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ABSTRACT 

Maize chlorotic mottle virus (MCMV) is a serious threat to maize growing small holder 

farmers’ food security in Sub-Saharan Africa (SSA). In addition, the ability of MCMV to 

interact with other members of Potyviridae leads to maize lethal necrosis (MLN) and 

causes up to 100% yield loss. Three doubled haploid (DH) populations and IMAS 

association panel lines were evaluated in the screen house for MCMV in the quarantine 

field for MLN at CIMMYT-MLN screening facility in the Maize Research Station of 

KALRO (Kenya Agriculture and Livestock Research Organization), Naivasha. The study 

aimed at   gaining insights into the genetic architecture underlying the resistance to 

MCMV and further validate the identified genomic regions in independent population. 

Linkage mapping with three doubled haploid (DH) populations was combined with a 

genome-wide association study (GWAS) of 395 diverse tropical and subtropical maize 

lines using 293,106 SNPs under controlled conditions. For all populations, phenotypic 

variation for MCMV were significant, and heritability was moderate to high. Few 

promising lines with high tolerance to MCMV were identified to be used as potential 

donors. SNPs significantly associated with MCMV were identified and the candidate 

genes were found to relate to plant defense. The number of significant SNPs varied for 

individual and across locations. The total variance explained by significantly associated 

SNPs ranged from 31% for MCMV early to 26% for MCMV late. Linkage analysis 

revealed that most QTL are in chromosome 3 and the remaining QTL identified were 

distributed in other chromosomes. The number of QTL associated with MCMV 

resistance ranged from one to five QTL in both early stage and late stage of MCMV 

infection. The proportion of phenotypic variance explained by each QTL ranged from 

4.8% to 10.4% in CML 494×CML 550, from 2.2% to 59.1% in CML 504×CML 550 and 

in CML 511 × CML 550 it ranged from 16.8% to 28.1 %. These results indicate that 

MCMV resistance in maize is controlled by a major QTL in chromosome 3 and several 

minor QTLs with smaller effect on other chromosomes. Information obtained from this 

study can be used for developing functional molecular markers for marker-assisted 

selection (MAS) and for implementing genomic selection (GS) to improve MCMV 

resistance in tropical maize. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Maize (Zea mays L) is one of the most important cereal crops globally, ranked third after 

wheat and rice (Beyene et al., 2017, 2015; Semagn et al., 2014; Smale et al., 2011). In 

Sub-Saharan Africa (SSA), maize is critical for food security and is commonly grown by 

resource poor small-scale farmers. Moreover, it is a model genetic system with many 

advantages, including, monoecious floral development; physical separation of male and 

female flower, synchronized meiosis, high levels of phenotypic and genetic diversity, 

large physical maps of chromosomes and a vast collection of genetic mutants (Prasanna, 

2012; Strable and Scanlon, 2009; Yan et al., 2011). Identification of natural allelic 

variations that lead to phenotypic diversity is critical in improvement of agronomic traits 

in maize breeding programs.  

The yields in SSA are often not optimal leading to import of about more than 7 x 106 

tons per annum (28%) of the maize which cover deficits in production (Isabirye and 

Rwomushana, 2016). Several constraints including drought, low soil fertility and impact 

of plant diseases, caused by viruses, bacteria, fungi and nematodes affect agricultural 

productivity in SSA (Cairns et al., 2013). In maize, at least ten viruses cause significant 

agronomic losses globally (Munkvold and White, 1999). Maize chlorotic mottle virus 

(MCMV) is one of the destructive viral disease that results in direct yield loss in maize 

worldwide. It has the ability to interact with any Potyvirus which infect maize resulting to 

lethal necrosis (Gowda et al., 2015; Wangai et al., 2012). MCMV is the member of the 
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genus Machlomovirus in the family Tombusviridae (Stenger and French, 2008) and most 

closely related to members of the genus Carmovirus (Mwando et al., 2018; Nelson et al., 

2011; Wang et al., 2017). MCMV was first described in Peru in 1974 (Uyemoto, 1981) 

and thereafter was reported in the United States of America, Mexico, Argentina, 

Thailand, Hawaii and Colombia (Nelson et al., 2011). Since 2010, MCMV globally 

emerged at several locations including China (Wu et al., 2013; Xie et al., 2011),Taiwan 

(Deng et al., 2014), Ecuador (Quito-Avila et al., 2016),and Spain (Braidwood et al., 2018, 

2017). In Sub-Saharan Africa (SSA), MCMV seems to be a new arrival and perhaps the 

serious epidemic of maize crop in recent times. 

MCMV as one of the causal agent of MLN was first reported in Kenya  in Bomet county 

in 2011 (Wangai et al., 2012). Subsequently, it was reported in Tanzania (Makumbi and 

Wangai, 2012), Democratic Republic of Congo (Lukanda et al., 2014), Rwanda (Adams 

et al., 2014), Ethiopia (Mahuku et al., 2015) and Uganda (Kagoda et al., 2016), resulting 

to significant yield losses in maize production and negative impact on the livelihoods of 

smallholder farmers in eastern and central Africa (Adams et al., 2014; Redinbaugh and 

Stewart, 2018). The host range for MCMV is limited to members of the Gramineae 

family. MCMV symptoms are dependent on plant’s genetic background, developmental 

stage and the prevailing environment. Distinct symptoms of MCMV range from mild 

chlorotic mottling to severe mosaic and stunting, yellowing and necrosis, premature plant 

death, shortened male inflorescence with few spikes and/or shortened, malformed 

partially filled ears (Mahuku et al., 2015). In natural infection, yield losses range between 

10-15%, while about 59% loss in artificial inoculations.  Due to the ability of MCMV to 

interact with potyviruses, the leaves and stems of infected plants develop maize lethal 
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necrosis  (MLN; Xia et al. 2016). MLN is an important disease in maize seed industry in 

many east and southern African countries since it leads to serious yield losses (Gowda et 

al., 2015; Wang et al., 2017). 

To control diseases in crops, application of host resistance is the most reliable, cost-

effective and environmental friendly approach (Gururani et al., 2012). This is due to 

durability, reduction of crop losses coupled with little or absence in chemical (pesticide) 

use that could affect human and the environment. In light of the severity of MCMV in 

SSA, many efforts are being implemented to produce resistant varieties of maize in East 

Africa (Gowda et al., 2015; Kagoda et al., 2016). 

Genome wide association studies (GWAS) were conducted by using high density 

markers developed through Genotyping- by-Sequencing (GBS) to detect the loci 

associated with the trait of interest. Dissecting the genetic basis of different 

agronomically important traits is the foundation for trait improvement; however, despite 

the recent advancements in this area, very little is known about the genetic architecture of 

many adaptive traits in maize (Hill, 2012; Mackay et al., 2009) including resistance to 

MCMV. No studies were reported to identify the genomic regions influencing the 

resistance to MCMV through any genomic approaches. In order to understand the genetic 

architecture of MCMV resistance, we used GWAS approach.  

In the present study a global collection of 395 diverse germplasm and three bi-parental 

populations were evaluated in multiple environments under artificial inoculation with 

MCMV. GWAS was performed with over 293,106 high-throughput SNPs to determine 

the genetic architecture as well as causative genes for resistance to MCMV in maize. 
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1.2 Statement of the problem 

MCMV is a causal agent of MLN which is serious threat to smallholder farmers food 

security, and nutritional well-being in east Africa since 2011 (Kiruwa et al., 2016). The 

disease is also a threat to the economic stability. In Kenya, MLN caused an estimated loss 

of $187 million equivalent to $364/ton (De Groote et al., 2016). The loss directly impacts 

farmers because they completely rely on the crop for food production and income. The 

magnitude of yield loss and extensive spread of MLN creates a tremendous need for the 

development of resistant germplasm as well as research to understand its genetic 

architecture. Identification of QTLs of agronomic importance and its utilization in a crop 

improvement requires mapping of these QTLs in the genome using molecular markers 

then utilizing a backcross breeding scheme to introgress resistance from the donor parent 

into an agronomically superior, adapted line or inbred.   

1.3 Justification of the study 

MCMV is very new to Africa first reported in Kenya in 2011 and there is  a possibility 

that  all present Africa adapted germplasm are completely susceptible (Mahuku et al., 

2015). Gowda et al., (2015) reported the genomic region associated with resistance to 

MLN and it necessitates the understanding of the genetic architecture of MCMV since it 

has the ability to interact with any potyviruses which infects maize. Understanding the 

genetic architecture of MCMV can pave the way to understand the resistance mechanism 

of MCMV and help to design appropriate breeding strategy which is more focused and 

efficient. Additionally, there are sources for resistance to MCMV in global maize 

germplasm.
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1.4 RESEARCH OBJECTIVES 

1.4.1 Broad objective 

To identify the genomic regions associated with resistance to MCMV in a panel 

of breeding lines and validation of discovered genomic regions in biparental 

populations. 

1.4.2 Specific objectives 

a. To evaluate the diverse array of tropical and subtropical maize lines and double 

haploid populations for their responses to MCMV under artificial inoculation;  

b. To carry out Genome-wide association study to identify genomic regions, and 

putative candidate genes associated with MCMV resistance;  

c. To validate the genomic regions by linkage mapping;  

 

1.4.3 Research questions 

Objective 1: 

 What are the effects of MCMV inoculation on IMAS association panel and DH 

populations? 

 Is there significant difference in the response to maize chlorotic mottle virus 

among maize lines used? 

 Are genotypes tolerant or susceptible to MCMV? 

Objectives 2 and 3: 

 How many loci are controlling the variation? 

 What is the distribution of allele frequencies at those loci? 

 Is there any interaction between the loci? 

 What is the distribution of effect sizes, are they minor or large effect genes? 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter presents literature review in three different sections. The first section 

highlights maize (Zea mays L.) as a crop including its role with other cereals, origin and 

history, taxonomy and production trends and production constraints worldwide, in Africa, 

and Kenya. The second section focuses on the most important production constraints that 

limit maize production in Kenya, namely MCMV and MLN. This is done by examining 

the importance, symptoms, diagnosis and detection, distribution and control methods of 

the disease. This follows an in-depth description of the causative agent of MCMV and its 

control methods. The third section covers breeding for MCMV resistance, the genetics of 

resistance to MCMV, maize breeding methods, and applications of molecular techniques 

in maize breeding, including genotype-by-sequencing, genome-wide association studies 

and QTL mapping. 

2.1. Maize and its importance 

Maize, a member of the grass family Poaceae to which all major cereals belongs, is one 

of the world’s three most important cereals along with wheat and rice. With 70 million 

people consuming maize in SSA, the crop is critical for food security (Beyene et al., 

2015; Shiferaw et al., 2014). The eastern and southern Africa regions consume 85% of 

the maize produced while Africa as a whole uses 95% of produced maize as food. The 

crop is extensively cultivated due to its wide adaptability to grow in a different range of 

conditions. Farming operations in SSA encompasses over 25 million hectares and 

produce 38 million metric tons of grain, thus making it the mainstay of the continent’s 

rural economies. Interestingly, maize is predominantly produced by small scale holders 
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(Smale et al., 2011). The average maize yield in SSA is 1.8 tonnes per hectare which is 

very low compared to that of other maize-growing regions in the developing world of 

which the low yield is attributed to MLN and MCMV. 

The world population is expected to reach 9.1 billion by 2050. This means that food 

production need to increase by 70% to feed the world (Yang et al., 2017, 2012). 

However, the world’s total arable land has reached close to its maximal usage. Although 

maize production has steadily increased over the past decades, biotic stresses are still a 

constant worldwide concern that causes enormous yield losses and reduces grain quality. 

In order to stabilize and increase global maize production for a rapidly growing world 

population, the development of maize varieties with enhanced disease tolerance is 

crucial. 

2.2. Maize in Kenya 

The production of maize in Kenya is 3.6 metric tons and ranked first in total area 

coverage (2.26 M Ha) among the cereals compared to wheat (0.15 M Ha) and rice (0.03 

M Ha)(Gichuru, 2013). However, in terms of production per unit area, maize (1.53 t ha
-1

) 

comes third after rice (5.3 t ha
-1

) and wheat (2.9 t ha
-1

)(Gichuru, 2013; Makone et al., 

2014). The highest grain yield, 6 t ha
-1

, is achieved in the high potential areas which are 

in the highlands but current production elsewhere stands at 1.6 t ha
-1

. With the area 

planted with maize in Kenya seeming to have reached a stagnation point, De Groote et al. 

(2016), suggested that intensifing production in existing areas would lead to a 1.5 to 2% 

growth per annum in maize production.  

Currently, the key constraints affecting maize production are viruses especially MLN and 

MCMV. MLN, is caused by synergistic co-infection of maize plants by MCMV and any 
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of the potyviruses, especially sugarcane mosaic virus (SCMV), which emerged as a 

serious threat in Kenya, and later expanded to most countries in east Africa (Mahuku et 

al., 2015).  It causes irreversible damage that kills maize plants and causing 100% yield 

loss. Kenya’s yield losses due to MLN were estimated to range from 30% to 100% 

depending on the stage of disease onset and severity (Mahuku et al., 2015). More than 

95% of the commercial maize varieties in these areas are MLN susceptible (Mahuku et 

al., 2015).  

2.3. Viral diseases of maize 

Plant viruses are infectious, intracellular and obligate pathogens that are too small to be 

seen with a light microscope, but despite their small size, they can cause lethal effects in 

plants. They are found everywhere in nature or it can be said that wherever cellular life 

occurs, viruses also occur. Virus particles are not complete cells hence cannot carry out 

functions of their own. Plant viruses do not have the molecular machinery to replicate; 

have to depend on live host plants for survival otherwise, they may not be able to survive 

(Kang, 2014). Major viral disease outbreaks in maize including MLN and MCMV pose 

as a significant constraint in maize production in SSA. 

2.3.1. Maize lethal necrosis disease 

MLN is currently threatening cultivated maize production in Eastern Africa since 2011 

(Adams et al., 2014; Lukanda et al., 2014; Mahuku et al., 2015; Wangai et al., 2012). 

MLN was first identified in USA in 1976 where it was reported to result from synergistic 

interaction between Maize Chlorotic Mottle Virus (MCMV), genus Machlomovirus, 

family Tombusviridae, and any of the cereal viruses in Potyviridae family; SCMV, Maize 

Dwarf Mosaic Virus (MDMV) or Wheat Streak Mosaic Virus (WSMV) (Nault et al., 
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1978). Symptoms of MLN include; elongated yellow streaks parallel to leaf veins, streaks 

may coalesce to create chlorotic mottling, that may be followed by leaf necrosis which 

may lead to “dead heart” symptom and plant death, premature aging of the plants, failure 

to tassel and sterility in male plants, malformed or no ears, failure of cobs to put on grains 

and rotting of cobs (Wangai et al., 2012). The viruses causing MLN are transmitted by 

many vectors, like thrips and beetles for MCMV and aphids for SCMV and MDMV 

(Cabanas et al., 2013). Although each of these viruses individually can cause disease, co-

infection by these viruses cause MLN and results in severe yield losses (mln.cimmyt.org; 

Gowda et al., 2015). 

MLN is a problem in maize production in SSA. Isabirye and Rwomushana (2015) 

projected an increase of incidence and distribution to other regions of East and Central 

Africa with similar climatic conditions to the current hotspots and a significant southward 

movement to southern Africa countries like Mozambique, Malawi, Angola, Namibia, 

Zimbabwe and Madagascar which are among the biggest maize producers. This threat of 

potential spread of MLN is the justification for the need of drastic measures to develop 

resistant germplasm to MCMV and MLN as well as research to understand its genetic 

architecture.  

Molecular markers are effective tools to speed up the process of identifying the genomic 

regions associated with resistance to either MLN or MCMV. Gowda et al., (2015) used 

several bi-parental populations and two association mapping (AM) panels and identified 

major MLN resistance QTLs on chromosome 3 and 6. These major QTL mapped to bin 

3.04/3.05 on chromosome 3 and bin 6.00/6.01 in chromosome 6 which falls in the 

genomic region reported for resistance to multiple viruses (Zambrano et al., 2014), hence 
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potentially linking MLN resistance to other virus resistance including MCMV resistance 

is logical. The research described in this thesis focuses on gaining insight into the genetic 

architecture of MCMV resistance.  

2.3.2. Maize Chlorotic Mottle Virus 

 

2.3.2.1. History of MCMV 

MCMV is the only identified member of the genus Machlomovirus in the family 

Tombusviridae (Stenger and French, 2008) and is most closely related to members of the 

genus Carmovirus (Nelson et al., 2011; Wang et al., 2017). MCMV was first described in 

maize from Peru in 1974 (Uyemoto, 1981) and thereafter was reported in the United 

States, Mexico, Argentina, Thailand, Hawaii (Nelson et al., 2011) and Colombia. Since 

2010, however, MCMV has emerged at several locations in the Eastern Hemisphere, 

including China and Taiwan (Wu et al., 2013; Xie et al., 2011). In SSA, MCMV seems to 

be a new arrival and perhaps the worst enemy of the maize crops in recent times.  It was 

first reported in Kenya at Bomet County in 2011. Subsequently, it has been reported in 

other countries; Tanzania (Makumbi and Wangai, 2012), Uganda (Kagoda et al., 2016), 

Democratic Republic of Congo (Lukanda et al., 2014), Rwanda (Adams et al., 2014), 

Ethiopia (Mahuku et al., 2015), seriously threatening maize production and the 

livelihoods of smallholder farmers in eastern Africa (Adams et al., 2014). 

2.3.2.2. MCMV structure and genome organization  

MCMV has an icosahedral particle with 30 nm in diameter (Lommel et al., 1991), which 

is composed of a single 25 kDa capsid protein subunit encapsulating 4.4 kb single-

stranded positive-sense genomic RNA (Wang et al., 2017). The single-stranded RNA has 

isometric virions and these single-components particles (Scheets, 2000), have smooth 
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spherical or hexagonal shape (Mbega et al., 2016). The viral genome encodes six 

overlapping open reading frames (ORFs) with only five ORFs required for replication 

and movement in the plant (Wang et al., 2017).  . Translation of the MCMV genome by a 

reticulocyte system results in polypeptides of 105, 52, 44, 41, 32, and 25 kDa. A sub-

genomic RNA of 1090 nucleotides was identified as the mRNA for the 25 kDa coat 

protein (CP) (Nelson et al., 2011; Wu et al., 2013).The coat protein of MCMV is 

expressed from 3’ proximal ORF (Wang et al., 2017). 

2.3.2.3. MCMV diagnosis, transmission and symptoms 

To be effective, control of viral disease must begin with disease diagnosis, which should 

aim at finding and recognizing the causal virus. Correct identification of the virus causing 

a disease in the field is essential, if adequate control measures are to be found. MCMV 

interacts with any of the Potyviruses including SCMV, WSMV or MDMV, and develop 

MLN disease. MLN is an important disease in maize industry in East and Southern 

Africa regions since it leads to serious yield losses in maize (Gowda et al., 2015; Wang et 

al., 2017). 

2.3.2.3.1. Transmission 

MCMV is transmitted through seed and mechanical inoculation. It has also been reported 

to be transmitted by adults of chrysomelid beetle and maize thrips (Cabanas et al., 2013; 

Nault et al., 1978) and flower thrips (Zhao et al., 2014) under experimental conditions. 
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Plate 2. 1: MCMV transmitting vectors 

(a) Frankliniella wiliamsi (thrips). (b) Diabrotica undecimpunctata (Corn root 

worm). (c)Chaetocnema pulicaria (Corn flea beetle).  (d) Oulema melanopa 

(Cereal leaf beetle).Source; Nault et al. 1978. Phytopath. 68:1071-1074 and 

Cabanas et al. 2013.  

 

2.3.2.3.2. Disease symptoms 

MCMV symptoms vary in severity depending on plant developmental stage, prevailing 

environmental conditions and maize genotype. Typical symptoms of MCMV include 

(Plate 2.2); in early stages, the youngest leaves show fine chlorotic spots that coalesce 

and develop into broad chlorotic stripes along the veins. These chlorotic stripes contrast 

with dark green tissue when observed against the light. Leaves showing chlorosis finally 

die off (Nelson et al., 2011). Depending on the stage of infection, plants are stunted 

because of shortened internodes. Infected plants produce shortened, malformed, fewer, 

smaller and partially filled ears. In most cases, the male inflorescence is malformed and 

shortened with few spikes. 
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Plate 2. 2 : Expression of MCMV symptoms in artificially inoculated plants.  

(a) Chlorotic spots on the emerging leaves and chlorotic stripes along the veins. (b) 

Chlorotic mottling (c) Chlorotic spots, stripes and leaf necrosis. Source; Author, 

2017. 

 

2.3.2.3.3. MCMV Detection and Diagnosis 

Symptoms alone are usually insufficient to allow positive identification. The symptoms 

may result from the presence of more than one virus, and several different individual 

viruses may cause similar symptoms or nutrient deficiency also leads to similar 

symptoms. Hence accurate diagnosis is a prerequisite though often challenging due to 

abiotic and biotic factors such as environmental stress, herbicide residues and 

interactions, pests, plant nutrition and below ground damage. Consequently, there is often 

a constant need for accurate diagnosis on a field by field basis. Missed diagnoses mean 

additional losses and inappropriate control strategies. Even with a correct diagnosis, the 

disease could be too far advanced for intervention during the particular season/s. 

MCMV can be detected in the leaves, pollen, ear husks, cotyledons, and seeds (pericarp, 

endosperm, cotyledon and embryo). With the availability of efficient detection methods 

it’s now possible to isolate, characterize and monitor MCMV epidemiology accurately. 

