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ABSTRACT 

Sloping regions of the earth’s crust have formed part of human settlements from time 

immemorial. However, these regions are prone to geological hazards especially mass 

wasting processes such as debris flows and landslips. While literature on soil mass 

movements is available, precise mathematical models, versatile instrumentation systems, 

and the utilization of intelligent artificial neural network (ANN) models for forecasting 

these events in space and time is limited.  

This study was aimed at undertaking explicit characterization of convex configuration 

slopes under varying hydrological conditions. Specifically, it involved formulation of 

numerical models based on spherical-cap-shaped slip zones as well as development of 

ANN and hydromechanical landslide model. Computational results from the models were 

calibrated using experimental findings based on a solar powered data acquisition system 

which comprised of a laboratory flume, sensor array and data broadcasting scheme. 

Finally, a (Back-Propagation Feed-Forward) BP-FF ANN model was developed for 

purposes of predicting the slope stability status by way of numerical values of the factor 

of safety (FS).  

Results from quantitative analysis indicated that the mode of failure and configuration of 

the slip zone is a function of the volumetric water content (VWC), location of the 

apparent phreatic surface, magnitude of cohesive strength, orientation of weak planes and 

existence of discontinuities. Consequently, progressive translational displacement is the 

most dominant mechanism of failure and the slip zones assume the shape of single or 

double spherical caps, depending on the morphology of the potential failure plane (planar 

or curvilinear), location of the phreatic surface and flaws. Furthermore, results from 

numerical models demonstrated that geotechnical, geophysical and hydrological 

parameters and by extension the FS can be defined as empirical functions of the VWC. 

Additionally, results showed that the amount of VWC at the interfaces between adjacent 

lithostratigraphic units is the principal trigger of soil mass movements. The calibrated 

BP-FF ANN model was used to predict the FS values of slopes. 

In conclusion, since an improved effective wetness index has been derived taking into 

consideration the moist unit weight, threshold VWC extracted directly from the 

hydromechanical model and a BP-FF ANN model has been trained, an early warning 

system can be developed based on this information for purposes of prediction and 

disaster mitigation. Inferences derived from the study will provide precise constitutive 

computations as well as baseline geophysical and hydrological information to the public 

on the stability status of slopes.   
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CHAPTER ONE  

INTRODUCTION  

1.1 General Introduction 

Generally, the lithosphere is not static and stable but rather it is in a dynamic and 

incessant state of motion leading to deformations either horizontally, vertically or 

both due to forces emanating from the Earth’s inner molten core, variations in the 

ground water level, tectonic phenomena as well as mass wasting events. Additionally, 

wind, rain, rivers and human activities continually modify the Earth’s surface 

(Turcotte and Schubert, 2002). Movements of the lithosphere are responsible for all 

geological processes ranging from volcanoes, earthquakes and mountain ranges, as 

well as the shape and location of continents. A number of these geological processes 

account for rampant natural hazards and ecological challenges experienced across the 

globe (Alaniz et al., 2019; Qin et al., 2018). 

Natural cataclysms either of meteorological nature (droughts, cyclones, etc.) or 

bearing geological dimensions (avalanches, rock falls, etc.) have been acclaimed to 

cause confounding effects on humans, economies and environment. Many people and 

communities in the past few years have become more susceptible to natural upheavals 

but the risk varies from one region to another depending on the predisposing 

conditions. While the frequency of these occurrences has been increasing gradually, 

manmade activities have worked to elevate their magnitude, direction and duration. 

Recent studies have shown that global climate change, population growth and 

urbanization have immensely increased the degree of vulnerability, frequency and 

intensity of natural calamities (UNDRR-ISC, 2020; WCDR, 2005). 

Most of these geological disasters occur in slanting areas which are considered as 

ecologically active zones where many infrastructural activities such as road 
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construction projects, property development, tourism and agricultural practices are 

prioritized (Ercanoglu and Gokceoglu, 2002). Mass wasting disaster risks are rampant 

in hilly environments due to slope instability and liquefaction especially during heavy 

rainfall storms (Baharuddin et al., 2016; Miles and Keefer, 2001). 

Slope instability arising from geophysical and hydrological factors on both natural 

and engineered slanting soil masses is an inherent problem to both civil and 

geotechnical professionals as well as geophysicists whose solution is a panacea to 

many researchers, development stakeholders and the community at large. Generally, 

many slopes become unstable due to increased rainfall intensity and duration, changes 

in ground water levels, loss of shear strength and abrupt modification of slope 

geometry (Thielen et al., 2005; Abramson et al., 2002). Earthquakes as well as 

inappropriate land use practices and other unsustainable anthropogenic activities have 

also been cited as significant predisposing factors (Singh et al., 2016). 

 

1.2 Slope stability – risk, investigation and mitigation measures 

Most mountainous or generally highland regions are usually exposed to soil mass 

movements throughout their history in varying magnitudes, occurring either at a 

smaller scale of very short distances (typically a few centimetres per year) and usually 

un-noticeable, or in other cases involving very large volumes of debris and travelling 

long distances causing havoc. These movements constitute the largest number of 

geological disasters, for which debris flows and landslips are the most dominant 

(Kirschbaum et al., 2015).  

