evident that the semiparametric model 

gives a near smooth ROC surface indicating that the ROC surface has good coverage 

thus the simulated diagnostic test performs well in classifying the test outcomes.  

4.4.2 Semiparametric estimation of volume under ROC surface (VUS) 

For the simulated diagnostic test that classified the test outcomes into the three groups 

to estimate the volume under ROC surface, volume under surface group of test 

outcomes under the Semiparametric assumptions based on DPM of normals model 

was computed. It was found out that the volume under the surface VUS= 0.3411. The 

95% confidence interval was also computed where the lower confidence interval was 

found to be 0.317 while the upper confidence interval was found to be 0.4598.  
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Additionally, optimal cut-points off points were computed whereby the best lower 

cut-point was found to be 0.0935 while the upper cut-point was found to be 0.2307. 

The group correct classification probabilities were found to be; specificity= 0.48, true 

transition rate=0.74 and sensitivity=0.42. It was also derived that the estimate of the 

sample size=115 for the predefined precision. As such, to better estimate the 

diagnostic accuracy of the marker or group of test outcomes, minimum sample size of 

115 will be desired for each group in order to estimate the VUS of the marker within a 

5% margin of error. 

4.4.3 Scatter plot and a boxplot for the semi-parametric VUS 

To provide a summary of the semiparametric volume under ROC surface, a general 

scatter plot and a boxplot were plotted. The graphical summary of the data for D- , D0 

and D+ colored in green, blue and red, respectively and the estimated summary 

measure for the confidence interval (CI) is provided in the legend while the optimal 

cut-points are labeled for the Semiparametric VUS. Figure 10 below gives the 

summary.  

 

Figure 10: Scatter plot and a boxplot of the marker under semiparametric model 

From figure 10 above, the dashed lines show the lower and uppercut points for the 

Semiparametric VUS. The value of the VUS 0.34 is also shown.  The box plots 

portrays that the test outcomes show some ordering and that the test outcomes are 
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ordinal or values are monotonically increasing.  

4.5 Non-parametric Bayesian density estimation and ROC surface estimation 

The  simulation study to assess the performance of the Non-parametric estimation 

method covers cases of normal distribution where  test scores for the three classes 

were generated from three different normal populations: 

                            and                where sample sizes    and  , and 

  were set to 16, 8 and 16 respectively. It was also assumed that the Polya Tree is 

centered on normal distribution,           distribution, by taking each J=4 levels 

of the partitions where      (Hanson & Johnson, 2002). Similar to the 

semiparametric case, the means are ordered to ensure that the observations are 

monotonically increasing. 

It was assumed that  , the precision parameter of the Polya Tree prior,      and 

was considered as random, having a gamma distribution,           hyperparameters 

for prior distribution of the precision parameter. In the computational implementation 

of the model, Metropolis-Hastings steps were used to sample the posterior distribution 

of the baseline and precision parameters. The number of grid points where the density 

estimate was evaluated was set to ratio proportionate to the simulated sample size, 

that is, 2:1:2, it was assumed assumed 100, 50 and 100 for      and   ; the simulated 

case.  

The MCMC parameters included nburn = 1000 gives the number of burn-in scans, 

nskip= 50 gives the thinning interval, nsave= 1000 giving the total number of scans to 

be saved. Further,  ndisplay= 100 giving the number of saved scans to be displayed on 

screen, tune1=0.15, tune2=1.1, and tune3=1.1 giving the positive Metropolis tuning 

parameter for the baseline mean, variance, and precision parameter, respectively.  
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4.6 Properties of the fitted Non-parametric distribution 

4.6.1 Posterior Inference of Parameters under Non-parametric Bayesian 

estimation 

The fitted distribution (Bayesian Density Estimation Using MFPT) for the test 

outcomes   , representing the non-diseased subjects has the Posterior Inference of 

Parameters        
        and     

       . The acceptance rate for the Metropolis 

Step = 0.7350577 to 0.7764615. The results are summarized in table 7 below. 

Table 7: Posterior Inference of Parameters for     (test outcomes for diseased) 

     
      

   

1.22 1.97 1.00 

Acceptance Rate for Metropolis Step =  [0.73 0.78]  

 

Likewise, the test outcomes    for the transition or suspicious state condition were 

fitted using Bayesian Density Estimation Using MFPT whereby the posterior 

Inference of Parameters       
       and     

        while the acceptance rate for 

the Metropolis Step = 0.78 0.85. Table 8 below provides a summary of the results.  