Several methods have been used to diagnose plant viral diseases. These methods include; 
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serological methods, nucleic acids based methods, electron microscopy, physical 

properties of a virus (thermal inactivation point, dilution end point, and longevity in 

vivo), transmission tests, and symptomatology (Redinbaugh et al., 2004; Zambrano et al., 

2014). The most reliable methods for rapid and sensitive MCMV diagnosis and viral 

protein detection in host tissues, include ELISA (enzyme-linked immunosorbent assay) 

(Uyemoto, 1981), Northern blots and RT-PCR (Xie et al., 2011), next generation 

sequencing (Adams et al., 2013), Real-time TaqMan RT-PCR ( Liu et al., 2016), and 

reverse transcription loop-mediated isothermal amplification (RT-LAMP) (Chen et al., 

2017). In this review, diagnosis of MCMV through symptomatology and serological 

based method will be discussed.  

2.3.2.3.3.1. Symptomatology of MCMV 

Symptoms are one of the indications that plants are being affected either by biotic (pests 

and pathogens) or abiotic (environmental conditions) factors (Kang, 2014). They are 

important in disease management as some of the management practices such as rouging 

are based on the observed symptoms. In this study MCMV disease scoring was based on 

symptoms on a severity scale of 1 to 5. 

2.3.2.3.3.2. Serological methods 

 Detection and diagnosis of plant viruses has included serological tests since the 1960s. 

These tests are frequently used to identify viruses from large number of field samples 

(Wu et al., 2013). They are reported as one of the most specific and easiest method for 

rapid and precise identification. Such tests include enzyme-linked immuno-sorbent assay 

(ELISA) which includes triple antibody sandwich ELISA (TAS-ELISA), double antibody 

sandwich ELISA (DAS-ELISA) and direct antigen coating ELISA (DAC-ELISA), dot-
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immunobinding assay (DIBA), and immuno- capture reverse transcription-polymerase 

chain reaction (IC-RT-PCR) by using the monoclonal antibodies (MAb) that is developed 

for sensitive, specific, and rapid detection of MCMV in fields (Wu et al., 2013). Other 

serological tests include; tissue blot immunoassays, immuno-electron microscopy 

(trapping and decoration), western blots, double immune diffusion and lateral flow rapid 

tests (Strange, 2003). These serology tests are based on antigen-antibody reaction.  

Among serological methods, ELISA has been extensively used in many studies to 

identify viral diseases of plants (Kang, 2014). This is due to the relatively high sensitivity 

and specificity, low cost and simple for routine diagnosis. The test is based on the basic 

principle in which the virus antigens are recognized by their specific antibodies, IgG, in 

association with colorimetric properties (Kang, 2014).  ELISA methods have been 

extensively used to identify MCMV in maize (Adams et al., 2013; Ganal et al., 2011; Xie 

et al., 2011; Jensen et al., 1991).  

DAS-ELISA has been used to identify MCMV and SCMV with polyclonal antibodies 

produced against the East African strains of MCMV and SCMV and it was successful 

(Mahuku et al., 2015). In spite of serological methods such as ELISA being less accurate 

in identifying unusual or variant isolates because of being too specific to a particular 

species or even strain of a virus as reported by Adams et al. (2013), still it can be used in 

identification because it is the easiest method associated with low cost. Furthermore, it is 

rapid and can be used in the identification of large number of samples and that is why it is 

intensively used in quarantine/movement of seeds and plants across countries to identify 

diseases of quarantine importance including MLN (Mezzalama et al., 2015). However, 

there must be proper selection of good reagents and ensuring the level of antibodies’ 
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sensitivity and specificity toward the pathogen under study, proper handling, storage of 

reagents and incubation time and temperature must be done carefully as these factors 

affect ELISA results.  

2.3.2.4. MCMV management and control 

Disease management involves selection and use of appropriate techniques to suppress 

disease to a manageable level (Ali and Yan, 2012). The goal of plant disease management 

is to reduce the economic and aesthetic damage caused by plant diseases (Kiruwa et al., 

2016). Proper disease management is achieved when the causative agent and effects are 

known. The spread of MCMV has been managed through: (i) reduction of initial 

inoculum; (ii) pathogen eradication (iii) reducing the rate of infection; (iv) plant 

protection; (v) identifying or developing MCMV disease resistant or tolerant genotypes 

Reduction of initial inoculum/pathogen exclusion/strict quarantine: This involves 

prevention of disease establishment in areas where it does not occur and is a major 

objective of plant quarantine procedures throughout the world. Maize seeds are inspected 

before entering and going out of countries and within country regions to prevent 

transmission of the disease especially through seed (Mezzalama et al., 2015). Plant 

quarantine is considered as one of the best procedures for controlling spread of MCMV. 

Given that MCMV is new in East Africa and reported in Kenya very recently, 

enforcement of this practice will have significant effects in limiting the introduction of 

MCMV and MLN into other areas and prevent their spread and hence reducing threats of 

food security (Wangai et al., 2012). Best quarantine practices involve removal of infected 

maize plant debris that act as source of inoculum in the next season, rouging out of any 
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symptomatic plants and eliminating weeds and other alternative hosts (insect vectors) 

which serve as reservoir for viruses (Nelson et al., 2011; Mezzalama et al., 2015).  

Pathogen eradication: This method reduces pathogen from infected areas before it 

becomes well established. Pathogen eradication includes sanitation where tools such as 

vehicle and equipment entering seed production nurseries and clothing used in infected 

fields are sterilized. In addition, crop rotation is done by planting a non‑ host crop, thus 

reducing viral density (Bockelman et al., 1982). Non‑ host crops include Irish potatoes, 

sweet potatoes, cassava, beans, bulb onions, spring onions, vegetables and garlic (Wangai 

et al., 2012). Similarly, techniques that restrict movement and eliminate vectors, such as 

reflective mulches for aphids and sticky cards for other insect vectors that feed on maize 

results to a reduction of inoculum (Mezzalama et al., 2015). 

Reducing the rate of infection: The method aims at avoiding contact between the host 

(maize) and pathogen (viruses) by: (i) planting maize in field with no previous history of 

the disease; (ii) adequate plant spacing to avoid crowding; (iii) avoiding injury on plants 

to prevent virus penetration through wounds; (iv) planting certified seeds (Wangai et al., 

2012) and (v) planting maize at the onset of the main rainy season and not during the 

short rain season so as to create a break in maize planting seasons. This reduces the 

population of vectors and hence low rate of infection and disease severance. 

Plant protection: This involves protection of the host plant from invading pathogens. It 

is achieved by spraying chemicals and modification of plant nutrients such as manure and 

fertilizers, and the environment. Though MCMV virus cannot be controlled through 

chemicals, the viral vectors can be eliminated by insecticides. Several insecticides, 
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formulated either as granules or spray applications can be used to manage vectors such as 

aphids, thrips and other potential vectors that transmit the disease.  Prior to planting, 

application of a seed treatment with an insecticide such as clothianidin, thiamethoxam, 

imidacloprid or imidacloprid + thiodicarb, has been shown to provide early-stage 

protection against vectors. 

For effective control of vectors, appropriate insecticides must be applied weekly and  

there should be rotation of multiple chemicals every month to avoid immunity 

development of the target vector (Mezzalama et al., 2015). However, use of chemicals 

has been reported insufficient in the management of plant virus diseases. Other protection 

techniques including the use of manure, basal and top dressing fertilizers to strengthen 

the resistance of plants to disease and pests have been recommended. 

MCMV disease resistant or tolerant genotypes: This is the most reliable, effective, 

durable, environmental friendly and cost-effective way of controlling plant diseases. 

Currently, many efforts are being done to produce resistant varieties of maize in Eastern 

Africa (Kagoda et al., 2016). For example, strong collaboration between CIMMYT and 

national maize programs has been established to effectively tackle the MLN challenge in 

Eastern Africa (CGIAR Research Program MAIZE, 2012). This resulted in establishment 

of a centralized MLN screening facility for Eastern Africa based at the Kenya 

Agricultural Livestock Research Organization (KALRO) in Naivasha, Kenya. This MLN 

facility is being used by several scientists and researchers within Pan-Africa and the 

eleven ASARECA countries; Kenya, Uganda, Tanzania, Rwanda, Burundi, Ethiopia, 

Sudan, Eritrea, DRC Congo, Madagascar and South Sudan (Kiruwa et al., 2016).  
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2.4. Breeding of disease resistance maize varieties 

Breeding for disease resistance to MCMV in maize is an efficient control measure that is 

reliable and cost-effective (Kiruwa et al., 2016). It is based on the identification and 

incorporation of major resistance genes into economically important varieties (Wisser et 

al., 2006). Plant disease resistance can be broadly classified as; qualitative, also known as 

complete or major gene resistance and quantitative also referred to as major gene 

resistance, incomplete or multi-gene resistance (Wisser et al., 2006). Qualitative gene 

resistance is controlled by a single or few major genes while quantitative gene resistance 

is controlled by many genes of small effects known as quantitative trait loci (QTL) 

(Jamann et al., 2014).  

Plant resistance genes have been characterized and used in plant breeding since it is the 

most cost-effective and environmentally friendly approach for disease control. However, 

global yield losses due to diseases remain significant. Therefore, there is need to identify 

new resistance genes, clarify the genetic mechanism and efficiently incorporate resistance 

genes to alleviate existing and emerging problems (Ali and Yan, 2012). 

2.4.1. Qualitative resistance 

According to Yang et al (2017),  qualitative disease resistance is defined as the resistance 

variation that is due to allelic differences at just one or two R genes (resistance genes) 

with allele effects large enough so that one can reliably determine an individual’s 

resistance genotype from its phenotype at the single plant level regardless of 

environmental variation. The resistance mechanism of plants conferring qualitative or 

monogenic inherited resistance is comparable to the mammalian immune system with 

production of antigens by mammalian pathogens. Plant pathogens also produce a variety 
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of potential signals with a number being detected by plants. Genes expressing these 

signals in the pathogen are designated avirulence (Avr) genes. Equivalent matching R 

and Avr gene pairs enable recognition of the pathogen and induce defense responses. 

Therefore, R gene products can be described as receptors for Avr-coded ligands in a 

gene-for-gene relationship (Zambrano et al., 2014). The R-Avr gene pairs resulting in 

resistance are epistatic over gene pairs that would otherwise result in susceptibility gene 

pairs conferring higher degrees of resistance are generally epistatic over gene pairs 

associated with lower degrees of resistance, although phenotypic variation indicative of 

genetic additive has also been reported, where more than one gene pair conferring 

resistance is effective. Following pathogen recognition, the resistance protein is presumed 

to activate signalling cascades that coordinate the initial plant defense response to impair 

pathogen ingress (Revers and Nicaise, 2014). Early signalling events following 

recognition include; activation of protein kinases, induction of ion fluxes across the 

cellular membrane, and release of reactive oxygen species probably triggering the 

transcriptional activation of defense responses. This signalling cascade results in the 

production of salicylic acid, cell wall fortification, and the expression of pathogenesis 

related proteins (Yang et al., 2017).  

2.4.1.1. Plant basal disease resistance  

Basal resistance constitutes the first line of plant defense to a wide range of pathogens 

and is closely associated with non-host resistance (Ali and Yan, 2012).  Non-host 

resistance is the most common form of plant resistance (Sharma et al., 2014) and is 

highly effective against a range of potentially pathogenic microorganisms (Ronde et al., 

2014) . It is defined as resistance of an entire plant species to all isolates and races of a 
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specific pathogen species (Ali and Yan, 2012). Although the molecular mechanisms 

behind non-host resistance are only emerging, it has been accepted that both constitutive 

cellular barriers and inducible responses constitute the basis of this form of plant 

resistance (Zambrano et al., 2014). The plant cuticle, cell wall, cytoskeleton, actin 

microfilaments, and phytoanticipins provide the first defense against pathogen invasion 

(Mandadi and Scholthof, 2013). The second obstacle an invading pathogen faces is the 

inducible plant defenses. Phytoalexins, plant hormones (i.e. ethylene and salicylic acid), 

wound-induced protein kinase (WIPK), salicylic acid-induced protein kinase (SIPK), and 

heat shock proteins (Hsps) are induced after pathogen attack, and have been found to play 

a crucial role in non-host resistance (Chisholm et al., 2006; Ronde et al., 2014). Inducers 

of basal defense are often conserved microbial elicitors produced by pathogens, such as 

bacterial flagellum or fungal chitin. These molecules are known as pathogen-associated 

molecular patterns (PAMPs) and are recognized by host receptor proteins called pattern 

recognition receptors (PRRs). Stimulation of PRRs leads to plant triggered immunity 

(PTI) (Sharma et al., 2014).  

2.4.1.2. R-gene mediated disease resistance  

The R-gene mediated disease resistance provides a rapid and effective response to 

pathogen attack and limits further infection and spread of the disease (Gururani et al., 

2012; Sekhwal et al., 2015). This response involves host receptor proteins that recognize 

pathogen virulence molecules called effectors which are encoded by Avr (avirulence 

genes). Effectors are delivered into host cells at the beginning of infection. The R-genes 

can be mapped through Mendelian genetics and have been cloned through many 

methods. The R-gene mediated disease resistance conforms the gene-for-gene model and 
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is genetically determined by complementary pairs of pathogen encoded avirulence (avr) 

genes and plant resistance genes (homologous plant-microbe interaction; specific 

incompatibility). Gene-for-gene disease resistance is economically important as it is used 

in numerous crops to confer extremely effective disease resistance (Yang et al., 2017). 

Plants have numerous R genes (Sharma et al., 2014) and pathogens have many Avr genes. 

Simply described, disease resistance is observed if the product of any particular R gene 

has recognition specificity for a compound produced due to a particular pathogen Avr 

gene. Most Avr proteins are considered to be virulence factors required for the 

colonization of host plants, which (upon recognition by resistant host plant cultivars) act 

as pathogen race-specific elicitors of plant defense and thereby deceive the microbe to the 

plant’s surveillance system (Zambrano et al., 2014). 

Most of the protein motifs of R genes have some features in common, suggesting similar 

resistance mechanisms and/or evolution (Zambrano et al., 2014) . The conserved motifs 

include leucine-rich repeat (LRR), nucleotide-blinding site (NBS), a mammalian 

interleukin-1 receptor (TIR), a coiled coil (CC) structure, transmembrane domains (TM) 

and protein kinase domain (PK).  

Summarizing the diverse R genes, most of them share a striking degree of homology on 

conserved motifs. They mainly include a nucleotide-blinding site (NBS), leucine-rich 

repeat (LRR), a motif with homology to the cytoplasmic domains of the Drosophila Toll 

protein and the mammalian interleukin- 1 receptor (TIR), a coiled-coil (CC) or leucine 

zipper (LZ) structure, transmembrane domain (TM), and protein kinase domain (PK). 

According to these features, at least four classes are distinguished among most R genes as 

follows: NBS-LRR, Receptor-like kinase (RLK), LRR-TM and TM-CC. The NBS-LRR 
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genes represent the largest class of R genes, and encode proteins with a variable N-

terminal domain of approximately 200 amino acids (aa), connected by a predicted NBS 

domain of approximately 300 aa and a more variable tandem array of approximately 10 

to 40 short LRR motifs. Furthermore, the NBS-LRR genes are categorized into three 

subgroups based on the motif within their N-terminus: TIR group, CC or LZ group and 

non-motif group (Sekhwal et al., 2015). In both plants and animals, these domains have 

been found to be related in evolution and mechanism such as protein-protein recognition 

and interaction. 

The modern methods of biotechnology and genetic engineering are the easiest and 

accurate methods to develop resistant varieties. Wisser, (2006) did the mapping of maize 

disease resistance loci and reported the locations of 437 quantitative trait loci for disease, 

17 resistance genes and 25 R gene analogs. The maximum number of disease resistance 

QTLs was identified through linkage-association mapping and all the genes were 

annotated to different kinds of proteins (Kump et al., 2011; Poland and Rife, 2012). 

2.4.2. Quantitative resistance 

Quantitative disease resistance has been defined in two different ways; phenotypically as 

the reduction but not complete elimination of disease compared with the most susceptible 

genotypes, and genetically as resistance based on combined action of many genes of 

modest effect (Yang et al., 2017). Quantitative resistance is considered to be oligo- or 

polygenically inherited thus partially as well as moderately effective, more durable but 

race unspecific and durable (Corwin and Kliebenstein, 2017; Poland et al., 2011). Plants 

with quantitative resistance show stable resistance controlled by multiple genes or 

quantitative trait loci (QTL) with a large environmental influence (Zambrano et al., 
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2014). In addition, gene by gene (epistasis) and gene by environment interactions play an 

important role in the phenotypic expression of QTLs complicating fine mapping and 

cloning approach (Ali and Yan, 2012). Quantitative disease resistance is controlled by 

many genes regulating morphological and developmental phenotypic stages (Zambrano 

et al., 2014) or that quantitative resistance is conferred by partially defeated R genes that 

slow down disease development (Corwin and Kliebenstein, 2017; Poland et al., 2011, 

2009; Yang et al., 2017). Although several studies have speculated on the types of genes 

behind QTLs, there is not a clear molecular difference between a major R gene and a 

QTL. High resolution mapping studies and bioinformatics have often found R genes in 

QTL regions (Kump et al., 2011; Poland et al., 2011; Wisser et al., 2006). These results 

suggest that the name (QTL or gene) is reflective of the Mendelian or biometric approach 

used for the identification and how the trait was measured. Environment can affect the 

expression and efficiency of a gene or QTL. Genetic and environment interaction occurs 

when the basic phenotypic additive model (phenotype = genotype + environment) fails. 

The additive model implies that the differences between genotypes remains constant 

across environments (Zambrano et al., 2014). In fact, resistance as any other phenotype is 

highly dependent of environmental stimuli, including temperature, nutrients, water, light, 

and developmental time. 

2.5. Plant resistance to virus disease 

Plant viruses cause a significant proportion of crop diseases and economic losses around 

the world (Zambrano et al., 2014). Viruses are obligate intracellular microscopic entities 

that require host factors for replication and spread (Kang, 2014). A virus is defined as a 

nucleoprotein that multiplies only in living cells and has the ability to cause disease. 
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Some can replicate in diverse types of plant cells, while others are limited to the phloem. 

Viruses have a relatively simple genome with single or double stranded RNA or DNA 

(Zambrano et al., 2014). Single stranded virus genomes can be positive, negative, or 

ambi-sense. In contrast to other pathogens that cause diseases by consuming or killing 

host cells with toxins, viruses cause diseases by utilizing the host cellular machinery and 

disrupting plant cellular process.  

Most viruses require vectors to spread and move from plant to plant (Ali and Yan, 2012). 

A vast majority of vectors transmitting viruses are arthropods while a few are transmitted 

by fungi or nematodes. Vector transmission complicates genetic studies of virus 

resistance since viral disease establishment requires interactions among virus, viral 

vector, virus-susceptible germplasm, and environmental conditions (Zambrano et al., 

2014). Fortunately, relatively straightforward and economical techniques for artificial 

inoculation in maize are available to facilitate the study of virus diseases and genetic 

resistance. These methods include rub inoculation, in which the virus is transmitted 

mechanically by hand rubbing or with the aid of an air brush. Secondly, vascular 

puncture inoculation where the virus is introduced in germinating seeds with the aid of 

minutes pins attached to an engraving tool and transmission using insect colonies 

maintained in the laboratory (Zambrano et al., 2014). 

Plants have developed genetic mechanisms to suppress virus multiplication and/or spread 

into other parts of the plant. The use of genetic resistance is considered the most 

economically and environmentally sustainable approach to control viral disease. 

Quantitative and qualitative types of resistance to virus diseases in plants have been 

reported, but in the vast majority of cases, virus resistance has been conferred by a single 
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gene. Most of the identified virus resistance genes have dominant inheritance, except for 

potyviruses where monogenic recessive resistance is relatively common (Kang, 2014).  

Several dominant virus resistance R genes have been isolated from a number of plants, 

mainly Arabidopsis and Solanaceae species. Most of these dominant genes encode 

proteins with CC, TIR or LZ domains coupled with NBS-LRR domains. Nevertheless, 

RTM1, RTM2, and RTM3 genes for Tobacco etch virus resistance in Arabidopsis encode 

a jacalin-like protein, a heat shock protein, and an unknown class of protein, respectively 

(Fagwalawa et al., 2013). The hypersensitive response (HR) mediated by R genes is 

similar to that described for other pathogens, but in many cases virus resistance is not 

associated with HR. Maize virus resistance conferred by single dominant genes have 

been associated with the suppression of systemic virus movement rather than 

programmed cell death.  

Molecular cloning of these recessive genes indicated that mutations in eukaryotic 

initiation factors, eIF4E and eIF4G, which mediate translation in Arabidopsis were the 

cause of the resistance. It is known that during virus infection eIF4 binds to the VPg 

region of the virus mimicking the first step of the mRNA translational process. The most 

accepted hypothesis that explains recessive resistance to virus diseases is that resistance 

is the result of the absence of specific factors required by the virus in the host. 

Relatively few quantitative virus resistance genes (QTL) in plants have been studied 

(Zambrano et al., 2014). A reason for this is that the analysis of polygenic virus resistance 

is more complex than monogenic or oligogenic resistance since resistant phenotypes 
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could be transient, due to virus tolerance (mild symptoms), high influence by gene by 

gene (GxG) or gene by environment (GxE) interactions (Poland et al., 2011).  

2.6. Mechanism of virus resistance in plants 

Plant virus susceptibility implies that a virus is able to penetrate into the plant cell, 

replicate, and move systemically through the whole plant using the plant vascular tissues. 