Notably, over the last few years, the world has witnessed an upsurge in the number 

and frequency of these hazards as witnessed from both media and research reports 

(Froude and Petley, 2018). Globally, an average $1-5 billion is lost in many countries 

https://www.tandfonline.com/doi/full/10.1080/24749508.2019.1695714
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in addition to thousands of injuries and around 600 deaths in total per year, as a result 

of landslides only (Highland and Bobrowsky, 2008). While climate change is cited as 

the most probable factor for this steady rise in this kind of natural hazards, there has 

been an upsurge of anthropogenic impacts escalating the risk at an alarming rate 

(McColl, 2015). The affected population and the damages incurred usually depends 

on the duration, magnitude and spatial extent as well as on the vulnerability of the 

exposed location (Dussauge-Peisser et al., 2002).  

In Kenya, the number and frequency of soil mass wasting occurrences has been on the 

rise especially landslide events concentrated in the Central and North-Western 

highland regions (Ministry of State for Special Programmes, 2009; Ngecu et al., 

2004). For instance, in the then Kakamega North District (now Malava subcounty), 13 

people died, 26 people injured and an undetermined number displaced on 12th August 

2007, when a devastating mudslide swept down the Nandi escarpment in Khuvasali 

village (https://www.nation.co.ke/news/1056-201434-lvds5gz/index.html, accessed 

15/04/2020). Additionally, in Kairo Village (Muranga County), a deformed landscape 

following a landslide caused by a heavy downpour was witnessed on 10th October 

2019, causing massive damage to farmlands. In November 2019, West Pokot county 

was hit with a series of landslide events that left 53 residents dead while 

approximately 22,000 more were seriously affected and displaced from their 

homesteads in Parua, Nyarkulian and Muino villages (https://citizentv.co.ke/news/ 

photos-west-pokot-landslide-the-aftermath-305535/, accessed14/01/2020). 

Slope stability studies are undertaken by various stakeholders so as to appreciate and 

gain a holistic understanding of slopes as ecological localities or construction sites as 

well as foundation for transport networks such as railways and roads. Slope stability 

investigations are generally aimed at identifying the causes of instability and 

https://citizentv.co.ke/news/%20photos-west-pokot-landslide-the-aftermath-305535/,%20accessed14/01/2020
https://citizentv.co.ke/news/%20photos-west-pokot-landslide-the-aftermath-305535/,%20accessed14/01/2020
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triggering factors in addition to post-failure mitigation countermeasures. These 

analyses involve static, dynamic, analytical or empirical methods to evaluate the 

stability of artificial and natural slopes. The most pertinent focus of any analysis is to 

ensure that slopes are both safe and economically sustainable (Santos et al., 2019; 

Basahel and Mitri, 2017).  

The stability of slopes is generally evaluated using the Factor of Safety (FS), 

computed as a ratio between the shear strength and the shear stress. The FS is 

significantly affected by a number of predisposing features or processes ranging from 

geological and hydrological effects to human interventions.  Additionally, the 

properties of rock mass, slope geometry, state of stress, temperature, cracking, 

swelling, decomposition of clayey rock fills, creep under sustained loads, leaching, 

strain softening, weathering, cyclic loading and erosion also affect the stability status 

of slopes (McColl, 2015; Suh et al., 2011). 

In principle, a given slope is said to be globally stable if the FS is greater than unity, 

and vice versa. As a convention, FS values slightly greater than 1 indicate that the 

slope is marginally stable but requires urgent intervention, monitoring or 

amelioration. A number of such intervention activities and mitigation measures 

(Fayne et al., 2019; Anderson and Holcombe, 2013; Santi et al., 2011) are 

summarized in figure 1.1.  

 

1.3 Problem Statement 

In the past few decades, a sizeable number of research works have been dedicated to 

studying slope dynamics. Most of these studies are based on pioneering models by 

Bishop (1955), Morgenstern and Price (1965) and Janbu (1973), for which the 

stability of any given slope is evaluated by way of its FS values (Najjar et al., 1999). 

https://en.wikipedia.org/wiki/Shear_strength_(soil)
https://en.wikipedia.org/wiki/Shear_stress
https://en.wikipedia.org/wiki/Hydrology
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However, in a number of practical scenarios, these models are inappropriate because 

of outright deviations from the ideal conditions, lack of adequate data and the inherent 

non-linearity in the input parameters (Shahin et al., 2001). In addition, since a large 

number of input parameters are required during computation, conventional models are 

inadequate in terms of reconciling slope geometry and geophysical properties (Clare 

et al., 2018).  

 

 

Figure 1.1: Landslide mitigation methods [modified from Fayne et al., (2019), Santi et al. 