Table 8: Posterior Inference of Parameters for      (test outcomes for transition or 

suspicious) 

     
      

   

2.18 1.70 1.00 

Acceptance Rate for Metropolis Step =  [0.78 0.85]  

Finally, the test outcomes    representing the diseased or ‘with condition’ group were 

fitted under the Bayesian Density Estimation Using MFPT. The posterior Inference of 

Parameters       
       and     

        while the acceptance rate for the 

Metropolis Step = 0.70 to 0.77. The results were summarized using table 9 below.  

Table 9: Posterior Inference of Parameters for      (test outcomes for diseased or ‘with 
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condition’) 

     
      

   

3.22 1.41 1.00 

Acceptance Rate for Metropolis Step =  [0.70 0.77]  

4.6.2 Posterior parameters for Y1i under Non-parametric Bayesian density 

estimation 

Further, to analyze the properties of the posterior parameters, the parameters plots for 

the fitted distribution for each of the three simulated test outcomes were computed. 

The plot posterior parameters for     (test outcomes for the nondiseased group) were 

summarized by time series MCMC scans and fitted histogram line for the parameter 

values for mean and standard deviation namely      
 and     

. Figure 11 below gives 

a summary of the parameter plots.  

 

Figure 11: Posterior parameters for     under Non-parametric Bayesian density 

estimation. 

 

It was evident that the chains for both parameters were desirably stationary at the true 

parameter values. The plots of the mean of the parameters and standard deviation for 
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the 1000 iterations of the sampler produced near- smooth plots. 

4.6.3 Posterior parameters for     under Non-parametric Bayesian density 

estimation 

Similarly for     (test outcomes for the transition or suspicious group), the fitted 

posterior parameters      
 and     

 were plotted. A summary of the plots is 

represented by MCMC scans and fitted histogram line for the parameter values. Figure 

12 below gives a summary of the parameter plots.  

 

Figure 12: Posterior parameters for    under Non-parametric Bayesian density 

estimation 

 

It was concluded from the time series trace plots that the parameter estimates for 

   (test outcomes for the transition or suspicious group), were all reasonably 
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convergent to the true parameter values. The parameter curve plots also depicted 

desirable degree of smoothness and predicted the true parameter values.  

4.6.4 Posterior parameters for    under Non-parametric Bayesian density 

estimation 

The parameter plots for the fitted posterior parameters      
 and     

for    (test 

outcomes for the diseased or ‘with condition’) were also computed. Similar to 

previous test outcomes parameter plots; the plots for MCMC scans and fitted 

histogram line for the parameter values were computed. Figure 13 below gives a 

summary of the parameter plots. 

 

Figure 13: Posterior parameters for     under Non-parametric Bayesian density 

estimation 

It was evident that the MCMC chains were convincingly stationary at the true 

parameter estimates for posterior parameters      
 and     

for   (test outcomes for 

the diseased or ‘with condition’). Further, theplots of the parameter estimates; mean 



49 

 

and standard deviation show definite smoothness.  

4.6.5 Data plots under Non-parametric Bayesian density estimation 

The posterior parameters for the three simulated test outcomes indicate that posterior 

estimates; means and standard deviations converged or are stationary after 1000 

iterations, then the distributions of the three test outcomes by plotting the data using 

histograms were analysed. The MFPT distribution curve fits for the posterior 

estimates represented by the dark line and the kernel density estimate curve fits for the 

posterior estimates represented by faint line for comparison purposes were computed. 

4.6.6 Distribution of Y1i (test outcomes for the non-diseased group) under Non-

parametric Bayesian density estimation 

The data for    (test outcomes for the non-diseased group)were plottedusing a 

histogram. The posterior distribution of the test outcomes for the non-diseased group 

and curve fits for MFPT and kernel density were computed. Figure 14 below shows 

the data, MFPT and kernel density plots.  

 

Figure 14: Distribution of     (test outcomes for the non-diseased group) under Non-

parametric Bayesian density estimation 
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The histogram of the plot for    (test outcomes for the non-diseased group) data 

depicts that the data follows some distribution, evident in the existence of peaks in the 

data. Theposterior distributions of the fit using MFPT indicate that the data fits the 

distribution well. Thekernel density smooth curve fit shows that the MFPT model fits 

the data convincingly, as the peak for the      
lies at the true parameter value, that is, 

     
  . 