Virus infections are usually initiated from contaminated propagules (e.g. seeds, cuttings, 

bulbs) or vector transmission from a reservoir host. Virus transmission by vectors is a 

very specialized process that requires the interaction among the virus, vector, and the 

plant. Vectors transmit virus diseases in different ways when they use their stylets to feed 

on healthy susceptible plants. A few plant genes conferring resistance to an insect vector 

of virus diseases in the NBS-LRR class  have been cloned and characterized (Fagwalawa 

et al., 2013). 

2.6.1. Genetics of virus resistance in maize  

Despite progress made in understanding the molecular basis of virus resistance in plants, 

no virus resistance genes from maize or other grasses have been cloned (Redinbaugh et 

al., 2004). Depending on the virus, characterization of the genetic basis of virus 

resistance in maize has had a relatively modest success. Researchers usually face large 

uncontrolled effects due to high fluctuations in disease pressure and the inter-specific 

virus-vector-host relationship. Despite these problems, virus resistance genes and QTLs 

have been identified in maize. Characterized virus resistance in maize is primarily 

dominant and monogenic or oligogenic, such as resistance to the potyviruses; MDMV, 

SCMV, or tritimovirus WSMV but it can also be polygenic or quantitative as resistance 

to MCDV or Maize mosaic virus (MMV) (Zambrano et al., 2014).  
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The study of classical Mendelian segregation ratios and QTL analysis provided insights 

into type of resistance, the mode of action, and genetic location; however, the number of 

genes involved in resistance and their mode of action has varied across germplasm and 

experiments complicating the analysis and interpretation of the results. This variation has 

been attributed to the use of diverse maize genetic sources, virus isolates or strains, 

different classification systems for resistant and susceptible plants, and the presence of 

genes that modify the activity of resistance loci (Zambrano et al., 2014) as well as to the 

presence of disease escapes and environmental effects. Recessive resistance or resistance 

associated with susceptibility factors has not been identified in maize. It is crucial to 

incorporate resistance breeding to develop tolerant and resistant maize genotypes. 

2.7. Plant Breeding 

The fundamental basis of plant breeding is the identification and utilization of genetic 

variation: wherein populations with useful genetic variations are created or assembled, 

individuals with superior phenotypes are identified and improved cultivars are developed 

from selected individuals (Semagn et al., 2010). Classical breeding involves selection of 

parents to use for the initial cross or crosses whereby superior plant traits are selected by 

visual assessment and is postponed until later generations (F5 or F6) to enable alleles for 

traits of low heritability to be fixed, thus improving homozygosity of the progeny. The 

progenies are harvested in bulk and evaluated in replicated field trials. This process is 

expensive and laborious and takes about 5-10 years for elite lines to be developed 

(Sakiyama et al., 2014). A typical breeding programme can grow up to millions of 

individual plants, especially in the case of a large number of genes segregating, in order 

to identify specific gene combinations (Sakiyama et al., 2014). 
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Over the past several decades, intensive attempts have been made for the improvement of 

a large number of cultivars which adjusted to diverse agro-ecologies. Nevertheless, 

increasing biotic and abiotic stresses, increasing populations and sharply reducing natural 

resources especially water for agricultural purposes, push the breeders to develop 

improved varieties with higher yield potential. The complexity of selection required in 

breeding programmes and the large size of the populations often required, points towards 

the need to introduce new technologies including molecular marker-assisted breeding 

combined with high throughput and precision phenotyping (Lateef, 2015; Mammadov et 

al., 2012; Paux et al., 2010).  

2.8. Molecular markers in plant Breeding 

Molecular markers have many application in a plant breeding program, e.g. germplasm 

evaluation and characterization, pedigree and evolution studies, parental selection for 

crossing, test for F1 hybrid confirmation, test for genetic purity of seeds, cultivar 

protection, breeding strategies establishment, linkage map construction, and genetic 

mapping: mapping of genes and QTLs associated with biological processes (Sakiyama et 

al., 2014). The extensive use of molecular markers in various fields has demonstrated that 

molecular technology is a powerful and reliable tool in genetic manipulation of 

agronomically important traits in crop plants (Farokhzadeh and AliFakheri, 2014). Most 

of the traits of interests in plant breeding such as yield, height, drought resistance, disease 

resistance are quantitative, also referred to as polygenic, continuous, multifactorial or 

complex traits (Semagn et al., 2010).  

According to Semagn et al., (2010), a quantitative trait is defined as a measurable trait 

that depends on the cumulative action of many genes and their interaction with the 
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environment. These traits can vary among individuals over a given range to produce a 

continuous distribution of phenotypes. The genetic variation of a quantitative trait is 

presumed to be controlled by collective effects of numerous genes, known as quantitative 

trait loci  and identification of QTLs based on conventional phenotypic evaluation is not 

possible (Semagn et al., 2010). 

Marker-assisted selection (MAS) involves the use of molecular markers, usually DNA-

based for the selection of plants with a region of DNA involved in the expression of a 

trait of interest (Singh et al., 2013).  MAS exploits the presence or absence of a marker to 

facilitate phenotypic selection (Semagn et al., 2015). Markers are tightly linked to 

agronomically important genes to assist in the selection of elite lines for the next 

generation crosses in crop improvement programmes, thus the marker is used to identify 

the gene (Lateef, 2015). This development has opened up a new realm of possibilities in 

agriculture towards improvement of economically important crop varieties. 

2.8.1.  DNA marker technologies 

Molecular markers are naturally occurring polymorphisms in DNA sequences, found at 

specific locations of the genome and associated with the inheritance of a trait or linked 

gene (Mishra et al., 2014). They are determined by allelic forms of genes or genetic loci 

and can be transmitted from one generation to another (Farokhzadeh and AliFakheri, 

2014). Molecular markers are used as experimental probes or tags to keep track of an 

individual, tissue, cell, nucleus, chromosome or gene. 

Allelic variations within a genome of the same species are classified into three major 

groups that include differences in the number of tandem repeats at a particular locus 

(microsatellites, or simple sequence repeats (SSRs), segmental insertions/deletions 
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(InDels), and single nucleotide polymorphisms (SNPs) (Mammadov et al., 2012). In 

order to detect and track these variations in the individuals of a progeny at DNA level, 

researchers have been developing and using molecular markers (Singh et al., 2013). 

Although SSRs, InDels, and SNPs are the three major allelic variations discovered so far, 

a plethora of molecular markers were developed to detect the polymorphisms that 

resulted from these three types of variation (Prasanna et al., 2010). Evolution of 

molecular markers has been primarily driven by the throughput and cost of detection 

method and the level of reproducibility (Jonah et al., 2011).  

Depending on detection method and throughput, marker system can be divided into three 

major groups: (1) low-throughput, hybridization-based markers such as restriction 

fragment length polymorphisms (RFLPs); (2) medium-throughput, PCR-based markers 

that include random amplification of polymorphic DNA (RAPD), amplified fragment 

length polymorphism (AFLP), SSRs (Semagn et al., 2006a); (3) high-throughput (HTP) 

sequence-based markers: SNPs, the Kompetitive Allele-specific PCR (KASP), and 

Genotype-by-Sequencing (Lateef, 2015).  

In late eighties, RFLPs were the most popular molecular markers that were widely used 

in plant molecular genetics because of high reproducibility, codominance, no need of 

prior sequence information, and high locus-specificity. However, the detection of RFLPs 

was an expensive, labor intensive, time-consuming procedure and it requires relatively 

large amounts of pure DNA, tedious experimental procedure. Additionally, each point 

mutation has to be analyzed separately, which made these markers eventually obsolete. 

Moreover, RFLP markers were not amenable to automation. With the invention of PCR 

technology, it was possible to rapidly detect polymorphisms. This overthrew low-
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throughput RFLP markers, and new generation of PCR-based markers emerged in the 

beginning of nineties. RAPD, AFLP, and SSR markers are the major PCR-based markers 

that research community has been using in various plant systems. RAPDs are able to 

detect polymorphic loci in various regions of a genome. However, they are anonymous 

and the level of their reproducibility is very low due their random nature of amplification 

and short primer length hence not ideal for genome mapping (Lateef, 2015).  

Although AFLPs are anonymous too, the level of their reproducibility and sensitivity is 

very high owing to the longer +1 and +3 selective primers and the presence of 

discriminatory nucleotides at 3’ end of each primer. That is why AFLP markers are still 

popular in molecular genetics research in crops with little to zero reference genome 

sequence available. However, AFLP markers did not find widespread application in 

molecular breeding owing to the lengthy and laborious detection method, which was not 

amenable to automation either. Therefore, it was not surprising that soon after the 

discovery of SSR markers in the genome of a plant; they were declared as “markers of 

choice”, because SSRs were able to eliminate all drawbacks of the above-mentioned 

DNA marker technologies.  

SSRs were no longer anonymous; they were amenable to low, medium and high-

throughput approaches, highly reproducible, highly polymorphic sequences, and 

amenable to automation. Despite the cost of detection remaining high, SSR markers had 

pervaded all areas of plant molecular genetics and breeding in late 90s and the beginning 

of 21st century. However, the hegemony of medium-throughput SSRs was eventually 

broken by SNP markers: first discovered in human genome, SNPs proved to be universal 

as well as the most abundant forms of genetic variation among individuals of the same 
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species. Although SNPs are less polymorphic than SSR markers because of their biallelic 

nature, they easily compensate this drawback by being abundant, ubiquitous, amenable to 

high- and ultra-high-throughput automation, and therefore offer significant advantages 

for genetic and breeding purposes (Semagn et al., 2015, 2006a). 

Molecular markers are routinely used to track loci and genome regions in several 

breeding programmes. Application strategies of MAS in breeding includes development 

of suitable mapping population (Semagn et al., 2010), linkage analysis and linkage map 

using suitable markers (Singh et al., 2013), QTL identification and QTL-marker 

association analysis (Mishra et al., 2014), validation of marker-QTL association then 

integration of MAS in plant breeding process.  

2.8.2. Single Nucleotide Polymorphisms (SNPs) 

A SNP is based on single nucleotide variation possibility in genome sequences of 

individuals or two DNA sequences (Agarwal et al., 2008; Jiang, 2013). SNPs are 

typically biallelic and arise either due to substitutions/point mutations (transversion and 

transition) or as a result of deletion/ insertion of nucleotides in homologous DNA 

fragments (Singh et al., 2013). They are detectable when similar genomic regions from 

different genotypes of different or same species are aligned (Semagn et al., 2006a). 

SNPs provide the simplest and ultimate form of molecular markers as a single nucleotide 

base is the smallest unit of inheritance. Due to the high marker density, SNPs have 

become very attractive and potential genetic markers in genetic study and breeding 

(Singh et al., 2013). Typically, SNP frequencies are in a range of one SNP every (100 - 

300) bp in plants. In maize, about 1.6 million SNPs have recently been identified in the 
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maize HapMap project (Gore et al., 2009) and high SNP frequency, with one SNP 

present in every 28–124 bp. SNPs may occur within the coding sequences of genes, non-

coding regions of genes or in intergenic regions between genes at different frequencies in 

different chromosome regions (Agarwal et al., 2008). Due to their abundance in a 

genome and relatively low genotyping cost, SNPs are suitable for analysis of a wide 

range of genomic scales. SNP markers have become the favorable choice for genetic 

linkage maps and QTL analysis, at relatively low cost. 

2.9. Genotype-by- Sequencing (GBS) 

Genotype-by- Sequencing is a platform used for studies ranging from single gene 

markers to whole genome profiling. GBS is an application of Next-Gene-Sequencing 

protocols that combines molecular marker discovery and genotyping, to identify SNPs in 

genomes and populations. 

The assay involves the digestion of genomic DNA with methylation-sensitive restriction 

enzymes to reduce the genome complexity (Elshire et al., 2011). The GBS approach 

includes the digestion of genomic DNA with restriction enzymes followed by the ligation 

of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a 

single lane of flow cells (Beissinger et al., 2013) .  The components of this system 

include low cost, reduced sample handling, fewer PCR and purification steps, no size 

fractionation, no reference sequence limits, efficient barcoding and easiness to scale up. 

GBS has been applied in genome-wide association studies (GWAS), genomic diversity 

study, genetic linkage analysis, molecular marker discovery, and genomic selection (GS) 

in plant breeding programs (Scheben et al., 2017). 
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Figure 2. 1: Steps in GBS library construction. 

 

(1) DNA samples, barcode, and  common adapter pairs are plated and dried; (2–3) 

samples are then digested with ApeKI and adapters are ligated to the ends of genomic 

DNA fragments; (4) T4 ligase is inactivated by heating and an aliquot of each sample is 

pooled and applied to a size exclusion column to remove unreacted adapters; (5) 

appropriate primers with binding sites on the ligated adapters are added and PCR is 

performed to increase the fragment pool; (6–7) PCR products are cleaned up and 

fragment sizes of the resulting library are checked on a DNA analyzer (BioRad 

ExperionH or similar instrument). Libraries without adapter dimers are retained for DNA 

sequencing. Figure obtained from Elshire et al. (2011). 

2.10. Linkage Mapping 

The general goal of genetic mapping in plants is to increase the biological knowledge of 

the inheritance and genetic architecture of complex quantitative traits, both within a 

species and across related species (Collard and Mackill, 2008; Semagn et al., 2010). In 
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addition, it allows detection of neutrally inherited markers that can be used as indirect 

selection tools in breeding.   

Genetic mapping requires that the researcher (1) selects and/or develop appropriate 

mapping population (experimental populations for linkage-based mapping or 

natural/breeding populations for association mapping); (2) phenotype the population for 

the trait(s) of interest (morphological characters, agronomic traits, disease and pest 

scores, drought resistance, etc.) under greenhouse, screen-house and/or field conditions; 

(3) decide the type of molecular marker(s), genotyping approach (entire population, 

selective genotyping or bulk segregant analysis) and generate the molecular data for 

adequate number of uniformly-spaced polymorphic markers; (4) identify molecular 

markers linked to the trait(s) of interest using statistical programs (linkage-based QTL 

mapping methods requires construction of genetic linkage map); and (5) test the 

applicability and reliability of the markers associated with major QTLs in predicting the 

trait(s) in related families (marker validation or verification) for QTLs of medium to large 

effect (Mulualem and Bekeko, 2016; Semagn et al., 2010, 2006b).    

Genetic mapping can be done mostly in two ways to dissect complex traits: (1) using bi-

parental mapping population that is called linkage-based QTL mapping; and (2) using 

diverse lines from the natural populations or germplasm which involves linkage 

disequilibrium mapping or association mapping. Both methods begin with the collection 

of genotypic and phenotypic data from either segregating or natural population, followed 

by statistical analyses to reveal all possible marker loci where allelic variation correlates 

with the phenotype. 



37 

 

 

2.10.1. Types of mapping population 

Most of the population structures for QTL mapping are based on inbred line crosses. An 

inbred line results from a repeated selfing, sibling mating, or through double haploids, 

which gives a homogeneous and homozygous line that can be maintained and propagated 

in the same state indefinitely. Selection of parents for developing  an appropriate 

mapping population is critical  for the success of any QTL mapping (Mulualem and 

Bekeko, 2016). The choice could vary based upon the objectives of the experiment, the 

time frame as well resources available for undertaking genotyping, phenotyping and QTL 

analysis (Singh et al., 2013). Populations for QTL mapping can be broadly classified into 

experimental populations and natural or breeding populations (Semagn et al., 2010). 

Experimental populations are used in linkage based QTL mapping. This includes F2 

populations, F2 derived F3 populations, backcross inbred lines, double haploids (DHs), 

recombinant inbred lines (RILs), near-isogenic lines (NILs) and chromosomal 

substitution lines (CSSLs). On the other hand, natural or breeding populations are used in 

linkage disequilibrium-based association mapping. 

Association mapping populations can be classified into the following five groups: (1) 

ideal sample with subtle population structure and familial relatedness, (2) multi-family 

sample, (3) sample with population structure, (4) sample with both population structure 

and familial relationships and (5) sample with severe population structure and familial 

relationships. Due to local adaptation, selection and breeding history in many plant 

species, many populations for association mapping would fall into category four. 

Alternatively, populations for association mapping can be classified according to the 

source of materials as germplasm bank collections, synthetic populations and elite 
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germplasm. In this study, an association mapping panel for discovery of the genomic 

regions associated with MCMV and the three bi-parental populations (double haploid 

populations) for validation of marker-trait association were used. 

2.10.2. Phenotyping of mapping population 

To identify target quantitative traits, accurate phenotyping is carried out while avoiding 

missing data. The basic phenotypic data required for QTL mapping are the estimates of 

phenotypic performance of individuals across environments. The accuracy and precision 

of phenotyping determines how realistic the QTL mapping results are (Semagn et al., 

2010). The power to resolve the QTL location is defined as the probability of detecting a 

QTL at a given level of statistical significance. This depends on the number of progenies 

in the population (sample size), quality of phenotypic data,  heritability of the trait, 

genetic dissimilarity among progenies, effect of the QTLs, and environment used for 

phenotypic evaluation (Singh et al., 2013). Due to the availability of high-throughput and 

low cost molecular tools, genotyping no longer limits the sample size in mapping studies 

(Semagn et al., 2010). However, the cost and logistics of phenotyping impose limits on 

sample size (Xu et al., 2016). This is especially true in phenotypes involving complex 

traits. The level of heritability of a trait depends in part on whether the phenotyping is 

repeatable across different seasons, locations and environments. Increased precision of 

phenotyping increases heritability which, in turn, increases the statistical power for QTL 

detection (Semagn et al., 2010). 
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2.10.3. Genotyping 

Generation of genotype data can be accomplished by applying either genotyping: (1)  an 

entire mapping population; (2) part of the population that exhibits extreme phenotypes for 

the  trait, known as selective genotyping, or (3) by genotyping bulks of selected 

individuals, known as bulk segregant analysis (Semagn et al., 2010). The conventional 

QTL mapping method requires genotyping an entire mapping population with markers 

distributed across the whole genome  (Singh et al., 2013). Such approach is more reliable 

but extensive, time consuming and costly. 

2.11. Quantitative Trait Loci (QTL) Mapping 

QTL mapping is the process of determining the genetic location of the genes or loci 

responsible for a trait with quantitative inheritance using molecular markers. A QTL is a 

chromosomal region supposed to contain a gene or genes that contribute to a quantitative 

trait (Singh et al., 2013). The QTL may be located on one region or dispersed at different 

regions across the genome depending on the nature of the trait. 

Many traits of agricultural value and fitness are inherited quantitatively and presumed to 

be controlled by a large number of genes called polygenes whose exact location is 

difficult to be ascertained through Mendelian analysis. The association of this analysis 

can provide evidence for the genetic control of trait variation but is not precise because 

the genetic effects associated with marker genotypes are confounded by the position of a 

functional QTL and its actual effect (Collard et al., 2005; Sehgal et al., 2016). The 

genomic locations of QTLs are unknown and should be inferred based on association 

between the phenotypes and markers. 



40 

 

 

2.11.1. Principle of QTL mapping 

It is now easy to identify and map a sufficient number of segregating markers (10-50) per 

chromosome due to the availability of different types of markers (Mulualem and Bekeko, 

2016). However, most of the markers would be in the non-coding regions and might not 

affect the trait of interest directly; but only a small fraction of these markers might be 

linked to genomic regions (QTLs) that influence the trait of interest. Where such linkage 

occurs, the marker locus and the QTL will co-segregate. Therefore, QTL mapping is 

based on  the basic principle that genes (markers or loci) segregate via chromosome 

recombination during meiosis, thus allowing their  analysis in the progeny (Semagn et al., 

2006b).  Determining whether a QTL is linked to a marker involves separating the 

mapping population into two classes based on genotypes at the marker locus, and to 

apply statistics to determine whether the individuals of one genotype differ significantly 

from the individuals of other genotype with respect to the trait being measured (Collard et 

al., 2005; Semagn et al., 2010). In a situation where alleles fail to segregate 

independently are said to be in linkage disequilibrium (LD). QTL analysis, thus, depends 

on LD. The molecular markers in QTL mapping are basically used to identify the QTL 

that affects the trait of interest, and to analyze the effect of the QTL on the trait. In 

addition, molecular markers are also used to understand the nature of gene action 

associated with the QTL, and which allele is associated with the favourable allele. 

2.11.2. Construction of a linkage map, physical map and mapping functions 

Linkage maps indicate the position and relative genetic distances between markers along 

chromosomes. Construction of a linkage map is an important step before initiating any 

QTL analysis. Construction involves three main steps :( 1) production of a mapping 
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population ;( 2) selection of molecular markers  for mapping and identification of 

polymorphism and (3) linkage analyses of markers which involves calculation of 

pairwise recombination frequencies between markers, establishing linkage groups, 

estimation of map distances and determination of gene order using statistical programs. It 

is constructed using genotyping data generated on any of the mapping populations 

(Collard et al., 2005). In a segregating mapping population, there is a mixture of parental 

and recombinant genotypes.  

The frequency of recombinant genotypes is used to calculate recombination fractions, 

which is then used to infer the genetic distance between markers. By analyzing the 

segregation of markers, the relative order and distances between markers can be 

determined; the lower the frequency of recombination between two markers, the closer 

they are situated on a chromosome (conversely, the higher the frequency of 

recombination between two markers, the further away they are situated on a 

chromosome). For short distances, the recombination fractions can serve as a measure of 

genetic distance with the unit of measurement being the centiMorgan (cM); 1 cM=1% 

recombination fraction the physical map refers to the physical location of DNA 

sequences on a chromosome measured in base pairs. The genetic and physical maps are 

often loosely correlated due to differences in recombination rates between genomic 

regions. Due to some uncertain events of recombination like double crossovers (when 

two recombination events happen in the same chromosomal interval) and crossover 

suppression or crossover interference (when the occurrence of one crossover event 

interferes with the occurrence of another crossing over in the same chromosomal interval) 

that happen during meiotic division, recombination fractions are not additive and some 
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mathematical adjustments in the estimated genetic distance have to be done in order to 

obtain more accurate distances values. These adjustments are known as mapping 

functions. 