(2011) and Anderson and Holcombe (2013)] 

 

Furthermore, majority of the existing numerical constitutive models are formulated 

based on subsurface hydrological processes while taking minimal attention in the 

conceptually important dynamics of geophysical aspects such as pore-water pressure 
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characteristics in the soil matrix (Serdarevic and   Babic, 2019; Iverson et al., 2001), 

slope profile as well as the morphology of the slip zone and sliding plane which 

dictates the mechanism of failure. While a number of research works have been 

focused on studying the pore-water pressure build-up and its impacts on slope health 

(Conte et al., 2020; Chao and Ning, 2019; Fredlund et al., 1978), slope configuration 

especially the  slip zone morphology has not received serious consideration as a vital 

parameter in stability analysis. 

Pioneering research works confirmed that the configuration of the slip surface is 

usually nonlinear and is a function of the conditions of soil properties, water content 

and slope angle (https://theconstructor.org/ geotechnical/slope-failures-types/28467/, 

accessed 04/04/2020; Lanni, 2012; Arora, 2008; Morgenstern and Price, 1965). 

Nonetheless, most constitutive models in soil mechanics are derived based on the 

infinite slope configuration (also called surficial slide) which is formulated assuming 

that the slip plane is parallel to the slope surface and that the slip zone is planar or 

cuboidal in shape with infinite or unit width (Halty, 2014; Casadei et al., 2003). Other 

constitutive models are derived based on the slip circle including the method of slices 

while assuming that the slip surface is purely circular. In summary, these models are 

formulated based on the assumption that the width of the sliding matter is of unit 

length (to simplify computations) (Tai et al., 2020; Zheng et al., 2020; 

Charles and Soares, 1984), leading to an erroneous computation of the total volume of 

the slip zone and resultant shear stresses.  

Evidently, post-failure analysis of regions that have experienced mass wasting 

processes has revealed that the void left after slope failure (such as a landslide) 

resembles a section of a sphere especially for convergent slope forms. Even if 

curvilinear slip surface is mentioned in literature many times, there is no slope 

https://theconstructor.org/%20geotechnical/slope-failures-types/28467/,%20accessed%2004/04/2020
https://theconstructor.org/%20geotechnical/slope-failures-types/28467/,%20accessed%2004/04/2020
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stability model used to assess landslide susceptibility and hazard has considered a 

spherical-cap shaped soil mass as the slip zone.  

As a consequence, the existing inadequacies in modelling soil slopes especially 

regarding the failure mechanism and morphology of the slip zone should be addressed 

by developing more descriptive constitutive equations with minimal assumptions. In 

essence, a combination of unsophisticated and more precise numerical models 

considering spherical-cap shaped slip zones, rigorous instrumentation systems for 

real-time monitoring, and the utilization of intelligent tools such as artificial neural 

networks (ANNs) for forecasting soil mass movements is inevitable (Kumar et al., 

2020; Carro, 2003). 

Therefore, physical processes affecting the dynamics of soil slopes are studied with a 

view of developing numerical and intelligent artificial neural network models based 

on soil characteristics, hydrological and geomorphological factors that can be utilized 

in the characterization of natural and engineered slope sections. The models are then 

validated through rigorous experiments based on a laboratory flume. 

 

1.4 Justification 

The main motivation of slope stability analysis is to reduce the number of fatalities, 

reduce property damages and advance the scientific knowledge about these natural 

hazards. Slope stability evaluations are therefore performed for a wide variety of 

geophysical, civil engineering and academic applications. Some of these applications 

include determination of short- and long-term stability of both temporary and 

permanent cut-and-fill slopes, embankments, foundations for structures and retaining 

walls, assessment of slope stability under vibration processes such as seismic events 



8 

 

and lastly analysis of mechanisms, design procedures and mitigation techniques in 

cases of soil mass movements (Thennavan et al., 2020; Bahareh et al., 2018).  

Furthermore, a comprehensive slope analysis framework that involves formulation of 

constitutive models which take into consideration all geotechnical and geophysical 

factors as well as geometric factors is inevitable (Halty, 2014; Gray, 2013). Therefore, 

a detailed study of landslide modelling, prediction techniques and mitigation 

measures are long overdue.  

Rheological and constitutive models derived from rigorous experimental sessions 

serve as effective tools of analyzing slope material in a variety of physical scenarios. 

Artificial neural networks (ANNs) are employed to give more precise 

predictions/forecasting of imminent slope failure.  Research findings can then be 

utilized to inform government, non-governmental organizations and other 

stakeholders to educate communities, prepare early warning alerts as well appropriate 

mitigation measures. The overriding goal of this study was to derive numerical and 

physical models, validate these models based on laboratory experiments and develop 

an artificial neural network model for prediction of slope failures. 

 

1.5 Objectives of the study 

The overall objective of this research project is to perform an explicit characterization 

of convex configuration slopes under modest hydrological conditions. This involves 

development of constitutive models considering slopes with convex configuration 

morphology, design of a real-time monitoring system and development of an 

intelligent artificial neural network model to predict the occurrence of these processes 

both in space and time. Therefore, the study focused on the following specific 

objectives:  
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(1) To formulate physically-based numerical and constitutive models to simulate the 

characteristics of shallow landslip processes for spherical-cap-shaped slip zones, 

(2) To formulate a hydromechanical model for shallow soil mass wasting processes,  

(3) To develop a solar-powered system for real-time monitoring, processing and 

transmission of slope geophysical and geotechnical parameters, 

(4) To develop, as well as train, test and validate an artificial neural network model to 

forecast slope stability characteristics. 