4.6.7 Distribution of    (test outcomes for the transition or suspicious group) 

under Non-parametric Bayesian density estimation 

A histogram was used to plot the data for    (test outcomes for the transition or 

suspicious group).The curve fits for MFPT and kernel density for the posterior 

distribution of the test outcomes for the transition or suspicious group were computed. 

Figure 15 below shows the data, MFPT and kernel density plots.  

 

Figure 15: Distribution of     (test outcomes for the transition or suspicious group) 

under Non-parametric Bayesian density estimation 
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It was also found from the plot of    (test outcomes for the transition or suspicious 

group) data that the data assumes some distribution, evident in the existence of peaks 

in the histogram. It was also evident that the posterior distributions of the fit using 

MFPT indicate that the data fits the distribution well. Thekernel density smooth curve 

fit shows that the MFPT fits the data convincing, as the peak for the      
lies at the 

true parameter value, that is,      
  . 

4.6.8 Distribution of    (test outcomes for the diseased group) under Non-

parametric Bayesian density estimation 

Finally, a histogram was plotted for    (test outcomes for the diseased group) data.On 

the same histogram, curve fits for MFPT and kernel density for the fitted distribution 

of the test outcomes were computed. Figure 16 below shows the data, MFPT and 

kernel density plots.  

 

Figure 16: Distribution of     (test outcomes for the diseased group) under Non-

parametric Bayesian density estimation 
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From the data plot of    (test outcomes for the diseased group), it was also found that 

the data assumes some distribution, evident in the existence of peaks. It is also evident 

that the posterior distributions of the fit using MFPT indicate that the data fits the 

distribution well. Thekernel density smooth curve fit shows that the MFPT fits the 

data well, as the peak lies at the true parameter value, that is,      
=3. 

4.7 Nonparametric ROC surface estimation 

Since the properties of the parameters from the fitted non-parametric Bayesian 

Density Estimation Using MFPT distribution were desirable, random samples for 

inference for the ROC surface were drawn.  Random samples for the three test 

outcomes using the Bayesian Density Estimation Using MFPT procedures were 

obtained. The samples represent a simulated diagnostic test that classifies outcomes 

into three groups. Table 10 below provides a summary of the test outcomes drawn 

from the distribution.  

Table 10: Simulated diagnostic test Raw Data Summary under non-parametric 

estimation 

 n=Sample size  = means  

D-  (non diseased) 100 0.54 

Do (transition/suspicious) 50 2.34 

D+ (diseased) 100 3.04 

4.7.1 ROC surface plot 

From the drawn data, a three way ROC surface corresponding to the three test 

outcomes was plotted. The model was used to estimate the ROC surface plot. Figure 

17 below represents three-dimensional surface plot depicting trade-offs between the 

predictive measures for classification of the three test outcomes.  
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Figure 17: Three-dimensional surface plot-depicting tradeoffs between the predictive 

measures for classification of the three test outcomes under nonparametric estimation 

Figure 17 above represents a plot of ROC surface for the nonparametric approach that 

uses a mixture of finite Polya trees (MFPT) model. It is evident that the model 

performs well though the ROC surface is not very smooth.  

4.7.2 Nonparametric estimation of volume under ROC surface (VUS) 

From the simulated diagnostic test representing a group of diagnostic test outcomes, 

volume under surface for the marker or group of test outcomes under the 

nonparametric methods was computed. It was found out that the volume under the 

surface VUS= 0.26. The 95% confidence interval was also computed. The lower 

confidence interval was found to be 0.23 while the upper confidence interval was 

found to be 0.34. Further, the optimal cut-points off points were derived. The best 

lower cut-point was found to be 0.0658 while the upper cut-point was found to be 

0.204. The group correct classification probabilities were found to be; specificity= 

0.36, true transition rate=0.56 and sensitivity=0.52. The estimate of the sample 

size=114 for the predefined precision was also derived. In other words, for the 

accuracy of the diagnostic test or group of test outcomes, a sample size of 114 will be 
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desirable for each group in order to estimate the VUS of the marker within a 5% 

margin of error. 

4.7.3 Scatter plot and a boxplot for the non-parametric VUS 

A generic Scatter plot and a boxplot to summarize the data graphically for the non-

parametric VUS were also computed. Figure 18 below shows a scatter plot and a 

boxplot, with observations from D- , D0 and D+ colored in green, blue and red, 

respectively. The estimated summary measure along with the CI is provided in the 

legend while the optimal cut-points are labeled. 