The two commonly used mapping functions that convert recombination frequency into 

map units called centimorgan (cM) distance are the Kosambi mapping function, which 

assumes that recombination events influence the occurrence of adjacent recombination 

events, and the Haldane mapping function, which assumes no interference between 

crossover events. Linkage between markers is usually calculated with an odds ratio (i.e., 

the ratio of linkage versus no linkage). This ratio is more conveniently expressed as the 

logarithm of the ratio and is called a logarithm of odds (LOD) value or LOD score. LOD 

values of >3 are typically used to construct linkage maps. LOD values may be lowered in 

order to detect linkage over a greater distance or to place additional markers within maps 

constructed at higher LOD values (Collard et al., 2005). Linked markers are grouped 

together into linkage groups, which represent chromosomal segments or entire 

chromosomes. In this study, the genotypic data generated from DH lines and association 

panel were used to construct linkage map prior to QTL analysis. Association (i.e. linkage) 

is sought between phenotypic variation and genetic variation which is usually detected 

using molecular markers. Genetic loci that show association with variation with the trait 

of interest are marked as QTLs. 

2.11.3. Statistical methods for QTL mapping 

The basic goal in QTL mapping studies is to detect QTL while minimizing the 

occurrence of false positives. This includes Type 1 error, which declares an association 



43 

 

 

between a marker and QTL when in fact one does not exist. Tests for QTL/trait 

association are often performed using the following approaches.  

2.11.4. Single marker approach (SMA) 

The single marker approach is sometimes referred to as single factor analysis of variance 

(SF-ANOVA) or single point analysis. Analysis of variance (ANOVA) tests the statistical 

association of molecular markers to the phenotypic traits of interest. ANOVA is done for 

each marker locus independent of information from other loci. The t-statistics or F-

statistics provides evidence whether differences, between marker locus genotype classes 

are significant or not. The main advantages of SMA includes: (1) simplicity in concept 

and computation, (2) there is no need for a genetic map for the markers because it 

considers each marker locus separately, (3) easily incorporates covariates, (4) informative 

when markers sufficiently cover the genome, and (4) can be extended to multiple 

regression for multiple QTL model.  

Although computationally simple, the ANOVA approach for QTL mapping has serious 

limitations. First, it is difficult to conduct separate estimates for QTL location and QTL 

effect (proportion of phenotypic variance explained by the QTL). Second, individuals 

with missing genotypes often need to be excluded unless a mixed model that can handle 

unbalanced data and other statistical treatments is used. Third, the power for QTL 

detection will significantly decrease as the distance between the marker and the QTL 

increases. Fourth, SMA cannot determine whether the markers are associated with one or 

more QTLs (confounding of the effect of one QTL by many others that influence the 

trait). This leads to a large variation within each marker class. Finally, a QTL with major 
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effect and loose linkage cannot be distinguished from a QTL with minor effect and tight 

linkage. 

2.11.5. Simple interval mapping (SIM) 

The SIM approach makes use of linkage maps and uses one-marker interval at a time to 

search for a hypothetical QTL (target QTL) at multiple analysis points between pairs of 

adjacent loci (the target interval) by performing a likelihood ratio test at every position 

within the interval (Semagn et al., 2010). 

SIM uses the uses the likelihood of odds (LOD score) formulae to calculate significance 

level for QTL position when the genome size, the number of chromosomes and marker 

intervals and overall false positive rate desired are given. In this approach, the QTL is 

located within a chromosomal interval, defined by the flanking markers. The presence of 

putative QTL is estimated if the log of odds ratio (LOD) exceeds a critical threshold. The 

SIM has been the most widely used approach as it can be easily accessed through 

statistical packages. The main advantages of SIM includes: (1) recombination between 

markers and QTL can easily be compensated, this is possible since tightly linked markers 

are used, thereby increasing the probability of statistically detecting the QTL, and 

providing an unbiased estimate of QTL effect, and (2) the information from genetic 

linkage map is not required. 

Despite SIM having more power and requiring fewer progeny, SIM suffers serious 

limitations. First, SIM considers one QTL at a time in the model (single-QTL), ignoring 

the effects of other (mapped or not yet mapped) QTLs. Therefore, SIM can provide a 

biased identification and estimation of the effect and position of QTL when such multiple 
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QTLs are located in the same linkage group. Second, QTLs outside the interval under 

consideration can affect the ability to find a QTL within it. SIM fails to take into account 

genetic variance caused by other QTLs. Third, false identification of a QTL (false 

positive or ‘ghost peak’) can arise if other QTLs are linked to the interval of interest.  

2.11.6. Composite interval mapping (CIM) 

CIM is a combination of interval mapping and multiple regressions (multiple-QTL 

model). It includes additional background markers in the statistical model and an adjacent 

pair of linked markers for interval mapping. CIM fits the effect of one or more 

background markers that are often referred to as cofactors to control the genetic variation 

of the other possibly linked or unlinked QTL. The inclusion of cofactors in the analysis 

helps in one of two ways, depending on whether the background markers and the target 

interval are linked. If they are not linked, inclusion of the background markers makes the 

analysis more sensitive to the presence of a QTL in the target interval. If they are linked, 

inclusion of the background markers may help to separate the target QTL from other 

linked QTL on the far side of the background markers (Zeng, 1994).  

Unlinked markers also can partly account for the segregation variance generated by 

unlinked QTL (Singh et al., 2013), while the effect of linked QTL can be reduced by 

including markers linked to the interval of interest. There are four major limitations in 

CIM in that: (i) It is affected by an uneven distribution of markers in the genome (i.e., the 

test statistics in a marker rich region may not be comparable to that in a marker-poor 

region); (ii) there is difficulty of estimating the joint contribution to the genetic variance 

of multiple linked QTLs; (iii) It’s not directly extendable for analyzing epistasis; (iv) the 
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use of tightly linked markers as cofactors can reduce the statistical power to detect a 

QTL. 

2.11.7. Inclusive composite interval mapping (ICIM) 

Inclusive Composite Interval Mapping (ICIM) was developed for additive, dominant and 

epistatic QTL mapping in bi-parental populations. ICIM is efficient for background 

control via a   two-step mapping strategy. Firstly, stepwise regression is conducted to 

identify the most significant markers for additive QTL mapping. In the second step, the 

phenotypic values are adjusted by the marker variables retained in the regression equation 

except the two markers flanking the current scanning position(s) for background control. 

The adjusted phenotypic values are subsequently used in interval mapping (Meng et al., 

2015). This strategy effectively separates the cofactor selection from the interval mapping 

using Maximum Likelihood (ML) method. Genetic background control decreases 

variance of the estimated genetic parameter, and therefore increases accuracy of estimates 

and the detection power. Extensive simulations have illustrated that ICIM is an efficient 

mapping method with higher detection power, lower false discovery rate (FDR) and less 

biased estimates of QTL effect and position. The method has been extended to mapping 

additive and dominant QTL epistatic QTL and QTL-by-environment interactions (Li et 

al.,2015). 

2.11.8. Tests for QTL position and significance threshold 

One of the challenges for QTL mapping is the difficulty in determining appropriate 

significance thresholds (critical values) for the two types of errors: (a) that there is a 

segregating QTL whereas in reality there is not (false positive or type I error), and (b) 

that there is no QTL although it is actually present (false negative or type II error). The 
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problem of determining appropriate threshold values appeared to be difficult because 

there are many factors that can vary from experiment to experiment and can influence the 

distribution of the test statistics. These include, but are not limited to, the sample size, 

genome size of the organism under study, genetic map density, segregation ratio 

distortions, proportion and pattern of missing data, and number and magnitude of 

segregating QTLs (Semagn et al., 2010)  

Several studies addressed the problem of statistical significance in QTL analysis and 

presented solutions for hypothesis testing that are based on cumulative distribution 

functions of the LOD score, permutation tests, bootstrap resampling method, or a 

bootstrap model selection procedure.  “LOD drop-off method”, has been utilized to find 

the location to each side of the estimated QTL location corresponding to a decrease of 

one from the maximum LOD score. The introduction of different resampling methods, 

such as permutation tests, bootstrap resampling method, and bootstrap model selection 

procedure and cross validation provided a computationally simple and free of dubious 

assumptions for establishing the significance threshold value (Xu et al., 2016).  

Permutation tests generate many different samples from the actual data by "shuffling" the 

trait values with respect to the marker genotypes hence estimating empirically the 

threshold for a test statistic in detecting a QTL (Collard et al., 2005). This approach 

accounts for missing marker data, actual marker densities, and non-random segregation 

of marker alleles. A permuted sample is generated from the data by randomly pairing 

phenotypes and genotypes in the sample, stimulating the null hypothesis of no intrinsic 

association between genotypes and phenotypes (no QTL). The statistical test is then 

performed over the whole genome on the permuted sample for QTL, and the maximum 
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test statistics is recorded. This permutation analysis is repeated for a number of replicates 

(usually 1,000 permutations) to obtain a distribution of the maximum test statistics, and 

from the distribution to obtain the threshold value. 

A threshold is set to declare significant associations. Any of the two statistical methods 

can be used to correct for multiple comparisons: false discovery rate (FDR) and 

Bonferroni correction. The correction is needed whenever one would like to test multiple 

hypotheses simultaneously. FDR controls the expected proportion of false positives 

among significant results by determining a threshold from the observed p value 

distribution in the data, whereas Bonferroni corrections control the chance of any false 

positive (Xu et al., 2016). Given the aims of the study, one may consider a high FDR for 

some projects (e.g., investigating the genetic architecture of a trait) and a low FDR for 

others (e.g., identifying candidate loci for follow-up studies). One then compares this 

threshold with the test statistics from the original sample, and declares the existence of a 

QTL if the test statistics peaks in a region that exceeds the threshold (Semagn et al., 

2010).  

2.12. Association mapping or linkage disequilibrium(LD) mapping 

Association mapping or LD mapping is the method of mapping QTLs using historical 

meiotic recombination events over several generations to find statistical associations 

between markers and quantitative traits in large germplasm populations (Rosyara and 

Joshi, 2012; Scheben et al., 2017).  

Association mapping is based on linkage disequilibrium defined as non-random 

association between two markers (alleles at different loci), between two genes or QTLs, 
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between a gene/QTL and a marker locus (Semagn et al., 2010; Soto-Cerda and Cloutier, 

2012).  In association mapping the genetic markers usually lie within candidate genes and 

association mapping relies on linkage disequilibrium (LD) between the candidate gene 

markers and the causal polymorphisms in the gene. This means that association mapping 

has, besides allowing for the identification and mapping of QTLs, the potential to identify 

polymorphisms within genes that are responsible for phenotypic differences (Zhu et al., 

2008).  

Linkage disequilibrium describes that some combinations of alleles occur more or less 

frequently in a population than it would be expected if the association of alleles was 

random. This can be due to linkage, selection, migration, or drift (Sahu and Sharma, 

2017; Stich and Melchinger, 2010). 

Association mapping was first used to identify natural variation in genes responsible for 

human diseases but seems to be a powerful tool for identifying QTLs in plants too (Flint-

Garcia et al., 2003). The current major uses of association mapping in plants are (i) the 

detection of marker-trait associations in natural populations and subsequent marker-

assisted selection and (ii) studies of genetic diversity in natural populations and studies of 

population genetics (Sehgal et al., 2016). 

Association mapping provides the advantages that currently existing populations can be 

used instead of creating mapping populations, that a large number of alleles can be  

surveyed per locus simultaneously and that resolution can be increased (Flint-Garcia et 

al., 2005). 
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Based on the scale and focus of a particular study, association mapping generally falls 

into two broad categories (i) candidate-gene association mapping, which relates 

polymorphisms in selected candidate genes that have purported roles in controlling 

phenotypic variation for specific traits; and (ii) genome-wide association mapping, or 

genome scan, which surveys genetic variation in the whole genome to find signals of 

association for various complex traits (Yan et al., 2011). 

2.12.1. Genome-wide association study (GWAS) 

Genome-wide association studies (GWAS) is based on accurate phenotyping of a 

particular trait in a huge set of individuals that are widely unrelated (i.e., they have little 

or no family structure) (Yan et al., 2011; Zhu et al., 2008). Whole-genome association 

scans require very high marker density to efficiently identify SNPs, as GWAS must be 

run at a density that accurately reflects genome-wide linkage disequilibrium (LD) 

structure and haplotype diversity (Yu and Buckler, 2006). 

GWAS offers higher resolution, broad allele coverage and greater ability for identifying 

favorable genetic loci responsible for the trait of interest (Flint-Garcia et al., 2005; Yu 

and Buckler, 2006). Genome-wide association studies (GWAS) is cost effective and time 

efficient since there is no need to generate bi-parental mapping population (Gowda et al., 

2015). For this reason, association mapping has been extensively used to study the 

genetic bases of complex traits in maize, since linkage disequilibrium (LD) decay is rapid 

due to its high diverse genetic nature hence an ideal crop for association mapping.  

Understanding genetic architecture of allele variations that lead to phenotypic diversity 

will contribute to the improvement of agronomic traits in maize breeding. However, 
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dissecting quantitative traits poses numerous challenges that make gene identification 

more difficult, including limitations of molecular biology and bioinformatics tools (Chen 

et al., 2015). In recent years, rapid developments in genome-wide association mapping, 

combined with an extensive array of genome resources and genotyping technologies such 

as GBS (Elshire et al., 2011), have increased the power and accuracy to dissect complex 

traits and identify alleles associated with quantitative trait loci (QTL) for important 

agronomic traits (Ingvarsson and Street, 2011). For example genotyping-by-sequencing 

which reduces genome complexity through restriction enzymes generates millions of 

SNPs at affordable cost (Korte and Farlow, 2013; Poland and Rife, 2012).  

GWAS has been successfully applied to identify QTLs or genomic regions conferring 

resistance to some important diseases of maize, such as fusarium ear rot (Chen et al., 

2016; Zila et al., 2013), maize rough dwarf disease (MRDD) (Chen et al., 2015), gray 

leaf spot (Mammadov et al., 2011; Shi et al., 2014), head smut (Li et al., 2015; Wang et 

al., 2012), northern corn leaf blight (Ding et al., 2015), southern corn leaf blight (Kump 

et al., 2011),  maize lethal necrosis (Gowda et al., 2015) and tar spot complex (Cao et al., 

2017; Mahuku et al., 2016a). Dissecting the genetic bases of different traits is the 

foundation of trait improvement; however, despite the recent advancements in this area, 

very little is known about the genetic architecture of many adaptive traits in maize (Hill, 

2012; Mackay et al., 2009), with GWAS not been utilized or reported in identifying 

genomic regions influencing resistance to MCMV. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Mapping populations 

The Improved Maize for African Soils (IMAS) maize association panel consisting of 395 

genotypes obtained from the International Maize and Wheat Improvement Center 

(CIMMYT) were used for association mapping. This maize germplasm broadly 

represents the tropical/sub-tropical maize lines, including lines derived from breeding 

programs targeting tolerance to drought, soil acidity, resistance to insects and pathogens, 

improved N-use efficiency and grain nutritional quality (Wen et al., 2011).  Additionally, 

three bi-parental populations (double haploid (DH) populations), namely 

CML550xCML494, CML550xCML504, and CML550xCML511 were used for QTL 

mapping and validation (Table 1). These DH lines were developed using protocols 

described by Prasanna et al. (2012). 

3.2 Experimental design 

The IMAS association mapping panel consisting of 395 inbred lines was evaluated in the 

screen house and in the field at CIMMYT MLN screening facility based at  the Maize 

Research Station of KALRO, Naivasha (latitude 0°43′S, longitude 36°26′E, 1896 m asl), 

Kenya. An alpha-lattice design with two replications for each of the seasons used for 

evaluation. For each season, the entries were planted in one-row plots 3m long. To ensure 

uniform number of plants per entry, two seeds were planted per hill and thinned to one 

plant per hill 3 weeks after emergence. The bi-parental populations were evaluated at the 
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screen house for two seasons except the CML550xCML504 which was evaluated for 

three seasons between 2015 and 2016 planting seasons. 

 

Table 3. 1: pedigree of populations and size of population used in this study, and the 

number of seasons each population evaluated for MCMV resistance 

 

  Pedigree Pop size Number of environments 

1  IMAS association mapping 

panel 

395 3 GH15B,GH14B and  

Fld14A 

2 CML504 X CML550 220 3 15A,15B and 16A 

3 CML 511 X CML550 115 2 16A, and 16B  

4 CML 494 X CML550 228 2 15A and 16A 

 

3.1 DAS-ELISA  

Seeds were sown in a MCMV screening greenhouse at Naivasha CIMMYT MLN 

facility. Leaf samples were collected from the plants three weeks after germination. To 

confirm the presence of MCMV and inoculum purity, Double Antibody Sandwich 

Enzyme-linked immunosorbent assay (DAS-ELISA) was performed using antisera from 

DSMZ. Specific coating immunoglobulin G (IgG) antibody for MCMV was diluted with 

coating buffer prepared according to the manufacturer’s protocol at a ratio of 1:1000ul. 

The wells were coated with 100 µl of the diluted MCMV IgG antibody and the plates 
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sealed with adhesive seals. The plates were incubated at 37
o
C for 2 hrs and subsequently 

washed three times with phosphate buffered saline with tween 20 (PBST).  

Approximately 0.5 g of leaf sample and 5ml of extraction buffer were put into a plastic 

bag and ground to obtain plant extracts. Plates coated with antibody were blot dried and 

100 µl of the antigen added to each well in replicates. In each plate, positive and negative 

controls from the kit were included. The plates were incubated overnight at 4
o
C and 

washed thrice at 3-5 minutes interval with PBST and blot dried. The wells were then 

loaded with 100 µl of specific enzyme conjugate antibody and incubated at 37
0
C for 2 

hrs. After incubation, the plates were washed thrice at 3-5 minutes interval with PBST 

and blot dried. P-Nitrophenyl phosphate disodium hexahydrate (pNPP) tablet was 

dissolved in substrate buffer at a ratio of 1mg: 1µl and 100µl of the substrate solution 

added to each well. The plates were then incubated for 60 minutes at room temperature. 

Optical density of each well was determined using ELISA plate reader at 405nm 

absorbance (A405nm) one hour after substrate addition. The mean absorbance reading of 

negative controls was determined and two times to the mean values of negative control 

was used as the positive/negative thresholds. A sample was regarded as positive when the 

average absorbance readings exceeded two times the mean of the negative control values 

after 60 minutes of incubation, i.e., when A405nm x1+x2 / 2 of infected sample ˃ 

A450nmx1+x2 / 2 of negative control and fairly comparable with positive control reading 

value. 

3.2 Viral inoculum sources, artificial inoculation and phenotyping 

The inoculum was prepared according to the protocol developed at the KALRO/ 

CIMMYT MLN screening facility in Naivasha using  MCMV maintained through serial 
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transmission to susceptible maize (Gowda et al., 2015). Briefly, the inoculum was 

prepared by harvesting plants infected with MCMV. The leaves were weighed, chopped 

and homogenized in 0.1M potassium phosphate buffer in 1:10 dilution ratio at pH 7.0. 

The inoculum was sieved and 0.02g/ml of celite was added. To maintain uniform disease 

pressure, the plants were artificially inoculated at 4-to-5 leaf stage by rubbing the viral 

inocula two times in a week interval (Plate 3.1). Plants were evaluated for virus 

symptoms at weekly interval, beginning 7- 10 days after the initial inoculation and ending 

at 20 days after pollination. Pictures of the inoculated plants were taken in a week 

interval for a month. The disease rating system was done based on leaf severity scale of 1 

(symptomless) to 5 (severe stunt with few ears formed). 
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Plate 3. 1: (A)plants at 4
th

 leaf stage,(B)inoculation,and (C)plants ready for the first scoring in the screenhouse (Source, Author 

2017) 
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Plate 3. 2: MCMV disease severity rating scale (Source: Author, 2017) 
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3.3 Statistical analyses 

3.3.1 Phenotypic data analyses 

Phenotypic data was evaluated based on the ordinal scale to check whether the data meet 

the criteria of applied statistical model (independent, normally distributed and 

homogeneous variance). The multi-environment data were subjected to the following 

analysis under different parameters.  Multi Environment Trait Analysis with R for 

Windows (META-R) ver. 5.0 which can be found on CIMMYT database (Alvarado et 

al., 2015) was used to conduct both descriptive and exploratory statistics. Exploratory 

phenotypic data analyses were performed to better understand and process all phenotypic 

data. Field phenotypic data distribution histograms were produced. 

Residual and distribution plots were produced to determine normality and variance 

homogeneity. Both phenotypic and genetic correlations between replications and 

environments were also obtained. The quantile-quantile (QQ) plots were generated using 

R software to detect inflation of statistics due to population stratification. 