 

1.6 Significance of the project study 

People obliviously settle in sloping regions that are prone to soil mass movements 

because of the ever-increasing population, while farmlands, roads and other structures 

are constructed in such locations. As a result, massive damage to infrastructure 

accompanied by serious injuries or loss of lives are witnessed in events of slope 

failure (Zou et al., 2018; Zhang et al., 2015). The most common, prevalent and 

frequent types of slope movements in sloping regions are landslides and debris flows 

(Wu et al., 2015). In the USA, the documented destruction caused  by landslides is 

estimated to cost approximately $3.5 billion per year in addition to about 20 - 50 

deaths each year (http://pubs.usgs.gov/fs/2004/3072/pdf/fs2004-3072.pdf, accessed 

21/03/2020; National Research Council, 2004). In Central America, about 2730 

people died in 128 landslides between 2004 and 2013  (Sepulveda and Petley, 2015). 

Recently, a couple and their two children were buried by the debris inside their house 

in the village of Turung, Marakwet East Constituency, Elgeyo-Marakwet County, 

Kenya (https://www.nation.co.ke/counties/elgeyo-marakwet/Four-killed-inMarakwet-

landslide/3444818-5316280-15446p9z/index.html, accessed 20/10/2019). On the 

global scale, reports indicate that close to one thousand people lost their lives due to 

http://pubs.usgs.gov/fs/2004/3072/pdf/fs%202004-3072.pdf,%20accessed%2021/03/2020
http://pubs.usgs.gov/fs/2004/3072/pdf/fs%202004-3072.pdf,%20accessed%2021/03/2020
https://www.nation.co.ke/counties/elgeyo-marakwet/Four-killed-inMarakwet-landslide/3444818-5316280-15446p9z/index.html,%20accessed%2020/10/2019
https://www.nation.co.ke/counties/elgeyo-marakwet/Four-killed-inMarakwet-landslide/3444818-5316280-15446p9z/index.html,%20accessed%2020/10/2019


10 

 

debris flows and landslips (https://www.aa.com.tr/en/environment/environmental-

disasters-across-world-in-june-2020/1895500, accessed 30/07/2020; Petley, 2012).  

As a consequence, appropriate physically-based and numerical models as well as 

reliable instrumentation systems are expected to provide the necessary direction in 

slope analysis and policy making. In addition, the use of intelligent tools such as 

artificial neural networks for purposes of forecasting these catastrophies will aid in 

disaster preparedness and mitigation.  

Therefore, all stakeholders including governments and the community at large require 

as a matter of necessity, an appraised information base about landslide processes 

especially in highland areas so as to make appropriate decisions and policies. This 

will go a long way in ensuring minimal disruption to both human activities and 

infrastructural installations (Morgan et al., 1992).  The acumens realized from the 

study will also be employed in the development of an early warning system, which 

emboldens the old adage "to be forewarned is to be forearmed".  

https://www.aa.com.tr/en/environment/environmental-disasters-across-world-in-june-2020/1895500
https://www.aa.com.tr/en/environment/environmental-disasters-across-world-in-june-2020/1895500


11 

 

CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter mainly focuses on an exposition of the general theoretical background 

regarding physical, geological and engineering principles behind soil mass 

movements as well as giving highlights on the methodological approaches employed 

in modelling, simulation, monitoring, early warning systems and artificial neural 

networks.  

 

2.2 Slope Stability 

2.2.1 Soils, Soil Mechanics and Mass Wasting Processes 

Soils are composed of a heterogeneous mixture of solid particles (clay, silt, sand, 

and gravel), fluids (air, water) and organic matter. Soils are formed primarily from 

weathering of rocks (igneous, metamorphic or sedimentary). In other words, rocks 

split into minute units to create soil through the various weathering processes 

(biological, chemical, physical) or manmade activities (blasting, excavation, waste 

disposal) (Mitchell and Soga, 2005; Powrie, 2004).   

Soil mechanics is a branch of physics which involves the analysis of dynamics, 

deformations and fluid flow within natural and engineered matrices of soil (Lambe 

and Whitman, 1991). Soil mechanics is geared towards solving three major stability 

problems i.e. earth pressures, bearing capacity and slope analysis. While each of these 

three branches involves the knowledge of the stress state of a soil mass, the 

differences amongst them lies in the boundary conditions imposed. For earth pressure 

problems, the soil mass is considered to be in a state of failure implying that the 

remedy lies in the computation of the external force required to maintain it in that 

https://en.wikipedia.org/wiki/Clay
https://en.wikipedia.org/wiki/Silt
https://en.wikipedia.org/wiki/Sand
https://en.wikipedia.org/wiki/Gravel
https://en.wikipedia.org/wiki/Igneous_rock
https://en.wikipedia.org/wiki/Metamorphic_rock
https://en.wikipedia.org/wiki/Sedimentary_rock
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state. Bearing capacity problem arises from stresses induced by external loads on a 

soil mass such as foundations of structures and vegetation. Lastly, slope analysis is 

mostly confined to stresses induced by self-weight on the soil mass in a slanting 

position (Morgenstern and Price, 1965). 