 

 

Figure 18: Scatter plot and boxplot of the marker under nonparametric estimation 

From figure 18 above, it can be shown that the optimal cut off points for the marker 

represented by the dashed lines can be computed for the VUS. The box plots shows 

that the test outcomes show some ordering and that the test outcomes are ordinal in 

nature.  
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CHAPTER FIVE 

DISCUSSION 

The simulation studies were conducted to assess the semiparametric and nonparametric 

estimators of ROC surface. In every simulation, true-negative, true transition or 

suspicious and true-positive samples for the two methods were generated. Samples for the 

semiparametric approach; the true-negative class, true transition or suspicious and the 

true-positive class follows normal distributions with standard deviation of 1.5 with 

varying mean values. Similarly for non-parametric case, the true-negative class, true 

transition or suspicious and the true-positive class follows normal distributions with 

standard deviation of 1.5 with varying mean values. The generated samples were set to 

same initial conditions so that comparison between the performances of two approaches 

can be made.  The set of simulations, test outcomes both studies were assumed to have 

different sample sizes according to definite class ratio 2:1:2  as recommended by (Luo & 

Xiong, 2012).  

As expected, the methods perform better when the sample size is larger. The 

estimators had some drawbacks, and it may suffer from large variability, particularly 

for small sample sizes. However, this is not a major problem as small samples are 

common-place in clinical practice (Jokiel-Rokita& Pulit, 2013).  

The parameter plots suggested that the Metropolis Hastings steps sampler used 

achieved convergence and were valid for subsequent analysis.  It was deduced from 

the trace plots for all parametersthat inference based on the parameters was robust. In 

particular, the semiparametric posterior parameters were all stationary at the true 

parameter values and that all the MCMC chains were all convergent. Similarly, for 

the non-parametric estimators, the posterior parameter values were all stationary at the 

true parameter values and the chains were convergent; the acceptance rate for all 
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metropolis-hasting steps were all desirable.  

That is, the high acceptance rate does indicate that the algorithm is behaving 

satisfactorily since it correspond to the fact that the chain is moving too faster on the 

surface.   

The plots for the posterior distributions for the three test outcomes under the 

Semiparametric case (DPM of normals) were all smooth and symmetric except for 

   which had asymmetric data plot; this can be attributed to the small sample size 

used. On the other hand, the non-parametric posterior distribution (MFPT) plot for the 

three test outcomes portrayed unsmooth fits though the fit of MFPT model depicted 

some symmetry and adjacency to the kernel density fits. It was noted that the Kernel 

Density Estimation for both Semiparametric and non-parametric posterior 

distributions tend toward the true density therefore it is convincing that a much 

narrower variation on the sample values can be obtained. The Semiparametric 

posterior distribution fit was found to have smooth and more adjacent fit to kernel 

density estimate fits compared to the nonparametric posterior distribution fits.  

The Semiparametric estimator provides a good mathematical model under assumed 

population distributions for the test results in three classes. It was also noticed that the 

choice of normal distribution in semiparametric model may be replaced by other well-

known parametric families such as Weibull or gamma, where appropriate. 

Nonparametric estimator shows the observed diagnostic performance of the test 

among three classes reflects the sampling characteristics. uninformative independent 

priors for test outcomes, that is,               ,                and                

for both Semiparametric and non-parametric models were used. The semiparametric 

model is based on Dirichlet Processes of Normals and allows the entire distribution in 
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each group to smoothly change as a function of the covariates.  

The results compared with the semiparametric approach of Carvalho et al. (2013) 

shows that the model  performs competitively. The Bayesian nonparametric approach 

developed as based on mixtures of finite Polya trees priors outperforms the estimators 

proposed by In´acio (2012). However, the developed methods are prone to overlap 

between test outcomes.  

The ROC surface under the Semiparametric and nonparametric models were found to 

have good coverage thus the two surfaces was considered useful to examine the 

diagnostic accuracy of the test for the three classes at different threshold values. It 

was notable, however, that the Semiparametric ROC surface had a smoother surface 

than the Nonparametric ROC surface; this can be attributed to the fact that 

Semiparametric case was a result of definite distribution, that is, mixture of normal 

distribution has smooth parametric fit.  