Analysis of variance within and across environment was also determined by the restricted 

maximum likelihood method (REML). Analysis of variance was also carried out across 

environments for each DH population and association  IMAS mapping panel separately 

based on the following statistical model: 

Yijko = μ + Lj + R(L)kj + B(R.L)ojk + Gi + (GL)ij + eijko, 

where Yijko was the phenotypic observation for the ith genotype at the jth environment in 

the oth incomplete block of the kth replication, μ was an intercept term, Gi was the 

genetic effect of the ith genotype, Lj was the effect of the jth environment, (GL)ij the 
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interaction effect, R(L)kj was the effect of the kth replication at the jth environment, 

B(R.L)ojk was the effect of the oth incomplete block in the kth replication at the jth 

environment, and eijko was the residual. The effect of genotype, genotype X environment 

interaction and incomplete blocks were treated as random to estimate their variances and 

the residual error variance. For each phenotypic observation, a mixed linear model 

(MLM) was fitted to obtain the best linear unbiased predictor (BLUP) for each genotype 

across environments with the above ANOVA model using the PROC MIXED procedure 

in SAS. All terms were fitted as random effects apart from the grand mean. Heritability 

(h
2
)  was estimated on a progeny mean basis as described by (Hallauer and Miranda, 

(1981): h
2
 = σ

2
G/ (σ

2
G+ σ

2
GXE/E + σ

2
e/ER), where, σ

2
G, σ

2
GXE, σ

2
e refer to the genotypic, 

genotype X environment interaction and error variances, and E and R indicate the number 

of environments and replications, respectively. For association analysis, phenotypic 

BLUPs (best linear unbiased predictors) of each line for all the traits were used. 

 

3.3.2 Genotyping, SNP calling, imputation and filtering 

Genomic DNA of all inbred lines was extracted from greenhouse grown seedlings at 3–4 

leaves stage. Genomic DNA was digested with restriction enzymes ApeK1. SNP 

genotyping was carried out using the Genotyping-by-sequencing platform at Cornell 

University Biotechnology Resource Center ( Ithaca, USA). Genotyping-by-sequencing 

libraries were constructed in 96-plex and sequenced on Illumina HiSeq2000 as described 

by Elshire et al. (2011).  

Single-nucleotide polymorphism calling was performed using the TASSEL GBS 

Pipeline, where tags on physical map was used to anchor reads to the Maize B73 

RefGen_v2 reference genome (Glaubitz et al., 2014). Imputation was performed with 
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FILLIN method in TASSEL 5.0. The parameters for running FILLIN to do imputation 

were set as the default values, which have been descripted in detail by Swarts et al., 

(2014). An imputed GBS dataset was used to conduct GWAS in the IMAS association-

mapping panel. TASSEL V5.0 (Bradbury et al., 2007) was used to filter raw GBS 

datasets for SNPs with minor allele frequency (MAF) of <0.02, heterozygosity of >5 %,   

and missing data rates >5% were excluded from further analyses. Basic genotypic 

information, including number of SNPs, MAF, missing rate, and heterozygosity rate, was 

calculated at the population level. After these quality checks, 293,106 high-quality SNPs 

were retained for GWAS. 

3.3.3 Genome‑ wide association study (GWAS) 

To minimize the effect of environmental variation, phenotypic BLUPs across 

environments were used for association studies. The principle component analyses (PCA) 

was carried out by using a method described by (Price et al., 2006),  implemented in SNP 

& Variation Suite (SVS) V_8.6.0 (SVS, Golden Helix, Inc., Bozeman, MT, www. 

goldenhelix.com). A two-dimensional plot of the first two principal components (PC) 

was created to visualize the possible population stratification among the samples (Figure 

4.4). The first three PCs were used to correct for the population structure which could 

result in non-functional spurious associations or false positives (Soto-Cerda and Cloutier, 

2012). 

For GWAS, mixed linear model (MLM) was used where population structure was 

corrected by using both PCs and kinship (K) (Flint-Garcia et al., 2005; Liu et al., 2016; 

Yu and Buckler, 2006). Kinship matrix was calculated by using TASSEL ver 5.2 

(Bradbury et al., 2007). The first three PCs were used to correct for the population 
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structure. Genome-wide scans for marker–trait associations were conducted to detect 

main-effect QTL. 

The amount of phenotypic variation explained by the model was assessed using the R
2
 

statistics, calculated by fitting all significant SNPs simultaneously in a linear model. 

Multiple testing correction was performed to determine the significance threshold, where 

instead of 293,106 independent tests, the total number of tests were estimated based on 

the average extent of LD at r
2
 = 0.1 (Cui et al., 2017). Based on this, significant 

associations were declared when the P values in independent tests are less than 

5.8 × 10
−05

.  Candidate genes containing or being adjacent to the significant SNPs were 

obtained from the B73 gene set in Maize GDB 

(https://www.maizegdb.org/gene_center/gene). Manhattan and quantile– quantile plots 

were created in R package using the association-mapping results. 

3.3.4 Linkage mapping in bi-parental population 

For the three DH populations, the GBS data was filtered with  a MAF of 0.05 and a 

minimum count of 90 % of the sample size. Further, the number of SNPs in each 

population was reduced by selecting the only marker loci which are homozygous and 

polymorphic between the two parents. Finally, markers were selected based on distance 

to find the number of markers handled by the QTL analysis software and to ensure 

uniform distribution of markers on the genome. Linkage maps for all the three 

populations were constructed using QTL IciM mapping Version 4.1 software using the 

MAP function (Meng et al., 2015). ICIM applies a two-step strategy to effectively 

separate the cofactor selection from interval mapping process, to more effectively control 

the background effects and improve mapping of QTL with additive effects (Meng et al., 

https://www.maizegdb.org/gene_center/gene
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2015). Stepwise regression was used to select the most significant markers and a 

likelihood ratio test was used to calculate the LOD scores for each marker by a criterion 

of more than 3.0 logarithm of odds (LOD) and a maximum of 30 cM between two loci. 

The walking step was 1 cM, the largest P-value for entering variables in stepwise 

regression of phenotype on marker variables (PIN) was 0.001, and the largest P-value for 

removing variables was 2 PIN. One-dimensional QTL scanning was conducted, that is, 

only additive effects for each QTL was estimated, with a relaxed LOD threshold of 3.0 

was used to declare putative QTL and the phenotypic variation explained (PVE) by each 

QTL was estimated (Tuberosa et al., 2002). Recombination frequencies between two 

linked loci were transformed into cM distances using Kosambi's mapping function 

(Kosambi, 1945). The origin of the favourable allele for MCMV resistance was identified 

based on sign of the additive effects of each QTL. QTL nomenclature followed the 

method described by McCouch et al., (1997). The letter ‘q’ indicates QTL, and the 

abbreviation of trait name and the chromosome and the marker position are followed in 

turn. 
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CHAPTER FOUR 

RESULTS 

4.1 Symptomatology  

Disease symptoms were evaluated at 7, 14, 21, 28 and 35 days post inoculation. At 7th 

day of post inoculation most seedlings had disease symptoms i.e. the chlorotic spots were 

visible in the young emerging leaves (Plate 3.2A). The number of symptomatic plants 

increased slightly until 21 days post inoculation (dpi). At 21
st
 dpi, disease severity rating 

was at the scale of 2.5 showing streaks and chlorotic mottling (Plate 3.2D). At 35 dpi, 

some of the plants were stunted; those that had ears were partially filled. These results 

indicated that our virus inoculation method was highly effective with fewer or no 

escapes. 

In a natural field conditions insect vectors are crucial in disease transmission. Genotypes 

with different levels of resistance to insects can play a role in level of viral disease 

transmission and ultimately mislead the expression of disease resistance in selected 

populations. Nevertheless, in this study MCMV were transmitted mechanically by rub 

inoculation with optimized protocol, consequently QTL detected in this study are likely 

to confer the resistance to MCMV virus per se. Resistance to MCMV was observed both 

in the IMAS association mapping panel and in the bi-parental populations. Disease 

severity showed continuous variation, ranging from highly resistant to completely 

susceptible in both populations.  

 

4.2 DAS-ELISA results 

DAS-ELISA tests were carried out for MCMV. Using a positive threshold of two times 

greater than the mean of the negative control, 23 samples which were randomly selected 
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in the screen house were positive for MCMV (Plate 4.1). This was routinely done every 

two weeks for quality control (QC) to ensure that the plants were not infected by any 

other pathogen i.e. SCMV and MLN. 

 

 

 

Plate 4. 1: Strongly reacted samples to the virus specific antibody showed strong 

yellow 

 

4.3 Phenotypic variations for MCMV resistance in association panel and DH 

populations  

The trial was conducted in three environments to evaluate the resistance to MCMV in 

tropical germplasm. A range of phenotypic variation was observed for MCMV resistance 

in IMAS panel as well as three DH populations. The MCMV resistance had a mean rating 
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between 2.1 and 3.1 in combined analysis (Table 4.1).The mean for each location 

analysis was between 2.02 and 2.23 for MCMV early while it was between 3 and 3.7 for 

MCMV late (Table 4.1).  Consistent with the phenotypic observations,  ANOVA across 

environments revealed significant variance components for genotypes and genotype x 

environment (GxE) interactions. However, the GxE interaction represented only a small 

fraction of the total variance.Heritability estimates were moderate to high  ranging from 

0.30 (MCMV early) to 0.50 (MCMV late) for combined analysis. For each location 

analysis, heritabilities were high ranging from 0.73 to 0.77 (MCMV early)  and 0.64 to 

0.72 (MCMV late) (Table 4.1). The heritability in  bi-parental population was moderate 

to high, it ranged between 0.53 to 0.71 (MCMV early) and 0.48 to 0.63 for MCMV late 

(Table 4.1). This meant that the phenotypic variation was derived from genetic factors 

and suitable for association mapping studies. For each population, there was adequate 

expression of the disease to differentiate tolerant and susceptible lines in each 

environment. From phenotypic evaluation of lines for MCMV response; 12 lines that had 

a resistance response in all the environments were identified as best performing lines 

(Table 4.2). Remarkably, these lines which showed better resistance are also good for 

other agronomic traits. 
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Table  4. 1:Analysis of variance, heritability for resistance to MCMV in the association mapping panel and bi-parental 

populations 

 
 

Population Environment Trait Mean σ
2
G  σ

2
GE  σ

2
e  h

2
 LSD CV 

IMAS_AM GH14B MCMV_Early 2.03 0.15*   0.09 0.77 0.59 14.77 

  

MCMV_Late 3.01 0.16* 

 

0.18 0.64 0.82 13.97 

 
Fld14B MCMV_Early 2.23 0.12* 

 

0.09 0.73 0.59 13.45 

  

MCMV_Late 3.74 0.13* 

 

0.10 0.72 0.61 8.37 

 
GH15B MCMV_Early 2.03 0.15* 

 

0.09 0.77 0.59 14.77 

  

MCMV_Late 3.01 0.16* 

 

0.18 0.64 0.82 13.97 

 
Across MCMV_Early 2.12 0.06* 0.07* 0.12 0.58 0.69 16.50 

    MCMV_Late 3.14 0.03* 0.10* 0.16 0.35 0.79 12.91 

CML550XCML504 Nai15A MCMV_Early 1.77 0.04* 
 

0.09 0.46 0.58 16.73 

 
 

MCMV_Late 2.25 0.01* 
 

0.1 0.12 0.61 13.89 

 
Nai15B MCMV_Early 2.32 0.11* 

 
0.08 0.73 0.56 12.21 

 
 

MCMV_Late 2.5 0.2* 
 

0.16 0.72 0.77 15.78 

 
Nai16A MCMV_Early 2.59 0.16* 

 
0.09 0.78 0.6 11.79 

 
 

MCMV_Late 2.91 0.17* 
 

0.12 0.74 0.67 11.76 

 
Across MCMV_Early 2.22 0.07* 0.04* 0.09 0.71 0.58 13.22 

    MCMV_Late 2.55 0.07* 0.06* 0.12 0.63 0.68 13.68 

CML550XCML511 Nai16A MCMV_Early 2.89 0.03*   0.05 0.6 0.43 7.52 

 
 

MCMV_Late 2.79 0.04* 
 

0.1 0.44 0.63 11.44 

 
Nai16B MCMV_Early 2.12 0.04* 

 
0.13 0.36 0.7 16.84 

  
MCMV_Late 2.68 0.03* 

 
0.05 0.49 0.45 8.62 

 
Across MCMV_Early 2.5 0.03* 0.01* 0.09 0.53 0.59 12.03 

    MCMV_Late 2.73 0.03* 0.01* 0.08 0.52 0.55 10.19 

CML550XCML494 Nai16A MCMV_Early 2.6 0.01* 
 

0.06 0.43 0.46 9.08 

    MCMV_Late 2.81 0.03*   0.06 0.48 0.46 8.35 

Means, σ
2

G , σ
2

GE, and σ
2
e are the genotype, genotype × environment interaction and error variances. h

2 
is the heritability on an 

entry-mean basis, LSD is the least significant difference while CV is the coefficient of variation.  
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Table  4. 2: Best performing MCMV resistance lines 

 
 

Genotype MCMV 
Heterotic 

group 
Adaptation Other traits 

CML550 3.36 B Tropical lowlands Drought, Low N 

LaPostaSeqC7-F71-1-2-1-1-B 3.37 A Lowland Drought tolerant 

(CML550/CML504)DH73 3.47 B Lowland/ Subtropical Drought, Low N 

(CML550/CML504)DH128 3.5 B Lowland/ Subtropical Drought, Low N 

DTPWC9-F31-1-3-1-1-B 3.53 A Lowland/ Subtropical Drought tolerant 

(CML550/CML504)DH30 3.55 B Lowland/ Subtropical Drought, Low N 

CLWN276 3.55 B Tropical Lowlands Low N 

CML342 3.55 AB Lowland Drought, Low N 

CML373 3.56 A Subtropical Drought tolerant 

(CML550/CML504)DH91 3.56 B Lowland/ Subtropical Drought, Low N 

(CML550/CML504)DH35 3.56 B Lowland/ Subtropical Drought, Low N 

(CML550/CML504)DH161 3.58 B Lowland/ Subtropical Drought, Low N 
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Figure 4. 1 : Phenotypic distribution of MCMV disease severity for MCMV early and MCMV late in the form of box 

plots and histogram for each and across locations in  IMAS association mapping panel 
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Figure 4. 2: Phenotypic distribution of MCMV disease severity for MCMV early and MCMV late in the form of 

histogram for across locations in IMAS mapping panel 
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Figure 4. 3 : Phenotypic distribution of MCMV disease severity for MCMV early and MCMV late in the form of 

histogram for each individual location and across locations in three bi-parental populations 
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4.4 Genotypic data and population structure 

The level of population structure was examined to gain understanding of the possible 

effect on association analysis. PCA did not reveal a strong population structure in the 

IMAS association panel. First two eigenvectors clearly formed three clusters as tropical 

low land lines, subtropical adapted lines and lines from ARC South Africa breeding 

program. First two PCs explained 15.4% and 8.8% of variation, respectively. 

 

 

 

Figure 4. 4: Population structure based on first two principal components (A) and  

violin plots (B) showing the density distribution of the first ten principal 

components for the genotypes from IMAS association mapping panel 
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4.5 Association analysis and candidate genes co-localized with associated SNPs 

To minimize the effect of environmental variation, phenotypic BLUPs across 

environments were used as phenotypes for association studies. In this case the phenotypic 

data from three seasons were used for association analysis. To detect the genotypic 

variation underlying the resistance to MCMV, the significant association between the 

disease severity and the genome-wide 293106 SNPs with minor allele frequency of <0.02 

was evaluated by MLM analysis using kinship relationship (K matrix) and population 

structure as covariate. To understand the causes of variation in resistance to MCMV, we 

examined the putative genes co-localizing with SNPS based on the B73 reference 

genome and genes containing the significantly associated SNPs were considered as 

possible candidate genes for MCMV resistance. 

Functional annotations of the genes showed that several of them are associated with 

defense response in plants. The number of significant SNPs varied from chromosome to 

chromosome in individual and across locations (Tables 4.3, 4.4, 4.5 and 4.6). For 

instance, GRMZM2G052670 identified at an early stage of disease infection in Loc15B 

at chromosome 4_S4_31516850 encoding genes involved in vesicle-mediated transport; 

vesicle docking involved in exocytosis explaining 6.3% of the phenotypic variance 

(Table 4.5).  

Many SNPs encoding oxidation reduction genes were also discovered which include 4 

SNPs in chromosome 5 in loc14B detected at the later stage of MCMV infection: 

GRMZM2G080183_S5_53397642, GRMZM2G073540_ S5_48803416, 

GRMZM2G073540_S5_48803415, GRMZM2G073540_S5_48803447. One gene at 

Loc14Bfld, S8_166902808_ GRMZM2G396248 was also detected in MCMV early 
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(Table 4.4). In MCMV late, 3 SNPs were annotated in chromosome 1, chromosome 5 and 

chromosome 8 at the late stage at LOC15B encoding genes for oxidation reduction; 

NADP or NADPH binding; FAD 
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Table  4.3: Details of candidate genes, chromosomal position and SNPs associated with MCMV resistance identified 

through GWAS in the IMAS Association mapping panel in location 1(loc14B). 

 

SNP Name CHR BP P  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

MCMV_Early          

S7_18783177 7 18783177 2.94E-06 0.084 0.12 T/A 0.077 AF546188.1_FG003 nutrient reservoir activity 

S8_168930461 8 168930461 9.51E-06 0.073 0.05 A/G 0.192 GRMZM2G035933  Putative uncharacterized 

protein 

S8_164752186 8 164752186 1.59E-05 0.066 0.34 T/A 0.088 GRMZM2G172032  catalytic activity ; isoprenoid 

biosynthetic process  

S2_44335709 2 44335709 3.04E-05 0.063 0.03 C/G 0.469 GRMZM2G046900 B6UG11_MAIZE Putative 

uncharacterized protein 

S2_44335725 2 44335725 3.04E-05 0.063 0.03 T/G 0.469 GRMZM2G046901 B6UG11_MAIZE Putative 

uncharacterized protein 

S1_179829661 1 179829661 3.79E-05 0.059 0.02 A/G 0.526 GRMZM2G370026 regulation of transcription 

DNA-dependent; sequence-

specific DNA binding 

;protein dimerization activity 

S6_30912570 6 30912570 3.99E-05 0.062 0.08 T/C 0.001 GRMZM2G098226 No significant hits  

S4_189017015 4 189017015 4.20E-05 0.057 0.04 G/C 0.322 GRMZM2G041277  No significant hits  

S4_189016999 4 189016999 4.82E-05 0.056 0.04 A/T 0.313 GRMZM2G041279  No significant hits  

S4_189017004 4 189017004 4.82E-05 0.056 0.04 C/G 0.313 GRMZM2G041280  No significant hits  

S4_189017005 4 189017005 4.82E-05 0.056 0.04 G/C 0.313 GRMZM2G041281  No significant hits  

S4_189017017 4 189017017 4.82E-05 0.056 0.04 A/C 0.313 GRMZM2G041282  No significant hits  

S4_189017016 4 189017016 5.34E-05 0.056 0.04 C/G 0.322 GRMZM2G041283  No significant hits  

S4_189017014 4 189017014 6.68E-05 0.055 0.04 G/C 0.309 GRMZM2G041284  No significant hits  

S6_30257557 6 30257557 7.63E-05 0.053 0.11 G/A -0.008 GRMZM2G104876 Putative uncharacterized 
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protein 

SNP Name CHR BP P  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S1_159178499 1 159178499 8.59E-05 0.054 0.09 G/C -0.155 GRMZM2G181254 Putative uncharacterized 

protein ; hypothetical protein; 

regulation of transcription 

DNA-dependent; DNA 

binding 

S1_41377563 1 41377563 9.39E-05 0.058 0.04 A/G 0.078 GRMZM2G172574 No significant hits  

S1_159450024 1 159450024 9.54E-05 0.053 0.09 A/C -0.130 GRMZM5G873675 No significant hits  

S7_18779297 7 18779297 9.77E-05 0.060 0.11 A/T 0.067 AF546188.1_FG003 nutrient reservoir activity 

Total R
2
                   

MCMV_late          

S6_7124510 6 7124510 3.03E-06 0.079 0.11 A/G 0.222 GRMZM2G127338 Putative uncharacterized 

protein ; TSA: Zea mays 

contig35068 mRNA sequence 

S5_53397642 5 53397642 1.48E-05 0.065 0.08 T/C 0.485 GRMZM2G080183 oxidation reduction; heme 

binding ; response to 

oxidative stress ; peroxidase 

activity 

S5_86013655 5 86013655 2.41E-05 0.062 0.37 T/C 0.143 AC207043.3_FG002  VQ motif family protein 

S5_143081943 5 143081943 2.78E-05 0.061 0.34 A/T 0.147 GRMZM2G358711 zinc ion binding 

S5_170160580 5 170160580 3.44E-05 0.064 0.28 T/A 0.176 GRMZM2G071484 ubiquitin-protein ligase 

activity 

S5_170160582 5 170160582 3.44E-05 0.064 0.28 G/C 0.176 GRMZM2G071485 ubiquitin-protein ligase 

activity 

S5_170160583 5 170160583 3.44E-05 0.064 0.28 A/T 0.176 GRMZM2G071486 ubiquitin-protein ligase 

activity 

S5_170160585 5 170160585 3.44E-05 0.064 0.28 G/T 0.176 GRMZM2G071487 ubiquitin-protein ligase 

activity 
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S5_135287556 5 135287556 3.58E-05 0.061 0.28 C/T 0.149 AC204298.3_FG006 C5XLA7_SORBI Putative 

uncharacterized protein   

SNP Name CHR BP P  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S5_48803416 5 48803416 3.63E-05 0.061 0.25 C/T 0.082 GRMZM2G073540 oxidoreductase activity ; fatty 

acid metabolic process  

S2_210856055 2 210856055 3.94E-05 0.065 0.20 A/G 0.233 GRMZM2G412888 Putative uncharacterized 

protein 

S2_210856066 2 210856066 3.94E-05 0.065 0.20 A/G 0.233 GRMZM2G412889  Hypothetical protein  

S5_48803415 5 48803415 4.26E-05 0.060 0.25 T/C 0.083 GRMZM2G073540  transition metal ion binding ; 

acyl-[acyl-carrier-protein] 

desaturase activity; 

oxidoreductase activity  

S1_51157286 1 51157286 7.01E-05 0.056 0.08 T/C 0.204 GRMZM5G895991 response to freezing ; ice 

binding; homoiothermy ; 

purine ribonucleotide 

biosynthetic process; IMP 

biosynthetic process; N6-(12-

dicarboxyethyl)AMP AMP-

lyase (fumarate-forming) 

activity ; catalytic activity  

S5_48803447 5 48803447 7.22E-05 0.056 0.25 G/T 0.076 GRMZM2G073540 acyl-desaturase ; oxidation 

reduction ; transition metal 

ion binding ; acyl-[acyl-

carrier-protein] desaturase 

activity; oxidoreductase 

activity ; fatty acid metabolic 

process  

S5_135287606 5 135287606 8.29E-05 0.056 0.28 A/C 0.143 AC204298.3_FG006 C5XLA7_SORBI Putative 

uncharacterized protein 
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Major allele, minor allele; underlined bases are the resistance alleles, MAF stands for minor allele frequency, CHR stands for 

chromosomeand Bp stands for base pair 

R
2
, proportion of phenotypic variance explained by SNP. 