A soil slope is a slanting surface of soil mass either man-made or natural, whose 

stability depends on a number of internal and external factors. Slope instability 

usually occurs as a consequence of many predisposing factors principal among them 

being precipitation, seismicity and human activities. Slope instabilities always lead to 

mass wasting events that fall under the category of severe natural disasters on the 

earth’s surface (Petley, 2009). 

Mass wasting or mass movements (or sometimes referred to as slope movement) is 

defined as the geomorphic process by which soil, sand, or even rocks move 

downslope in the form of a continuous, discontinuous or solid lump,  due to the action 

of gravitational force or an imposed external force (https://en.wikipedia.org›wiki› 

Mass_wasting, accessed 24/10/2019). Mass movements are disastrous and intricate 

geological natural disasters occurring in many parts of the world, mostly highland 

areas and embankments. There exist many types of mass movements and are 

distinguished based on the manner in which the rock, regolith, or soil moves down the 

slope. In the category of rapid movements are landslides, rock falls, slumps, 

rockslides and debris flows or mudflows, while slow movements includes  creep and 

solifluction (http://pubs.usgs.gov/fs/2004/3072, accessed 24/10/2019; Hungr et al., 

2014).  
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2.2.2 Factors Affecting Slope Stability 

Slope failures occur when either shear stresses and gravity exceed the mobilized shear 

strength, or when certain external and internal factors that lead to an increase in the 

shear stresses or a decrease in the shear strength. Factors that affect the shear strength 

of slope materials include pore-water pressure, presence of cracks, type of soil, etc. 

On the other hand, shear stresses are affected by additional loads on top of the slope, 

excavation or erosion at the toe, rise in soil weight, pressure in cracks, and seismic 

events (Lupiano et al., 2019; Bordoni et al., 2015).  

The destabilizing factors to slopes are classified into three main categories. First, are 

the preparatory factors that cause the slope to be vulnerable to movement such as soil 

texture and rock type. Secondly, are the triggering factors which are responsible for 

initiating motion such as high intensity precipitation or seismic events. Finally, 

perpetuating factors, which dictate the characteristics and nature of projection for 

instance topographic factors. In combination, these three factors control the nature, 

intensity and rate of these movements in space and time (Ma et al., 2019; Crozier 

1986). 

Overall, slope stability is dependent on material properties, state of stress and slope 

geometry. Amongst other factors, the most significant parameters that influence the 

stability status of slopes include: 

(i) Geological discontinuities: Slope stability is directly dependent on the structural 

discontinuity in the rock in which the slope is excavated. The properties of 

discontinuities such as orientation, persistence, roughness and infilling dictate the 

type of slope failure and can exist in form of cracks, schistosity, bedding planes, 

joints, fault planes, fractures, fissures, or cleavages. The orientation of geological 

discontinuities relative to engineering structures determines the stability 
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conditions of the slope material. The mutual orientation of discontinuities 

determines the shape of the individual blocks. 

(ii) Slope Geometry: Slopes with higher gradients are considered steeper and vice 

versa. Steeper slopes pose a greater risk of instability and eventual failure because 

of higher tangential gravitational force. Slope materials will tend to move 

downslope either naturally on their own under gravitational force or when 

disturbed until an appropriate angle of repose is attained. Therefore, the slope 

angle is the principal factor determining slope stability in all geological and 

hydrological conditions.  

(iii) Effect of water: Presence of water in slopes can serve to stabilize or to destabilize 

a slope depending on its volumetric content. Moderate water content leads to 

increased soil cohesion and consequently higher shear strength. Excessive water 

destabilizes the slope by adding weight, destroying cohesion between grains, and 

reducing friction, thereby diminishing the shear strength of the soil mass.  

(iv) Vegetation cover: The type and percentage of vegetation on a slope determines 

its shear strength. Root cohesion and controlled erosion are positive effects that 

plants offer to slopes. 

(v) Geotechnical parameters: These factors determine the cohesive stress, the 

magnitude of the confining pressure, strain rate, effective stresses, shear strength, 

internal friction angle of the slope and by extension, the factor of safety.   