The computed semiparametric and nonparametric ROC surface had similar methods 

used by Nakas and Yiannoutsos (2004). The estimated VUS under Semiparametric 

model was 0.34 and a 95% credible interval was (0.317, 0.460). On the other hand, 

the estimated VUS under Nonparametric model was 0.26 and a 95% credible interval 

was (0.232, 0.204). These values was contrasted to the VUS of a useless test or 

uninformative level of VUS=1/6 =0.167, which led us to conclude that the assumed 

marker has a reasonable discriminative power under both model assumptions. From 

these results, it can be concluded that for this particular analysis all methods lead 

substantially to the same conclusions. 

The Semiparametric and Nonparametric approaches considered for estimating the 

ROC surface and the VUS indicate that even when the semiparametric assumption 
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holds, nonparametric estimation for Polya tree priors gives accurate results. These 

priors are especially useful when modelling data with nonstandard features, such as 

skewness and multimodality, as shown in the plot of posterior parameters for the 

MFPT case. Even with small sample sizes, the DPM of normals model and MFPT 

approach behaves quite well. Moreover, it was experienced that these approaches fits 

normal data well and is robust enough to fit data generated from other distributions 

for example gamma and for exponential distributions as mixtures of  such 

distributions.  

It was also noted that full inference is available with the Bayesian approach employed 

since the pair of thresholds that should be used to make the diagnostic decision was 

obtained. Nakas et al. (2010) earlier suggested that once models have been fitted, a 

posterior distribution for the optimal thresholds can easily be obtained.  

It is noted also that there is no “rule of thumb” when choosing whether to use a 

Semiparametric or nonparametric model; the choice of models depends on the data. 

Moreover, since the DPM and MFPT priors are centered at a parametric family, they 

can inherit the overall shape of the underlying density when the weight parameter is 

relatively large (Jara, 2007). 

Although the Semiparametric model yielded the best results, the MFPT is model is 

competitive as well. The two methods perform equally well in the simulation studies. 

The computation for MFPT method was more intensive.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1: Conclusions 

In summary, diagnostic tests for three ordinal groups are important in biomedical 

practice. A useful summary measure (VUS) which can be adopted to evaluate the 

discriminative ability of a diagnostic test when there are three ordinal groups was 

computed.The applicability of DPM and MFPT models in solving difficulty in the 

modeling of continuous diagnostic data with skewness, multimodality or other 

nonstandard features were discussed. These data-driven models provided robust 

inference for the ROC surface and for the volume under the ROC surface (VUS).  

Further, the summary of ROC surface under the semiparametric and nonparametric 

cases indicated that the two methods perform equally well in the simulation studies. 

The produced ROC surface plots has the appealing feature of being continuous and 

smooth, thus allowing for useful interpretation of the diagnostic performance at all 

thresholds. Comparably, the nonparametric ROC surface plot is less smooth compared 

to the semiparametric ROC surface plot. The surface plots produced are useful to 

examine the diagnostic accuracy of the test for the three classes at different threshold 

values. The three axes correspond to the probabilities of correct classification into the 

three groups. Volume under surface for semiparametric model was higher than the 

volume under surface for nonparametric model indicating higher accuracy. It can be 

attributed to the fact that the semiparametric model is largely centred on the Gaussian 

distribution.  
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It is noteworthy that semiparametric and nonparametric modelling of diagnostic data 

does not mean that there are no parameters in the models that were assumed. It is 

evident that the two models are massively parametric as the posterior parameters for 

the models were fitted.  

The terms were used to indicate that the models are free of restrictive, inappropriate 

constraints that are implied particular parametric models.  

6.2: Recommendations 

A generalization of ROC curve to K=3; the computed ROC surface was developed in 

this research. It can be recommended that a generalization for more than three classes 

(K > 3), to produce a ROC hypersurface be developed. The Hypervolume Under the 

ROC Manifold (HUM) can be used for inferences for the ROC manifold especially in 

genetics where gene classifications involve several categories.  

Further, most of the researchers have dealt with generalizations of theoretical findings 

from the two-class case and the geometric properties of the ROC surface. There is 

need for inference for multiple-class classification such as lack of ordinality in the test 

outcomes, (Li and Fine, 2008) where tests classifications were nominal, calls for more 

theoretical developments for the robustification of the framework of ROC surface 

analysis.  

It is also recommend that researchers who are interested ROC surface methodology 

use the Comprehensive R Archive Network repository and contribute to further 

developments of R-packages for the implementation of ROC surface analysis in order 

to facilitate more researchers to implement ROC surface methodology.  
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