 

 

SNP Name CHR BP P  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

 

S1_287981955 

1 287981955 8.86E-05 0.054 0.10 T/C 0.207 GRMZM2G454176 Clone 425784 mRNA 

sequence 

S1_275224350 1 275224350 9.65E-05 0.055 0.19 T/C 0.163 GRMZM2G169671 A2TJU6_SETIT Aluminum-

induced protein-like TSA: 

Zea mays contig62594 

mRNA sequence ; 

Transcribed locus moderately 

similar to NP_001051238;-

protein coupled receptor 

protein signaling pathway ; 

lysosphingolipid and 

lysophosphatidic acid 

receptor activity 

S2_2634060 2 2634060 1.13E-04 0.060 0.02 G/A 0.075 GRMZM2G065012  GTP binding ; calcium ion 

binding  ; GTPase activity  

S4_158864030 4 158864030 1.15E-04 0.054 0.10 C/T 0.180 GRMZM2G138683 regulation of transcription ; 

sequence-specific DNA 

binding ; transcription factor 

activity 

Total R
2
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Figure 4.5: (A)Quantile-Quantile and (B)Manhattan plots resulting from GWAS results for MCMV resistance in 

IMAS-AM panel in the first location in MCMV early.  

Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P < 3 × 10
−8

). The 

different colours indicate the 10 chromosomes of maize. 
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Figure 4.6: Quantile-Quantile and Manhattan plots resulting from GWAS results for MCMV resistance in IMAS-AM 

panel in the first location  for MCMV late.  

Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P < 3 × 10
−8

). The different 

colours indicate the 10 chromosomes of maize. 
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Table  4. 4: Details of candidate genes, chromosomal position and SNPs associated with MCMV resistance identified 

through GWAS in the IMAS Association mapping panel in location 2_LOC14Bfld 

 
 

SNP Name CHR BP P Value  R
2
 MA

F 

Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

MCMV_Early 

S1_198253862 1 198253862 2.65E-06 0.080 0.02 T/A 0.73 GRMZM2G154267 DNA polymerase epsilon 

subunit 2  

S1_273036576 1 273036576 4.79E-06 0.071 0.31 C/G 0.09 GRMZM2G143142 hypothetical protein 

S3_137229406 3 137229406 6.64E-06 0.073 0.01 A/G 0.19 GRMZM2G160687 regulation of transcription 

DNA-dependent ; transcription 

factor activity 

S1_198254124 1 198254124 9.02E-06 0.078 0.02 T/A 0.64 GRMZM2G154267 DNA polymerase epsilon 

subunit 2  

S1_279190871 1 279190871 2.03E-05 0.070 0.03 T/C -0.57 GRMZM2G091578 negative regulation of catalytic 

activity ; identical protein 

binding ; integral to membrane 

; G-protein coupled receptor 

protein signaling pathway ; 

proteolysis ; dopamine receptor 

activity ; serine-type 

endopeptidase activity 

S1_273096577 1 273096577 2.67E-05 0.066 0.33 A/G -0.10 GRMZM2G396114 sequence-specific DNA 

binding ; transcription 

regulator activity ; regulation 

of transcription DNA-

dependent; homeodomain 

protein JUBEL1 
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SNP Name CHR BP P Value  R
2
 MA

F 

Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S7_29253328 7 29253328 2.29E-05 0.066 0.30 A/T -0.22 GRMZM2G171967  zinc ion binding ; protein 

binding ; RNA-binding protein 

 

S6_168356381 6 168356381 3.64E-05 0.065 0.19 G/C -0.21 GRMZM2G157034 protein phosphatase type 2A 

regulator activity ; signal 

transduction ; protein 

phosphatase type 2A complex ; 

notchless-like protein 

S6_127447237 6 127447237 3.82E-05 0.069 0.03 C/G -0.11 AC194965.4_FG004 Sequence-specific DNA 

binding ; zinc ion binding ; 

regulation of transcription 

DNA-dependent ; transcription 

factor activity 

S6_127447238 6 127447238 3.82E-05 0.069 0.03 A/G -0.11 AC194965.4_FG005 Sequence-specific DNA 

binding ; zinc ion binding ; 

regulation of transcription 

DNA-dependent ; transcription 

factor activity 

S7_126887825 7 126887825 3.95E-05 0.060 0.09 G/T -0.19 GRMZM2G034917 metabolic process ; hydrolase 

activity 

S4_175275509 4 175275509 5.36E-05 0.057 0.04 T/G -0.39 GRMZM2G301647 protein amino acid 

phosphorylation ; ATP binding 

; protein serine/threonine 

kinase activity ; protein kinase 

activity 

 

S7_29253332 7 29253332 5.78E-05 0.060 0.30 A/G -0.21 GRMZM2G171967  zinc ion binding ; protein 

binding ; RNA-binding protein 
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SNP Name CHR BP P Value  R
2
 MA

F 

Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S8_166902808 8 166902808 6.29E-05 0.057 0.01 T/A -0.51 GRMZM2G396248 oxidation reduction ; heme 

binding ; electron carrier 

activity ; iron ion binding ; 

monooxygenase activity 

S3_159809479 3 159809479 6.81E-05 0.060 0.02 A/C -0.07 GRMZM2G133428 Putative uncharacterized 

protein  

S8_140094038 8 140094038 6.89E-05 0.066 0.12 A/C -0.24 GRMZM2G155077 alpha crystallin family protein 

S5_5210229 5 5210229 7.93E-05 0.061 0.04 A/C -0.54 GRMZM5G868875 Putative uncharacterized 

protein  

S2_60507142 2 60507142 8.24E-05 0.055 0.09 G/C 0.31 GRMZM2G154223 Putative uncharacterized 

protein  

 

S2_60507143 2 60507143 8.24E-05 0.055 0.09 C/A 0.31 GRMZM2G154224 Putative uncharacterized 

protein  

S3_181906460 3 181906460 9.29E-05 0.055 0.21 G/A 0.07 GRMZM2G062218 DNA binding ; DNA-directed 

RNA polymerase II core 

complex ; transcription from 

RNA polymerase II promoter 

Total R
2
                   

MCMV_late          

S3_1730957 3 1730957 7.43E-06 0.063 0.02 - 0.00 GRMZM2G701269 No significant hits  

S3_1730954 3 1730954 7.65E-06 0.062 0.02 - 0.00 GRMZM2G701270 No significant hits  

S3_1730953 3 1730953 7.65E-06 0.062 0.02 - 0.00 GRMZM2G701271 No significant hits  

S9_147629352 9 147629352 1.17E-05 0.071 0.05 T/A 0.38 GRMZM2G102802 Putative uncharacterized 

protein 

S2_6358724 2 6358724 2.88E-05 0.062 0.14 A/G 0.03 AC191113.2_FG002 hypothetical protein  

S9_144636416 9 144636416 1.47E-05 0.065 0.05 A/G -0.69 GRMZM2G167957 inositol-tetrakisphosphate 1-

kinase 3; ATP binding ; 

magnesium ion binding  
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SNP Name CHR BP P Value  R
2
 MA

F 

Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S5_6867785 5 6867785 3.46E-05 0.069 0.07 G/C -0.37 GRMZM2G072315 translation ; ribosome ; 

intracellular ; structural 

constituent of ribosome 

S7_140235275 7 140235275 3.73E-05 0.060 0.01 T/C 0.14 GRMZM2G065617 B7ZXU0_MAIZE Putative 

uncharacterized protein 

S9_2825523 9 2825523 3.81E-05 0.062 0.26 C/T -0.21 GRMZM2G180836 protein binding ; translation 

initiation factor activity 

S4_207298090 4 207298090 4.03E-05 0.067 0.21 G/A -0.03 GRMZM2G089317  iron ion binding ; iron-sulfur 

cluster assembly ; iron-sulfur 

cluster binding 

S5_214281612 5 214281612 4.64E-05 0.058 0.12 T/C -0.33 GRMZM2G178892  transferase activity 

transferring hexosyl groups ; 

glycolipid biosynthetic process 

S4_207264922 4 207264922 5.44E-05 0.065 0.20 C/T 0.02 GRMZM2G089259 No significant hits  

S10_45014554 10 45014554 5.70E-05 0.064 0.03 T/C -0.92 AC208079.3_FG001 No significant hits  

S9_24700051 9 24700051 6.70E-05 0.060 0.04 T/C -0.46 GRMZM2G348921 hypothetical protein  

S4_188328185 4 188328185 7.01E-05 0.062 0.02 T/C 0.62 GRMZM2G166218 B4FWB4_MAIZE Putative 

uncharacterized protein ; 

structural constituent of cell 

wall 

 

S4_238767598 4 238767598 7.17E-05 0.058 0.04 C/G -0.58 GRMZM2G027043 Transferase activity 

transferring phosphorus-

containing groups 

S4_31326 4 31326 8.59E-05 0.057 0.21 A/G -0.26 GRMZM2G397651  C5Y1U3_SORBI Putative 

uncharacterized protein 

S1_7301076 1 7301076 9.57E-05 0.059 0.02 A/C -0.92 GRMZM2G132019  calcium ion binding 

S1_248735637 1 248735637 1.09E-04 0.058 0.36 G/C -0.17 GRMZM2G383408 amino acid binding 
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SNP Name CHR BP P Value  R
2
 MA

F 

Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S4_238767388 4 238767388 1.09E-04 0.059 0.04 T/C -0.53 GRMZM2G027043 Transferase activity 

transferring phosphorus-

containing groups ; 

phosphatidate 

cytidylyltransferase 

Total R
2
                   

 
 

Major allele, minor allele; underlined bases are the resistance alleles, MAF stands for minor allele frequency, CHR stands for chromosome 

and Bp stands for base pair,R
2 
 proportion of phenotypic variance 
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Figure 4.7: Quantile-Quantile and Manhattan plots resulting from GWAS results for MCMV resistance in IMAS-AM 

panel in the second location in MCMV early.  

Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P < 3 × 10
−8

). The 

different colours indicate the 10 chromosomes of maize. 
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Figure 4. 8 : Quantile-Quantile and Manhattan plots resulting from GWAS results for MCMV resistance in IMAS-AM 

panel in the  second location in MCMV early. 

 Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P< 3 × 10
−8

). The 

different colours indicate the 10 chromosomes. 
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Table  4. 5 : Details of candidate genes, chromosomal position and SNPs associated with MCMV resistance identified 

through GWAS in the IMAS Association mapping panel in location 3_LOC15B 

 

SNP Name CHR BP P Value  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

MCMV_Early        

S1_45770852 1 45770852 4.69E-06 0.074 0.05 T/C -4E-01 GRMZM2G135456 protein binding 

S6_7038193 6 7038193 9.78E-06 0.069 0.04 G/A 6E-01 GRMZM2G127342  amino acid transport 

S2_193503880 2 193503880 2.04E-05 0.064 0.02 A/G 9E-01 GRMZM2G150503 mRNA sequence 

S4_31516850 4 31516850 2.68E-05 0.063 0.24 C/G 2E-01 GRMZM2G052670 vesicle-mediated transport ; 

vesicle docking involved in 

exocytosis 

S2_4465314 2 4465314 3.76E-05 0.058 0.04 A/G -1E-02 GRMZM2G076212 protein amino acid 

phosphorylation ; ATP binding  

; protein kinase activity 

S9_13482284 9 13482284 6.76E-05 0.059 0.02 A/G 6E-01 GRMZM2G109720 B4FDX0_MAIZE Putative 

uncharacterized protein; 

 hydrolase activity 

S5_173880205 5 173880205 7.06E-05 0.056 0.30 T/G 1E-01 GRMZM2G702026  B6UCM8_MAIZE Auxin 

response factor 1; response to 

hormone stimulus ; regulation 

of transcription DNA-

dependent  

S9_115889974 9 115889974 7.49E-05 0.054 0.07 G/A 4E-01 GRMZM2G473310 No significant hits  

S10_126687226 10 126687226 8.28E-05 0.053 0.04 T/C -4E-01 GRMZM2G437481  regulation of transcription 

S4_186950936 4 186950936 8.88E-05 0.064 0.05 A/G 1E-01 GRMZM2G357595 calcium ion binding ; 

grancalcin 

S4_186950973 4 186950973 8.88E-05 0.064 0.05 T/C 1E-01 GRMZM2G357596 calcium ion binding ; 

grancalcin 
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S5_19255759 5 19255759 9.32E-05 0.052 0.13 G/C 2E-01 GRMZM2G403218 hypothetical protein 

SNP Name CHR BP P Value  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S8_156371121 8 156371121 9.79E-05 0.064 0.05 A/C 3E-01 GRMZM2G073622  nucleic acid binding  

S3_2688675 3 2688675 1.02E-04 0.054 0.02 G/A -5E-01 GRMZM2G078839 proton-transporting two-sector 

ATPase complex catalytic 

domain 

S7_140897134 7 140897134 1.16E-04 0.054 0.04 G/C -1E-01 GRMZM2G013255 alpha-L-fucosidase activity 

S10_125545643 10 125545643 1.17E-04 0.052 0.02 T/G -8E-01 GRMZM2G180716  hydrolase activity hydrolyzing 

O-glycosyl compounds 

S4_218320936 4 218320936 1.22E-04 0.053 0.08 A/T 3E-01 GRMZM2G425005 No significant hits  

S10_125650552 10 125650552 1.33E-04 0.055 0.01 C/G -8E-01 GRMZM2G051852  nucleotide binding protein ; 

response to freezing; ice 

binding ; homoiothermy; 

protein phosphatase type 2A 

regulator activity 

S4_186951153 4 186951153 1.36E-04 0.050 0.06 T/G 2E-02 GRMZM2G357595 calcium ion binding ; 

grancalcin 

Total R
2
                   

MCMV_late         

S1_248615699 1 248615699 4.29E-06 0.069 0.28 C/T 1E-01 GRMZM2G129540 No significant hits  

S3_3516333 3 3516333 4.39E-06 0.083 0.01 T/C -8E-01 GRMZM2G386590 mRNA sequence; protein 

domain specific binding ; zinc 

ion binding; protein binding 

S1_92513543 1 92513543 1.28E-05 0.071 0.01 C/G -5E-01 GRMZM2G423886 Oxidation reduction ; NADP or 

NADPH binding ; FAD 

binding ; cation transmembrane 

transporter activity ; potassium 

ion transport ; flavin-containing 

monooxygenase activity; 

hypothetical protein  
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SNP Name CHR BP P Value  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S3_36304538 3 36304538 1.42E-05 0.062 0.16 T/C 3E-01 GRMZM2G472231 microtubule-based process; 

microtubule associated 

complex; microtubule motor 

activity  

S7_145217732 7 145217732 1.58E-05 0.072 0.07 C/T 6E-01 GRMZM2G114704 B8A3M1_MAIZE Putative 

uncharacterized protein 

S1_93267854 1 93267854 1.92E-05 0.065 0.12 G/A 3E-01 GRMZM2G365134 glycoprotein 

S3_223753291 3 223753291 2.05E-05 0.063 0.02 T/C 2E-01 GRMZM2G157616  microtubule motor activity; 

ATP binding protein 

S5_24861649 5 24861649 2.44E-05 0.061 0.04 A/C -2E-01 GRMZM2G073351 oxidation reduction; 

protochlorophyllide reductase 

activity 

S9_7701399 9 7701399 2.53E-05 0.062 0.07 A/G -3E-01 GRMZM2G152177  Putative uncharacterized 

protein 

S4_222475333 4 222475333 2.75E-05 0.063 0.04 A/G -9E-01 GRMZM2G088138 Putative uncharacterized 

protein 

S1_248615581 1 248615581 3.03E-05 0.068 0.24 T/C 2E-01 GRMZM2G129540 No significant hits  

S1_248615601 1 248615601 3.03E-05 0.068 0.24 C/G 2E-01 GRMZM2G129540 No significant hits  

S6_158297753 6 158297753 3.44E-05 0.063 0.06 A/C 3E-01 GRMZM2G143791 Microtubule-based process ; 

nucleosome assembly ; 

microtubule; cytoplasm; 

nucleus; GTP binding ; DNA 

binding; nucleosome 

S3_81746578 3 81746578 3.57E-05 0.060 0.05 A/C 3E-01 AC212769.3_FG004 No significant hits  

S6_161242446 6 161242446 3.57E-05 0.059 0.14 A/T 3E-01 GRMZM2G159404 transferase activity transferring 

hexosyl groups; metabolic 

process  
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SNP Name CHR BP P Value  R
2
 MAF Minor 

Allele 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of 

candidate gene 

S1_79706335 1 79706335 3.68E-05 0.057 0.02 C/G 1E+00 GRMZM2G044481 Putative uncharacterized 

protein; lyase activity ; 

metabolic process ; magnesium 

ion binding 

S4_1483289 4 1483289 3.76E-05 0.059 0.18 A/C 5E-02 GRMZM2G091839  B4FGM9_MAIZE Putative 

uncharacterized protein 

S8_165725307 8 165725307 4.33E-05 0.067 0.07 A/G -1E-02 GRMZM2G114046 C0PKR7_MAIZE Putative 

uncharacterized protein  

S3_31806308 3 31806308 4.37E-05 0.056 0.17 C/T 1E-01 GRMZM2G062650  NAM-related protein 1 ; 

regulation of transcription; 

kinase activity ; metabolic 

process ; ATP binding ; DNA 

binding  

S8_96649615 8 96649615 4.41E-05 0.061 0.02 T/C -5E-01 GRMZM2G112284 oxidoreductase activity; 

transition metal ion binding ; 

oxidation reduction; Putative 

uncharacterized protein 

Total R
2
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Table  4.6: Details of the MCMV disease resistance associated SNP markers identified by association studies across 

locations 

SNP Name CHR BP P Value  R
2
 MAF Min

or 

Alle

le 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of candidate 

gene 

MCMV_early         

S8_164752186 8 164752186 7.04E-06 0.067 0.346 T/A 0.061 GRMZM2G172032  Putative uncharacterized protein 

S6_154236713 6 154236713 1.95E-05 0.061 0.018 A/T 0.228 GRMZM2G390436  mRNA sequence; zinc ion binding 

; protein binding 

S1_79444916 1 79444916 2.64E-05 0.059 0.018 C/T 0.266 GRMZM2G396640 Putative uncharacterized protein 

S5_9655176 5 9655176 2.77E-05 0.061 0.141 A/C 0.010 GRMZM2G160611 C4J687_MAIZE Putative 

uncharacterized protein 

S7_131034673 7 131034673 2.97E-05 0.057 0.052 T/G 0.108 GRMZM2G031613  Putative uncharacterized protein 

S1_90223385 1 90223385 3.45E-05 0.059 0.126 A/C -0.029 GRMZM2G154487  Putative uncharacterized protein 

S8_101106033 8 101106033 3.96E-05 0.057 0.055 A/C 0.237 GRMZM2G152836   No significant hits 

S3_221901033 3 221901033 4.83E-05 0.058 0.335 C/T 0.039 GRMZM2G111113 type I hypersensitivity 

S7_145971011 7 145971011 5.06E-05 0.054 0.107 A/G 0.153 GRMZM2G146240  Putative uncharacterized protein 

S1_299981404 1 299981404 7.91E-05 0.061 0.001 C/A 0.226 GRMZM2G056916 C5WRW4_SORBI Putative 

uncharacterized protein  

S2_181546444 2 181546444 8.14E-05 0.053 0.202 A/G 0.061 GRMZM2G001750 C5XCT0_SORBI Putative 

uncharacterized protein ; catalytic 

activity  

S6_30912570 6 30912570 8.41E-05 0.059 0.086 T/C 0.071 GRMZM2G098226   No significant hits 

S9_112941602 9 112941602 8.55E-05 0.053 0.230 C/A 0.109 GRMZM2G080851  MAIZE Receptor protein kinase- 

S7_145974768 7 145974768 9.66E-05 0.051 0.094 T/G 0.154 GRMZM2G146173  Putative uncharacterized protein 

S2_196520809 2 196520809 9.70E-05 0.053 0.364 G/A -0.024 GRMZM2G108991  response to freezing ; ice binding 