(vi) Anthropogenic factors: A number of human activities are known to directly 

cause instability and failure of slopes. These activities include surface or 

groundwater rechannelling, blasting, deforestation, etc (Riquelme et al., 2016; 

http://www.soilmanagement-india.com/soil/slope-stability/stability-of-earth-

slopes-soil-engineering/14489, accessed 04/04/2020). 

http://www.soilmanagement-india.com/soil/slope-stability/stability-of-earth-slopes-soil-engineering/14489,%20accessed%2004/04/2020
http://www.soilmanagement-india.com/soil/slope-stability/stability-of-earth-slopes-soil-engineering/14489,%20accessed%2004/04/2020
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2.2.3 Slope Forms and Failure Modes  

Slope stability is an important factor that should be considered during design and 

planning of environmental roadmaps, agricultural activities, civil and structural 

developments. Whenever slope failures occur, they are accompanied with a number of 

negative effects on the environment and the community. Amongst other geophysical 

factors, slope form is the most important factor that influences the mechanism or mode of 

failure. The three dominant slope forms observed in contour direction are convex 

(divergent) straight (planar) and spoon-shaped (concave). The combination of steep 

slopes and convergent topography has the highest potential for mass wasting (Halty, 

2014; Gray, 2013).  

There are several modes of slope failure ranging from translational, wedge, rockfall to 

rotational (circular/non-circular) and compound failure types (figure 2.1). The mode 

of failure largely depends on the material properties, water content and foundation 

strength (Arora, 2008). Translational failure occurs mostly in infinite slopes where the 

slip plane is parallel to the slope gradient. This type of failure is common in slopes 

composed of stratigraphic layers.  

    
(a) Translational Failure     (b) wedge Failure 

 

   
(c) Rotational Failure 

 
Figure 2.1: Modes of slope failure (Source: 

https://theconstructor.org/geotechnical/slope-failures-types/28467/, accessed 04/04/2020) 
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Wedge (block) failure occurs when distinct wedge-like blocks of soil mass become 

separated from the rest of the earth slope and move downslope. This type of failure 

occurs in both infinite and finite slopes made up of heterogeneous materials or in a 

slope with discontinuities. 

Rotational failure occurs by a gyration of the unstable mass of soil along a failure 

surface by the downward and outward movement of soil, for which the slip surface is 

generally curved i.e. circular for homogeneous soils and non-circular for non-

homogeneous conditions.  

Lastly, compound failure is a combination of all the other types i.e. translational and 

rotational failure. The failure surface can be flat or curved depending on the properties 

and conditions of the soil beneath or adjacent layers 

(https://theconstructor.org/geotechnical/slope-failures-types/28467/, accessed 

04/04/2020; Morgenstern and Price, 1965).  

 

2.3 Landslides 

2.3.1 Overview of landslide processes 

Landslides or landslips are among the dominant types of slope movements. A 

landslide is the motion of soil, rock or debris downslope due to influence of 

gravitational force or ground vibration (Cruden and Varnes, 1996). A comprehensive 

exposition of the factors causing landslips are discussed by Varnes (1984), Crozier 

(1986), Hutchinson (1988) and Hungr et al. (2014).  

Majority of landslide phenomena occur in regions of the earth surface exposed to 

destabilizing conditions such as intensive rainfall and seismic events. Landslide 

processes encompass a wide range of ground movements including rock falls, deep 

failure of slopes and shallow debris flows. They can occur in coastal, offshore and 

https://theconstructor.org/geotechnical/slope-failures-types/28467/,%20accessed%2004/04/2020
https://theconstructor.org/geotechnical/slope-failures-types/28467/,%20accessed%2004/04/2020


17 

 

onshore environments (Deschamps and Leonards, 1992). Figure 2.2 depicts a graphic 

illustration of an idealized landslide morphology (http://pubs.usgs.gov/fs/2004/3072, 

accessed 24/10/2019). In general, landslides are caused by either natural, manmade or 

a combination of these factors as summarized in figure 2.3. 

 

Figure 2.2: Typical landslide morphology (Source: Highland and Bobrowsky, 2008) 

 

2.3.2 Types of Landslides  

Landslide processes manifest in different forms differentiated by the mode of 

movement, rate of movement and kind of material involved (Varnes, 1978). The basic 

outline of the different types of landslides is presented in table 2.1 below. 

 

Figure 2.3: Landslide causative factors 
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Table 2.1: Landslide types [Modified from classification of slope movements by 

Varnes' (Hungr et al., 2014)]  

Type of movement Rock Soil 

Fall  Rock/ice fall Boulder/debris/silt fall 

Topple 
Rock block topple 

Gravel/sand/silt topple 
Rock flexural topple 

Slide 

Rock rotational slide Clay/silt rotational slide 

Rock planar slide Clay/silt planar slide 

Rock wedge slide Gravel/sand/debris slide 

Rock compound slide 
Clay/silt compound slide 

Rock irregular slide 

Spread Rock slope spread 
Sand/silt liquefaction spread 

Sensitive clay spread 

Flow Rock/ice avalanche 

Sand/silt/debris dry flow 

Sand/silt/debris flowslide 

Sensitive clay flowslide 

Debris flow 

Mud flow 

Debris flood 

Debris avalanche 

Earthflow 

Peat flow 

Slope deformation 

Mountain slope 

deformation 
Soil slope deformation 

Rock slope deformation 
Soil creep 

Solifluction 

 

 

2.4 Effect of water content on the stability of slopes 

Slope instabilities especially in hilly environments have been found to occur as a 

result of a combination of hydrological and geophysical factors ranging from pore-

water pressure change, reduction in cohesive strength and internal angle of friction to 

infiltration-induced interflow along the soil–bedrock interface (Zhao and Zhang, 

2014). Fang et al. (2012) underscored the fact that most shallow landslides occur 

because of an upsurge in pore-water pressures leading to a corresponding reduction in 

the shear resistance.  
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Water that affects the stability of slopes originates from two sources i.e. ground or 

aquifer water below the surface that generates pore-water pressures and, rainwater 

infiltration that seeps through the surface and flows along the slope generating water 

pressure (Brady and Brown, 2004). Water pressure acting within a discontinuity 

reduces the effective normal stress acting on a given plane, thus reducing the shear 

strength along that plane, consequently lowering the stability condition of natural or 

artificial slopes. The percentage of water content in the soil or rock material depends 

on a number of geotechnical, hydrological, and geological aspects such as soil 

permeability, rate of surface irrigation, intensity and duration of rainfall (Ng et al., 

2001). 

Generally, the stability of most slopes is weakened when large amounts of water enter 

into the unsaturated soil matrix via infiltration leading to full saturation or liquefaction 

(Zhang et al., 2018; Ray et al., 2010). Such failures usually occur in areas where 

intense rainfall events are witnessed. Slope stability can also be compromised by the 

build-up of excess pore-fluid pressures arising from hastened infiltration rate 

especially in undrained and unsaturated soils. External loads applied on the soil 

surface usually set up destabilizing stresses within the slope mantle. Results from 

other research studies indicated that soil water decreases the shear strength lubricating 

the soil grains and reducing basal friction. Additionally,  rainfall water or snow melt 

leads to a significant increase in the weight of the slope material thus increasing the 

effective stress (Kristo et al., 2017; Kilburn and Petley, 2003).   

Additionally, water content controls the angle of repose of unconsolidated sediments. 

Unconsolidated material with relatively low water content will exhibit a very high 

angle of repose as opposed to a saturated material. This is as a result of capillary 

attraction forces leading to surface tension that tends to hold the wet material together 
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as a cohesive unit. On the other hand, for a saturated material,  the water molecules 

between the grains eliminates grain to grain frictional contacts thereby reducing the 

angle of repose reduces substantially (Sidle and Bogaard, 2016; Terzaghi, 1960).  

While high intensity, short duration rainfall events are known to trigger soil mass 

movements, even long duration, low intensity rainfall and rapid snow or ice melt have 

also been found to activate landslides (Guzzetti et al., 2009). In analysing landslide 

processes, two methods are preferred. The first approach employs statistical 

inferences to establish the relationship between rainfall characteristics and landslide 

event probability while the second method employs physical mechanisms of the 

rainfall infiltration or soil water content variation to trigger landslide events (Zhang et 

al., 2018; Conte et al., 2017; Wu et al., 2015; Springman et al., 2013).  

 

2.5 Appraisal of Slope Stability Analysis Methods 

2.5.1 Background 

The main objective of slope stability analysis is to gain background knowledge on the 

precursors, nature and triggers of mass wasting events as well as mitigation measures. 

The analytical method used at any given time depends on the kind of data, 

availability, scale, reliability and in-situ conditions, as well as the purpose of analysis 

(Salunkhe et al., 2017).  

A comprehensive slope stability analysis method incorporates the evaluation of 

various design parameters such as slope angle, slope height, internal friction angle and 

construction or excavation sequencing. The inspiration behind any analysis is to give 

guidance on the utilization of slopes safely and economically (Huang, 2014).  

Owing to the current interest in highland regions for purposes of building settlements 

and other infrastructural developments, both governments and local communities 

https://ascelibrary.org/author/Huang%2C+Yang+H
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require a detailed analysis of slope dynamics. Many researchers and geotechnical 

professionals have strived for many years proposing models and postulates relating 

certain physical parameters to the stability state of slopes. The two most common 

slope stability analysis methods are Limit Equilibrium (LE) and Finite-Element (FE) 

presented by Duncan (1996), but there exist other methods which were proposed in 

the latter years (Ishak and Zolkepli, 2016). A schematic representation of the different 

slope stability analysis methods is illustrated in the figure 2.4. The following sections 

give an outline of some of the methods that have been proposed over the years in the 

analysis of slope stability.  

 

Figure 2.4: Common slope stability analysis methods [modified from Duncan (1996)] 

 

2.5.2 Classical Limit Equilibrium Methods 

The most commonly used and well documented slope stability analysis methods fall 

under the large category of Limit Equilibrium (LE) methods. LE methods employ the 

Mohr‐Coulomb criterion which involves solving instability cases by assuming force 

and/or moment equilibrium. These methods include the ordinary method of slices 

(Fellenius, 1936), Bishop’s modified method (Bishop, 1955), force equilibrium 

methods (Lowe and Karafiath, 1960), Morgenstern and Price’s method (Morgenstern 

and Price, 1965), Spencer’s method (Spencer, 1967) and Janbu’s generalized 
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procedure of slices (Janbu, 1973). All these methods were used to develop slope 

stability charts, though currently computer algorithms are used instead.   