; homoiothermy 

S2_196514169 2 196514169 1.00E-04 0.052 0.118 T/C 0.090 GRMZM2G108991 homoiothermy; ice binding; 

http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G172032_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G390436_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G031613_T02
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G154487_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G152836_T02
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G146240_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G098226_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G080851_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G146173_T01
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response to freezing 

SNP Name CHR BP P Value  R
2
 MAF Min

or 

Alle

le 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of candidate 

gene 

S3_165911594 3 165911594 1.03E-04 0.050 0.065 G/A 0.205 GRMZM2G177198 C5XFH0_SORBI Putative 

uncharacterized protein 

S3_226824468 3 226824468 1.06E-04 0.056 0.063 A/T -0.028 GRMZM2G071322 C5XN08_SORBI Putative 

uncharacterized protein  

S6_151455727 6 151455727 1.17E-04 0.050 0.024 T/C -0.216 GRMZM2G059306   No significant hits 

S5_81951856 5 81951856 1.35E-04 0.051 0.029 C/G -0.355 GRMZM5G812923   No significant hits 

Total R
2
                   

MCMV_late                 

S1_79444916 1 79444916 2.37E-06 0.073 0.018 C/T 0.259 GRMZM2G396640_  No significant hits  

S5_11490669 5 11490669 4.96E-06 0.069 0.398 C/T -0.047 GRMZM2G034122  Tetratricopeptide repeat protein  

S6_28146715 6 28146715 2.31E-05 0.063 0.194 G/A 0.038 GRMZM2G020091 Putative uncharacterized protein; 

Senescence-associated protein; 

integral to membrane 

S2_144628540 2 144628540 3.41E-05 0.057 0.016 G/C -0.219 GRMZM2G403562 mRNA sequence, intracellular 

signaling pathway, zinc ion 

binding , protein binding 

S8_166105180 8 166105180 3.91E-05 0.064 0.110 C/T 0.118 GRMZM2G032900 Putative uncharacterized protein ; 

Hypothetical protein 

S4_122345173 4 122345173 3.93E-05 0.056 0.029 A/G -0.127 GRMZM2G081359  catalytic activity 

S2_63374956 2 63374956 4.87E-05 0.056 0.291 T/C 0.107 GRMZM2G087059 mRNA sequence , zinc ion 

binding, proteolysis,  regulation of 

transcription DNA-dependent , 

metallocarboxypeptidase activity, 

transcription factor , DNA binding 

S8_166105182 8 166105182 6.24E-05 0.061 0.110 A/C 0.117 GRMZM2G032899 Putative uncharacterized protein ; 

Hypothetical protein 

http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G059306_T02
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM5G812923_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G396640_T02
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S9_112885236 9 112885236 6.36E-05 0.056 0.139 G/A 0.156 GRMZM2G161760  hypothetical protein 

SNP Name CHR BP P Value  R
2
 MAF Min

or 

Alle

le 

Minor 

Allele 

Effect 

Putative candidate 

gene 

Predicted function of candidate 

gene 

S8_171609138 8 171609138 1.12E-04 0.052 0.175 A/G -0.002 GRMZM2G132303 B6TPB7_MAIZE DNA-3-

methyladenine glycosylase ; 

catalytic activity |; DNA repair 

S1_273099504 1 273099504 9.23E-05 0.053 0.170 T/C 0.025 GRMZM2G396114 Putative uncharacterized protein; 

sequence-specific DNA binding ; 

transcription regulator activity ; 

regulation of transcription DNA-

dependent ;  transcription factor 

activity 

S1_16777521 1 16777521 9.84E-05 0.050 0.120 A/C 0.095 GRMZM2G343157  motif family protein 

S2_178134775 2 178134775 1.19E-04 0.052 0.021 G/A -0.094 GRMZM2G002915 C0PNY4_MAIZE Putative 

uncharacterized protein; 

transcription factor activity; DNA 

binding 

S9_122920503 9 122920503 1.41E-04 0.052 0.037 A/G 0.169 GRMZM2G359304 Putative uncharacterized protein 

S8_17872972 8 17872972 1.46E-04 0.054 0.034 T/C -0.340 GRMZM2G080722 cell redox homeostasis ; protein 

disulfide oxidoreductase activity ; 

electron carrier activity 

S8_17872971 8 17872971 1.47E-04 0.054 0.034 A/C -0.340 GRMZM2G080723 cell redox homeostasis ; protein 

disulfide oxidoreductase activity ; 

electron carrier activity 

S5_22357666 5 22357666 1.54E-04 0.048 0.024 A/T 0.115 GRMZM2G701279   Transcribed locus 

S6_133287948 6 133287948 1.58E-04 0.049 0.063 C/G 0.131 GRMZM2G020091 B4FMK4_MAIZE Catalytic/ 

hydrolase 

Total R
2
                   

 

 

http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G343157_T01
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Figure 4.9: Quantile-Quantile and Manhattan plots resulting from GWAS results for MCMV resistance in IMAS-AM 

panel in the third location in MCMV early.  

Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P < 3 × 10
−8

). The 

different colours indicate the 10 chromosomes of maize 
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Figure 4.10: Quantile-Quantile and Manhattan plots resulting from GWAS results for MCMV resistance in IMAS-AM 

panel in LOC15B for MCMV late.  

Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P < 3 × 10
−8

). The 

different colours indicate the 10 chromosomes of maize 
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binding; cation transmembrane transporter activity; potassium ion transport; flavin-

containing monooxygenase activity) explaining between 6.1 and 7.1% of the phenotypic 

variance It includes, GRMZM2G423886, GRMZM2G073351, and, GRMZM2G112284 

(Table 4.5). 

Calcium (Ca
2+

) acts as an important second messenger in plant cells. Elevation in calcium 

concentration in plant cells is an early event upon pathogen challenge and is believed to 

be caused by Ca
2+ 

influx into cytosol (Lecourieux et al., 2006; Palukaitis and Carr, 2008; 

Zhang et al., 2014). In line with the above observation, we identified five SNPs, 3 SNPs 

of them were annotated in loc15B including S4_186950936 (GRMZM2G357595), 

S4_186950973 (GRMZM2G357596), S4_186951153 (GRMZM2G357595 (Table 4.5) 

that encode calcium ion binding proteins, and two SNPs at the late stage including 

GRMZM2G132019 in chromosome 1 at Loc14Bfld (Table 4.4), and GRMZM2G065012 

in Loc14B at chromosome 2 (Table 4.3). 

Ca
2+ 

signaling plays both positive and negative roles in plant-pathogen interactions. The 

complexity of Ca
2+

signaling may be coordinated by other regulatory pathways including 

the ubiquitin/proteasome system(UPS) to reach effective and balanced plant defense 

responses. We identified 4 SNPs associated with UPS in Loc14B MCMV late in 

chromosome 5 encoding genes for ubiquitin protein ligase system; GRMZM2G071484, 

GRMZM2G071485, GRMZM2G071486, and GRMZM2G071487 (Table 4.3). 

Post-translational modification of proteins by reversible phosphorylation is a key process 

regulating many functions in plants, including defense responses induced by elicitors 

(Lecourieux et al., 2006). For instance, the association identified at the early stage of 
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MCMV infection including two genes at loc14Bfld; GRMZM2G157034_S6_168356381 

at chromosome 6 identified at Loc14Bfld encoding protein phosphatase type 2A regulator 

activity; signal transduction; notchless-like protein and 

GRMZM2G301647_S4_175275509 (Table 4.4) associated in chromosome 4 encoding 

protein amino acid phosphorylation; ATP binding; protein serine/threonine kinase 

activity; protein kinase activity. The gene GRMZM2G076212_S2_4465314 at Loc15B 

(MCMV early) at chromosome 2 encoding genes for protein amino acid phosphorylation; 

ATP binding; protein serine/threonine kinase activity; protein kinase activity was also 

identified. At chromosome 10, one gene GRMZM2G051852_ S10_125650552 which 

explains 5.5% of the total phenotypic variance was identified at Loc15B (MCMV early) 

encoding gene protein phosphatase type 2A complex (Table 4.5). 

A VQ motif family protein (AC207043.3_FG002_S5_86013655) was identified at 

chromosome 5 in Loc14B that explains 6.2% of the phenotypic variance (Table 4.3).  

In each location analysis, 12 candidate genes were related to nucleic acid binding (DNA 

binding and RNA binding). Two genes were discovered in loc14B (MCMV early). One 

gene in chromosome 1 (GRMZM2G370026) encoding genes for transcription factor 

activity; regulation of transcription DNA-dependent; sequence-specific DNA binding; 

protein dimerization activity that explains 5.9% of the phenotypic variance. The other 

gene was also annotated in chromosome 1, (GRMZM2G181254) for putative 

uncharacterized protein; hypothetical protein; regulation of transcription DNA-

dependent; DNA binding explaining 5.3% of the variance was also identified in this study 

(Table 4.3). 
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Four putative genes were identified in the early stage in loc14Bfld. In chromosome 7 one 

gene (GRMZM2G171967) was identified for zinc ion binding, protein binding, and 

RNA-binding protein. This SNP was detected twice at the early stage explaining 6% and 

6.6% of the phenotypic variance (Table 4.4). In chromosome 1, GRMZM2G396114 

encoding genes for sequence-specific DNA binding; transcription regulator activity; 

regulation of transcription DNA-dependent; transcription factor activity ; homeodomain 

protein JUBEL1 explaining 6.5% of phenotypic variance (Table 4.4). 

 In chromosome 6, two genes were detected  AC194965.4_FG004 and  

AC194965.4_FG005 encoding genes for Sequence-specific DNA binding; zinc ion 

binding; regulation of transcription DNA-dependent; transcription factor activity 

explaining 6.9% of the variance. Finally, GRMZM2G062218 was detected in 

chromosome 3 responsible for DNA binding; DNA-directed RNA polymerase II core 

complex; transcription from RNA polymerase II promoter explaining 5.5% of the total 

variance (Table 4.4). 

Three SNPs were associated at loc15B in the early stage; GRMZM2G702026, 

GRMZM2G073622, GRMZM2G051852 in chromosome 5, chromosome 8 and 

chromosome 10 and explains 5.5%, 6.4%, and 5.5% respectively. In MCMV late, gene 

S3_31806308 GRMZM2G062650 for DNA binding was also identified at chromosome 3 

(Table 4.5). Another gene in chromosome 6, GRMZM2G143791 was also detected for 

microtubule-based process; nucleosome assembly; microtubule; cytoplasm; nucleus; GTP 

binding; DNA binding and nucleosome explaining 6.3% of the variance (Table 4.5). 
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Those candidate genes with annotated functions indicating possible catalytic activity,  

transcription factors, and ice binding/response to freezing/homoeothermy, zinc ion 

binding, nucleotide binding protein, and ATP and GTP binding proteins were also 

detected (Table 4.3 to Table 4.6). 

The Manhattan plots (Figures 4.11b and 4.12b ) indicated that in combined analyis a total 

of 40 loci reached the genome-wide significance threshold of P < 3 × 10
−8

) with the total 

variance of 
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Figure 4.11: Quantile- quantile plots and Manhattan plots of a mixed linear model for MCMV resistance in IMAS-AM panel 

in combined GWAS analysis for MCMV early. 

 Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P < 3 × 10
−8

). The different 

colours indicate the 10 chromosomes of maize. 
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Figure 4.12: Quantile- quantile plots and Manhattan plots of a mixed linear model for MCMV resistance in IMAS-AM 

panel in combined GWAS analysis for MCMV late. 

Plot above red horizontal line showed the genome-wide significance with stringent threshold of (P < 3 × 10
−8

). The 

different colours indicate the 10 chromosomes of maize. 
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31% and 26% in MCMV early and MCMV late respectively (Table 4.6 , and Figures 

4.11b and 4.12b ). These SNPs are located within or adjacent to the candidate geness 

involved in plant resistance. 

These significantly associated SNPs individually explained between 4.8% in MCMV late 

to 7.2% in MCMV late
 
of the total genotypic variance. Each of these QTLs defined SNPs 

used can be regarded as relatively minor QTL since each explained <10% of the 

genotypic variance (Table 8). The Q-Q plots were generated to detect the inflation of 

statistics due to population stratification (Figures 4.11a and 4.12a). There were two genes 

in combined analysis (GRMZM2G108991, GRMZM2G108991) encoding response to 

freezing proteins and ice binding (GRMZM2G051852) putative candidate gene which is 

a type of antifreeze protein. In combined association analysis genes for structural motifs 

were identified also including GRMZM2G343157_S1_16777521 at chromosome 1 

encoding genes for motif family protein explaining 5% of the total variance. One gene 

(GRMZM2G034122) tetratricopeptide repeat protein was also detected in chromosome 5 

that encodes a residue for structural motif or domains. We also detected maize receptor 

protein kinase (GRMZM2G080851) among these genes which is known to be involved in 

plant disease response. We identified a gene (GRMZM2G111113) which encode for type 

1 hypersensitivity genes in chromosome 3. 

http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G343157_T01
http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G080851_T01


 

4.6 Validation of GWAS loci through linkage mapping 

To validate the effects of the detected QTL, three bi-parental populations were used. The 

number of progenies, SNPs, map length and average genetic distance between SNPs for 

each population are listed in Table 4.7. Using the software of QTL IciMapping version 4, 

linkage mapping was done and quantitative trait loci detected in all three DH populations 

are summarized in Tables 4.8 to 4.10 and Figures 4.13 to 4.19. The number of QTL 

associated with MCMV resistance ranged from one to five in early  stage with the total 

phenotypic variance explained ranging from 23.77% in pop3, to 70.94% in pop1 for  

combined analysis (Table 4.8 and 4.9). In pop3, three QTL were detected in chromosome 

3, chromosome 4 and chromosome 7 individually explaining 6%, 10% and 9% 

respectively of the total phenotypic variance in MCMV early. During MCMV late, three 

QTL were also detected in chromosomes 7, 1 and 8 accounting 9%, 8.8% and 4.8% of the 

phenotypic variance, respectively (Table 4.8).  In each location analysis, two QTL were 

detected in pop1 during 15A in chromosomes 3 and 5 explaining 8.7% and 7.86% 

respectively and cumulatively account for 19.87% of the variance (Table 4.9). Two QTL 

were also detected at early stage of MCMV infection during 15B at chromosome 1 and 3 

each accounting 3.5 and 53.9% respectively and together explained 58.88% of the 

phenotypic variance. Two QTL were also detected during 16A explaining 60.13% of the 

variance. The number of QTLs ranged from two and three in MCMV late in pop1 ranged 

from 22.3% in 15A to 60.59% in 16A (Table 4.9). In pop2, two QTL were identified 

during 16A in Chromosome 3 both in MCMV late and MCMV late explaining 33% and 

20.3% respectively. During 16B, two QTL were also detected in chromosome 5 

cumulatively explaining 20% of the phenotypic variation (Table 4.10).  
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In pop1, five QTL were identified in chromosomes 1, 3, 5,7 and 9  with phenotypic 

variance explained (PVE) ranged between 2.4% and 59%. In chromosome 3, a QTl 

was detected in pop2 that explained 27.42% of the total phenotypic variance.   On 

the other hand, the number of QTL associated with MCMV resistance at a later 

stage varied from 1 to 5 with total phenotypic variance ranging from 15.94% in 

pop2 and 68.51% in pop1. The proportion of phenotypic variance explained by each 

QTL ranged from 4.81% to 10.37% in pop3 (Table 4.8), 2.21% to 49.3 % in pop1 

(Table 4.9) while 16.8% to 28.1 % in pop2 (Table 4.10). Interestingly, most QTL  

detected in chromosome 3 in the DH populations had the largest LOD score and 

PVE relative to the other detected QTL, with the only exception in DHPop3. This 

was consistent with the association mapping results, where QTLs located in 

chromosome 3 was identified as well. Thus, integration of linkage mapping and 

association mapping proved to be a powerful tool for increasing statistical power, 

and improving the mapping resolution.  

 
Table  4. 7: Number of markers and total map distance used in each population for 

QTL analysis 

Population 

Number of 

progenies 

Number  

of SNPs 

Map 

length 

Average distance 

(cM) 

CML550 X CML504 - DH pop1 219 931 2666.08 2.86 

CML550 X CML511 - DH pop2 111 929 2922.24 3.14 

CML550 X CML494 - DH pop3 229 940 2706.95 2.88 



 

Table  4. 8: Genetic characteristics of detected QTLs for MCMV resistance based on multi-location data in 

DHPOP3_CML 494 X CML 550 

 

Trait 

Name   

Chr. Position 

cM   

QTL confidence interval   LOD                     PVE 

(%)  

Add     RSq FAV 

ALLELE 
Left Marker Right Marker 

 MCMV 

early   

3 44 S3_220704255   S3_220454010  3.7557 5.9787 0.0305 23.776 CML494 

 4 58 S4_237313660 S4_236084224 5.4989 10.3723 0.0406   

  7 258 S7_4583708 S7_3665176 5.6138 9.0386 0.0385     

MCMV 

late 

7 258 S7_4583708                                     S7_3665176  5.6138 9.0386 0.0385 17.2369 CML494 

 

1 107 S1_292891540  S1_290856467 5.4465 8.7971 0.0282  CML494 

  8 305 S8_105674102    S8_108569549  3.1412 4.8062 -0.0208   CML550 

 
Chr., chromosome, LOD, logarithm of odd , PVE, phenotypic variation explained., Add, additive effect, R Sq., total phenotypic variance 

explained by SNPs, Fav allele, favourable allele 
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Table  4. 9: Genetic characteristics of detected QTLs for MCMV resistance in  each and across locations in 

CML504XCML550 

 

 

Environment 
Trait 

Name   
Chr. 

Position 

cM   

QTL confidence interval   

LOD                     

PVE 

(%)  
Add   

  

RSq 
FAV ALLELE 

Left Marker Right Marker 

15A  MCMV 

Early    

3 296 S3_44062395                         S3_57477835   5.10 8.71 -0.04 19.87 CML550 

 5 3 S5_217019076                       S5_209467974 4.44 7.86 -0.04   CML 550 

   MCMV 

Late  

1 361 S1_27508151                       S1_26684687    5.71 5.24 -0.04 22.29 CML550 

  1 379 S1_18838432                       S1_17383245   12.28 12.11 0.06  CML504 

    3 278 S3_31454989                           S3_32029642  3.83 3.48 -0.03   CML 550 

15B  MCMV 

Early    

1 49 S1_280222332                         S1_279475459 4.01 3.48 -0.05 58.88 CML 550 

 3 368 S3_82056859                        S3_69321644      40.62 53.86 -0.20  CML 550 

   MCMV 

Late  

1 295 S1_68932245                        S1_67649374    3.09 3.31 0.07 53.07 CML 504 

  3 368 S3_82056859                        S3_69321644 32.27 48.07 -0.25   CML 550 

16A  MCMV 

Early    

1 395 S1_13643293                         S1_11392198     5.09 4.89 0.08 60.13 CML 504 

   3 367 S3_82056859                         S3_69321644     39.59 56.11 -0.26  CML 550 

   MCMV 

Late  

2 296 S2_147303026                        S2_147618156      5.55 7.19 0.08 60.59 CML 504 

    5 121 S5_183126233                       S5_161914468 3.49 4.72 -0.07   CML 550 

Across 

locations 

 MCMV 

Early    

1 405 S1_11761595                      S1_10436215  3.65 2.45 0.03 70.94 CML 504 

  3 368 S3_82056859                        S3_69321644   50.56 59.10 -0.16  CML 550 

  5 1 S5_217311480                          S5_217019076    3.47 2.33 -0.03  CML 550 

  7 372 S7_3484533                            S7_726020   4.02 2.86 0.03  CML 504 

   9 185 S9_27637796   S9_46387092    5.10 3.49 0.04  CML 504 

   MCMV 

Late  

1 284 S1_79132340      S1_77032917 4.46 2.90 0.04 68.51 CML 504 
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  1 413 S1_9812096   S1_7996864   3.38 2.21 0.03  CML 504 

  2 249 S2_184225682      S2_183394529      6.98 4.76 -0.05  CML 550 

  2 296 S2_147303026       S2_147618156  15.04 10.93 0.07  CML 504 

    3 368 S3_82056859                       S3_69321644   46.55 49.30 -0.15   CML 550 

 

 

Table  4. 10: Genetic characteristics of detected QTLs for MCMV resistance in individual and across locations in 

CML511XCML550 

 

    

QTL confidence interval 

     
Environmen

t 
Trait   Chr 

  

Positio

n cM   

Left Marker  Right Marker LOD                     
PVE 

(%)  
Add   R Sq. 

Fav 

parent 

16A 

MCMV 

Early 

3 237 S3_114676781 S3_85659716 9.63 33.76 -0.16 
33.04 

CML550 

3 237 S3_114676781 S3_85659716 10.32 35.65 -0.3 CML550 

MCMV 

Late 

3 220 S3_131330224 S3_143487801 5.48 21.1 -0.17 
20.28 

CML550 

3 220 S3_131330224 S3_143487801 5.44 21.08 -0.31 CML550 

16B 
MCMV 

Early 

5 197 S5_169173894 S5_170160421 3.17 12.84 -0.08 
20.08 

CML550 

5 197 S5_169173894 S5_170160421 3.17 12.87 -0.15 CML550 

ACROSS  

MCMV 

Early 
3 233 S3_121560312 S3_123784309 7.72 28.09 -0.13 27.42 CML550 

MCMV 

Late 
3 235 S3_125614273 S3_116124132 6.7 21.01 -0.12 28.81 CML550 

 



 

Chr., chromosome, LOD, logarithm of odd , PVE, phenotypic variation explained., Add, additive 

effect, R Sq, total phenotypic variance explained by SNPs, Fav allele, favourable allele 

 

 

Figure 4.13: QTL associated with MCMV resistance for MCMV early in 

CML504XCML550 in season 15A 
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Figure 4.14: QTL associated with MCMV resistance for MCMV early in 

CML550XCML504 during season 15B 
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Figure 4.15: QTL associated with MCMV resistance based on multi-location data  

for MCMV early in CML550XCML504 
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Figure 4.16: QTL associated with MCMV resistance based on multi-location data  

for MCMV late in CML550XCML504 
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Figure 4.17: QTL associated with MCMV resistance for MCMV early in 

CML511XCML550 in 16A 

 

 

 

Figure 4.18: QTL associated with MCMV resistance based on multi-location data  

for MCMV early in CML511XCML550 
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Figure 4.19: QTL associated with MCMV resistance based on multi-location data  

for MCMV late in CML511XCML550 
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CHAPTER FIVE 

DISCUSSION 

 

Diseases caused by MCMV are one of the most destructive diseases of maize worldwide 

due to its ability to interact with any Potyvirus leading to maize lethal necrosis. New 

breeding strategies such as MAS and GS along with high-throughput genotyping 

platforms can help to provide breeders with tools necessary to introgress resistance into 

elite lines. The identification of the QTL associated with MCMV resistance is an 

important step to understanding the genetics of the resistance mechanism. The genetics of 

MCMV is not much understood. Identifying, validating and deploying molecular markers 

associated with MCMV resistance as well as MLN resistance can increase the efficacy of 

developing MLN resistant tropical and subtropical maize germplasm. In this study, DH 

populations and IMAS association panel were evaluated to identify and validate genomic 

regions associated with resistance to MCMV. 

In genome-wide studies, the power of QTL detection depends on sample size, genetic 

architecture of the trait and the heritability of the trait. Therefore, precision phenotyping 

of the trait is important (Gowda et al., 2015). We evaluated a wide array of tropical and 

subtropical maize germplasm under artificial inoculation to obtain the phenotypic data for 

three different seasons.   

The distribution of lines in each and combined populations for MCMV (Figures 4.1, 4.2 

and 4.3) suggested that MCMV resistance is polygenic in nature. Earlier studies on the 

inheritance of resistance to MCMV (Jones et al., 2018) also confirmed the polygenic 

control. The moderate to high heritability and significant variance components observed 
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throughout the populations revealed the high quality of phenotypic data, and the variation 

was due to the genetic factors as well as the potential of this panel for precisely mapping 

MCMV resistance gene through association mapping indicating good prospects of 

resistance breeding against MCMV in tropical maize germplasm. 

This complies well with the previous studies conducted in biparental populations for 

SCMV (Melchinger et al., 1998; Xia et al., 1999), MCMV (Jones et al., 2018) and MLN 

(Gowda et al., 2018) and association panels for SCMV (Gustafson et al., 2018; Leng et 

al., 2015) and MLN (Gowda et al., 2015) 

5.1. Population structure  

Population structure of the association panel can result in false associations between 

markers and traits and therefore should be evaluated for proper analysis (Liu et al., 2016). 

Principal component analysis with the SNP markers was used to determine the level of 

stratification in the panel. To minimize spurious correlation and false positive 

associations attributable to genetic non-independence or genome-wide linkage 

disequilibrium, the marker-trait association analysis was performed by unifying 

significant population structure information (contained in matrix Q) and a pairwise 

relative kinship relationships among lines (contained in K matrix) into statistical model 

(Liu et al., 2016; Yu et al., 2006). A moderate level of structure was observed via PCA 

analysis and is likely due to multiple maize breeding programs.  

5.2. Genetic basis revealed by GWAS and putative candidate genes  

The approach of association mapping provides great opportunities to use historical 

recombination events for the genetic dissection of complex traits, especially for those 
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species with rapid LD decay (Li et al., 2012; Lu et al., 2009; Yan et al., 2009). GWAS 

are performed to identify genomic loci associated with a trait and to determine its genetic 

architecture (Korte and Farlow, 2013). Knowledge about the number of loci controlling a 

trait is not only important to determine genetic architecture but is also useful to design an 

effective breeding strategy. However , a major concern in GWAS is the requirement of 

high-throughput genotyping and precision phenotyping (Gowda et al., 2015). The GBS 

approach used here for genotyping is very reliable, efficient, rapid and tremendously 

high-throughput (Elshire et al., 2011).  

We used the publicly available B73 maize genome sequence to identify genes that either 

included or neighboring SNPs that significantly associate with MCMV resistance. SNPs 

significantly associated with MCMV are found throughout the genome in across and 

individual location analyses. All identified SNPs are seeming to be having minor effect 

which showed by the phenotypic variance explained by each SNPs for MCMV. 

 Remarkably, most of the genes identified were predicted to function in plant defense 

pathways. 

Plants have developed numerous approaches to resist infection by viruses. On the other 

hand, in many instances viruses have evolved to overcome these various resistance 

responses and barriers. The extent to which viruses can overcome some or all of these 

responses and barriers determines the extent to which they are able to colonize plants of a 

given genotype or species.  Resistance against plant viruses occurs at different levels by 

various mechanisms including non-host resistance (NHR), hypersensitive response (HR), 

systemic acquired resistance (SAR) and R-gene mediated resistance. 
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Plants depend on innate immune systems to defend themselves against potentially 

infectious pathogens that grow epiphytically on their surfaces (Ma and Berkowitz, 2007). 

No acquired immune system is known for plants and they lack a circulatory system. 

However, large repertoires of immune receptors that mediate local responses help trigger 

systemic defense effectively protecting plants from pathogen invasion (Chisholm et al., 

2006). The plant immune system is comprised of two definable layers. The first is 

expressed principally at the cell surface and involves perception of pathogen-associated 

molecular patterns (PAMPs). PAMPs are microbial molecules that are highly conserved 

throughout whole classes of microbes and are essential for microbial life and therefore 

difficult to dispense with. For example, lipopolysaccharide (LPS), a major component of 

the outer membrane of Gram-negative bacteria, and flagellin protein that forms part of 

the bacterial motility organ, act as PAMPs in animals and plants. Perception of PAMPs is 

mediated by cognate pattern-recognition receptors (PRRs)(Mandadi and Scholthof, 

2013). In animals, PRRs of the Toll-like receptor (TLR) family stimulate inflammatory 

responses in innate immunity. These receptors are single transmembrane proteins 

containing an extracellular leucine-rich repeat (LRR) domain and an intracellular tail 

interacting with signalling proteins.  

In plants, PAMPs are also recognized by LRR containing transmembrane receptors that 

trigger a plethora of immune responses including RNA silencing, the generation of 

reactive oxygen species (ROS), nitric oxide, the plant stress hormone ethylene, activation 

of a mitogen- activated protein kinase cascade as well as changes in gene expression 

(Ronde et al., 2014). Among those genes that are upregulated after PAMP perception is a 

high proportion that code for receptors potentially involved in immunity, thereby 
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probably priming the host for microbial attack. This pre-invasive PAMP-triggered 

immunity leads to dramatic cellular reprogramming and the production of antimicrobial 

compounds, callose deposition and cell wall thickening (Chisholm et al., 2006). 

In plants, perception of pathogen-associated molecular patterns at the surface is the first 

line of defense in cellular immunity (Palukaitis and Carr, 2008; Robatzek, 2007). 

RNA interference is a host response triggered by double stranded (ds) RNA. These 

molecules thus act as MAMP/PAMP and which RNAi can be regarded as PAMP 

triggered immunity (PTI). 

Reactive oxygen species (ROS) have several roles during the HR, but from the signalling 

point of view, perhaps two are the most important. Firstly, the oxidative burst activates 

Ca
2+

 ion influx across the plasma membrane via cyclic nucleotide gated channels, in 

addition to mobilization of Ca
2+ 

ions from intracellular stores (Palukaitis and Carr, 2008). 

The cytoplasmic domains of the NADPH oxidase proteins have ‘EF-hand’ motifs, 

characteristic of proteins regulated by Ca
2+

 ion levels. This permits changes in Ca
2+

 flux 

to function both upstream and downstream of ROS production, resulting in a positive 

feedback on ROS production and, in concert with nitric oxide (NO), helping to drive cell 

death in the HR. 

The oxidative burst, which occurs in cells in the immediate vicinity of the infection site, 

is due predominantly to the activation of NADPH oxidase associated with the plasma 

membrane. In a gene-for-gene interaction, the burst is biphasic, with an initial small burst 

(probably wound or MAMP-induced), and followed later by a sustained burst that is often 

associated with the onset of host cell death. Genes with predicted oxidoreductase, 
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transmembrane transport, or zinc ion binding functions that can be necessary for redox 

reactions might also be involved in plant disease defense. Systemic acquired resistance 

that serves as a defense mechanism in many plants has been found to be regulated by 

redox conditions (Mandadi and Scholthof, 2013). In line with the above observation 

many SNPs encoding oxidation reduction genes were discovered.  

Ca
2+ 

transients have been observed in both compatible and incompatible plant-pathogen 

interactions. Changes in cytosolic Ca
2+ 

concentration had been monitored in Nicotiana 

plumbaginifolia cells following treatment of cryptogein, an elicitor secreted by oomycete 

Phytophthora cryptogea (Lecourieux, 2002). Changes in Ca
2+

 concentration had also 

been detected during effector-triggered immunity (ETI), specifically in the incompatible 

interactions between Pseudomonas syringae pv. tomato (containing avrRpm1) and RPM1 

in Arabidopsis (Grant et al., 2000). In line with the above observation we identified 

candidate genes that encode calcium ion binding proteins in this study.  

Post-translational modification of proteins by reversible phosphorylation is a key process 

regulating many functions in plants, including defense responses induced by elicitors. 

Modifications of the phosphorylation status of proteins have often been reported during 

elicitor treatment (Lecourieux, 2002; Lecourieux et al., 2006). In several plant cell–

elicitor systems, phosphorylation events were described both upstream and downstream 

of the elicitor-induced Ca2+ influx (País et al., 2009). Candidate genes with putative 

protein kinase or protein serine/threonine kinase activity were also identified. Protein 

kinases play a central role in complex signalling interactions during the perception of 

pathogens and consequent activation of defense responses (Romeis, 2001). Activation of 

defense-related protein phosphorylation cascades leads to oxidative burst and localized 
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cell death, therefore, upregulation of potential negative modulators by pathogens may be 

a protective mechanism. For instance, the association identified at the early stage of 

MCMV infection including two genes at loc14Bfld; GRMZM2G157034at chromosome 6 

identified at Loc14Bfld encoding protein phosphatase type 2A regulator activity ; signal 

transduction  ; notchless-like protein and GRMZM2G301647associated in chromosome 4 

encoding protein amino acid phosphorylation ; ATP binding ; protein serine/threonine 

kinase activity ; protein kinase activity (Table 4.5). The gene GRMZM2G076212at 

Loc15B (MCMV early) at chromosome 2 encoding genes for protein amino acid 

phosphorylation; ATP binding; protein serine/threonine kinase activity; protein kinase 

activity was also identified. At chromosome 10 one gene GRMZM2G051852which 

explains 5.5% of the total phenotypic variance was identified at Loc15B (MCMV early) 

encoding gene protein phosphatase type 2A complex. 

The association on chromosome 9 contained a candidate gene related to plant defense 

which encoded inositol-tetrakisphosphate 1-kinase 3; inositol tetrakisphosphate 1-kinase 

activity ; inositol-134-trisphosphate 5/6-kinase activity ; inositol trisphosphate metabolic 

process ; intracellular ; ATP binding ; magnesium ion binding ; inositol-tetrakisphosphate 

1-kinase 3 (GRMZM2G167957). Inositol phosphate kinase is a crucial component of 

many signaling pathways by acting through localized modulation of inositol phosphate 

levels which is important for phytophthora pathogen infection in plants (Lu et al., 2013). 

A large number of SNPs were adjacent to candidate genes annotated as having GTPase or 

ATP binding functions. In tomato, two R genes products were found carrying activities of 

ATPase (Tameling, 2006). Strikingly, the nucleotide-binding site of most plant R genes 

contains three motifs necessary for interaction with other ATP/GTP-binding proteins 
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(Soosaar et al., 2005). Twelve candidate genes predicted to have nucleic acid binding 

ability might indirectly contribute to plant disease resistance, either as transcription 

factors or through other signal transduction functions.  

There were SNPs adjacent to candidate genes annotated as a transcription factor and/or 

regulation of transcription and translation initiation factor and/or translation initiation 

factor activity (GRMZM2G180836) in chromosome 9 loc14fld (MCMV late) that takes 

part in plant resistance to a variety of pathogens. In Arabidopsis, two basic leucine-zipper 

transcription factors that are essential for triggering systemic plant defense responses 

were identified (Després et al., 2000). Mutants of eIF4E, a member of translation 

initiation factor 4F, have been shown to enhance plant resistance to viral infection 

(Hashimoto et al., 2016). 

Intracellular trafficking of vesicles is also a potent target for pathogen-produced effector 

proteins and compounds. For example, Brefeldin A (BFA), a compound from the fungus 

Alternaria carthami, promotes plant disease through interference in the formation of 

Golgi-derived vesicles (Staehelin and Driouich, 1997). Some evidence suggests that 

powdery mildew fungi manipulate the host vesicle trafficking system to establish its 

haustorial feeding structure by targeting the plant-specific MLO protein (Consonni et al., 

2006)). In line with above observation, we identified a gene GRMZM2G052670 in 

chromosome 4 in Loc15B at   MCMV early explaining 6.3% of phenotypic variance. 

This gene is involved in vesicle-mediated transport and vesicle docking involved in 

exocytosis. 
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Protein degradation mediated by ubiquitin has also been found to be involved in plant 

disease resistance (Soosaar et al., 2005). In this study, four SNPs were found to be 

adjacent to candidate genes that have an annotated function of ubiquitin-protein ligase 

activity.  

Finally, candidate genes annotated as having ice-binding functions were identified in this 

study. In combined analysis, there were 2 genes (GRMZM2G108991, 

GRMZM2G108991) encoding response to freezing proteins and ice binding 

(GRMZM2G051852) putative candidate gene were identified in this study. . There is 

evidence that these types of antifreeze proteins are similar to endochitinases, endo-β-l,3-

glucanases, and thaumatin-like proteins, which are all pathogenesis-related proteins and 

may play a direct role in plant defense (Griffith and Yaish, 2004; Hon et al., 1993). One 

gene (GRMZM2G034122) tetratricopeptide repeat protein was detected in chromosome 5 

that encodes a residue for structural motif or domains that facilitate protein function and 

protein-protein interactions. Viruses utilize these motifs to enter into the host, interact 

with cellular proteins, or egress from host cells (Sobhy and Haitham, 2016). We also 

detected maize receptor protein kinase (GRMZM2G080851) among these genes which is 

known to be involved in plant disease response. R genes mediate resistance against plant 

viruses and are well documented in several crop plants. R genes express complete 

resistance in the form of hypersensitive response by which all cells are killed by 

programmed cell death (Ronde et al., 2014). In line with this observation, we identified 

type I hypersensitivity (GRMZM2G111113) genes at chromosome 3 which is directly 

involved in hypersensitive reaction (Table 4.6). This type of genes are pre-dominant type 

of NHR which include thickening of the cell wall and secondary metabolite production. 

http://www.plantgdb.org/ZmGDB/cgi-bin/findRecord.pl?id=GRMZM2G080851_T01
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Necrotic lesion were observed at an early stage of disease infection which suggests that  

pathogen had overcome type 1 NHR and these genes are directly involved in plant 

resistance against MCMV virus.  

Quantitative resistance to disease has been hypothesized to comprise a large range of 

mechanisms and multiple pathways, which agrees with the observations from this and 

other studies (Cao et al., 2017; Chen et al., 2015; Gowda et al., 2015; Kump et al., 2011; 

Mahuku et al., 2016). Confirmation of the roles and functions of these candidate genes 

will be necessary, which will further our understanding of how genes act in resistance to 

MCMV in maize and, more generally, improve our knowledge of the genetic mechanisms 

underlying quantitative resistance to viruses in higher plants. 

5.3.  Role of bi-parental QTL mapping in validating GWAS loci and GBS SNP 

filtering 

Quantitative trait locus mapping with bi-parental populations and GWAS each have their 

own merits and demerits and can be used to complement each other. Combination of  

both methods  is known to detect QTLs with high power and resolution, and has been 

successfully used in several crops to dissect the genetic architecture of complex traits 

(Cao et al., 2017; Li et al., 2016; Lu et al., 2010; Mahuku et al., 2016; Zhang et al., 2017). 

In the present study, all the GWAS loci identified for MCMV resistance were 

successfully validated in bi-parental QTL mapping. This validates the GWAS 

methodology and raises the confidence in the significant loci. QTL analyses in each of 

the three population identified QTLs across the genome. The genomic region in 

chromosome 3, between 85 to 109 Mbp was consistent in both DH pop1 and DH pop2. 
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Further, this also explained highest proportion of variance. Earlier GWAS study on MLN 

(Gowda et al., 2015) revealed that three SNPs S3_90976749, S3_90976758, 

S3_114355785, are falling within the confidence interval of the QTL in chromosome 

three. This QTL is also consistent with earlier reported QTL qMLN_03-129 for MLN in 

multiple biparental populations (Gowda et al., 2018). The physical position of major QTL 

for SCMV, SCMV2 is ~133 Mbp on chromosome 3 (Gustafson et al., 2018). Previous 

study on multiple populations (Gowda et al., 2018) and results of current study suggests 

the genomic region between 100 to 119 Mbp in chromosome 3 is important for MCMV 

and MLN resistance and it appears to be different from Scmv2 QTL. qMCMV4-235 is 

another consistent QTL detected for MCMV. This QTL is also consistent with earlier 

reported QTL for MLN in F3 population (Gowda et al., 2018) . This implies the detected 

major QTL is associated specifically with MCMV resistance and useful for improving 

MCMV resistance and ultimately MLN resistance. On contrary, three quantitative trait 

nucleotides (QTN) identified for SCMV resistance in a diversity panel 3 (Gustafson et 

al., 2018)  are falling within the confidence interval of MCMV resistance QTL 

qMCMV1-290, qMCMV2-192 and qMCMV4-235, which supports the clustering nature of 

viral disease resistance genes in maize (Redinbaugh and Zambrano, 2014; Zambrano et 

al., 2014).  

Genotyping-by-sequencing is a low-coverage sequencing technology generating a large 

number of SNPs at a lower genotyping cost per SNP per sample. However, GBS also 

results in a very high rate of missing data. Imputation of missing data is generally 

conducted before downstream analysis is performed. Recently, Wu et al.,(Wu et al., 

2016) reported that the missing rate of an unimputed GBS dataset in a diverse tropical 
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maize panel was 57.99% before filter, which indicates that the imputed GBS dataset is 

more appropriate for running association mapping analysis in a diverse maize panel 

because of the high rate of missing data within unimputed GBS datasets. In the current 

study, the imputed GBS dataset was used for association mapping. Statistical power and 

mapping resolution of association mapping was improved by including more imputed 

GBS SNPs. However, within the biparental mapping populations, incorrectly imputed 

SNPs could result in identification of false crossovers, which would adversely affect the 

accuracy of the genetic map. For this reason, unimputed GBS data was used for map 

construction and linkage-mapping analysis in all the three DH populations. Because an 

imputed dataset was used in association-mapping analysis and unimputed datasets were 

used for linkage mapping analysis, combined linkage mapping and association mapping 

proceeded as a comparable approach rather than an integrated approach.  
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

The majority of the presently grown commercial maize varieties in SSA are susceptible 

to MCMV and MLN. Developing and deploying improved maize varieties with 

resistance to MCMV is crucial, as it provides the most cost-effective approach for 

controlling the spread and impact of MCMV in the maize production areas in SSA. In the 

current study, the genetic architecture of MCMV resistance in maize was dissected 

through combined linkage and association mapping in conjunction with high density 

GBS SNPs. Results indicate that MCMV resistance in maize is polygenic in nature and is 

controlled by a major QTL in chromosome 3 with several minor QTLs with smaller 

effects on other chromosomes. This study revealed SNPs that are significantly associated 

with MCMV resistance genes. These multiple minor-effect QTLs can play an important 

role in maize improvement via marker assisted selection (MAS) using either marker-

assisted back crossing (MABC) or marker-assisted recurrent selection (MARS). Some 

candidate genes contain more than one significant SNPs which are valuable for 

developing haplotypes for implementing MAS. It can also be used in maize breeding with 

aim to enrich the target alleles for F2 populations prior to producing DH populations.  

The GWAS performed here using SNPs derived from GBS proved the effectiveness of 

this approach for the identification of complex traits. GWAS successfully defined trait 

architecture by identifying most of the associated loci responsible for trait variation in 

this set of germplasm and provided a high genomic resolution. QTL mapping also 

provided advantages for validating the loci detected by GWAS. The GWAS and QTL 
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mapping results have contributed to an enhanced understanding of complex traits, which 

will be useful for map-based cloning of the genes underlying the traits as well as for 

marker-assisted breeding in maize for MCMV resistance. The genomic region in 

chromosome 3 also needs further delimitation to isolate the underlying genes. 

The sequence information of these SNPs can be used to develop assays for MAS, and can 

be fitted as fixed effects in GS models to improve prediction accuracy. MCMV resistance 

in tropical maize could be improved by implementing MAS and GS individually or by 

implementing them in a stepwise fashion. However, the decision of a breeding strategy to 

implement MAS and GS stepwise for multiple traits in a maize improvement program 

requires further research and development. 
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