LE methods employ the Mohr‐Coulomb criterion to compute the shear strength (r) 

along the slip surface of a given soil sample, while the mobilized shear stress (d) is 

defined in terms of the shear strength if the limit equilibrium state exists (Janbu, 

1973). The shear strength is a function of soil type as well as the cohesive stress ( c ), 

effective normal stress (  ) and effective internal angle of friction ( ) according to 

equation (2.1): 

 ' ' tan 'r c               (2.1) 

The mobilized shear stress on the other hand will therefore be defined by 

 
' ' tan 'r

d

c

FS FS

  



            (2.2) 

where FS is the factor of safety.  

Equation (2.1) is valid to fully saturated soils only. In contrast, for unsaturated soils, 

the Mohr-Coulomb failure criterion is modified as (Fredlund et al., 1978): 

   ' tan ' tan ''r n a a wc u u u              (2.3) 

where uw is the pore-water pressure, ua is the pore-air pressure, n is the normal stress, 

while ''  is the internal angle of friction with respect to changes in matric suction 

(Fredlund and Rahardjo, 2014). The choice of shear strength equation to be used at 

any given time between equations (2.1) and (2.3) depends on the duration after 

excavation, soil type and loading conditions. Equation (2.1) is normally utilized for 

short–term conditions mostly in clay-rich soils, while equation (2.3) can be applied to 

all kinds of soils, long‐term situations and in circumstances where the pore pressures 

are known (Pantelidis, 2009). 
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When employing the conventional LE methods, the slope stability is evaluated by the 

factor of safety (FS) at any given time. In these methods, the failure surface can bear 

planar, circular or non-circular configuration should be ascertained even if through 

assumption before the equilibrium analysis commences (Duncan, 1996). From the 

definition of FS, failure will occur when the shear strength which is assumed to be 

mobilized along a certain slip surface is exceeded. In this case, the FS is defined in 

three ways namely force, moment and limit equilibrium (Abramson et al., 2002) as 

illustrated in figure 2.5.  

In this consideration, LE analyses suffer from a number of limitations. Firstly, LE 

methods involve defining a critical sliding surface with minimum FS usually assumed 

to be circular except for slope material with geological layers in which case planar 

failure surface suffices  (Duncan, 1996). However, post-failure investigations carried 

out at the sites of slope failure have indicated that the slip surface is not purely 

circular or planar as presumed in the LE approaches. Secondly, most LE analysis 

approaches are less accurate especially in the computation of the FS which is based on 

the preferred method of analysis and supposed mode of failure. Lastly, since LE 

analysis methods are anchored in a deterministic framework, there are errors in the 

chosen input parameters used in the calculation of FS (Chugh, 2002).  

 

2.5.3 Finite Element Methods 

Finite element (FE) methods of stability analysis were developed to cure the 

inadequacies of LE methods.  They are more accurate, adaptable, and require minimal 

theoretical assumptions regarding the slip surface and failure mode. They have also 

been used to precisely analyze slopes with asymmetrical boundaries and uneven 

potential/flow lines (Zaman, 2000; Griffiths and Lane, 1999). In general, the 
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advantages of FE methods over LE approaches range from the assumption of the slip 

surface, consideration of internal forces, and deformation process (Alemdağ et al., 

2015). FE methods can also be merged together with random field generators (RFG) 

to form the more versatile Random Finite Element Method (RFEM) which is used to 

analyze complex slope scenarios with spatially random soil properties (Baba et al., 

2012; Griffiths and Fenton, 2004). 
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Figure 2.5: Factor of safety definitions (Abramson et al., 2002) 

 

FE methods are characterized by a variational formulation, a discretization plan, a 

solution algorithm and post-processing measures. In FE framework, the region to be 

analysed is divided into small elements joined together by nodes, and the 

displacements at each node are computed using calculus of variations to obtain stress 

and strain fields within the slope material (Logan, 2011).  

https://en.wikipedia.org/wiki/Calculus_of_variations
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Although FE methods have been adopted in the analysis of many geotechnical 

problems, they also suffer from a number of demerits. Firstly, they are time 

consuming especially during the development of models and computer algorithms. 

Secondly, they require advanced technical knowhow owing to the complex theory 

involved in the formulation of the models. Lastly, interpretation of the FE model 

results requires scholarly deduction (Duncan, 1996).  

 

2.5.4 Probabilistic Methods 

In the past few decades, probabilistic methods of analyzing slope stability have gained 

momentum in many research studies. The principal advantage of probabilistic 

methods over conventional LE and FE methods lies in the analysis of slope stability 

while taking into consideration the variability of soil physiognomies (Griffiths et al., 

2009). Additionally, probabilistic methods do not rely on the FS as the indicator of 

slope stability but rather employs the probability of failure or reliability index to 

evaluate slope health (Wolff, 1996; Mostyn and Li, 1993). There exist a number of 

probabilistic methods in use namely first order second moment (FOSM) method, 

Monte Carlo simulation (MCS) method, random finite element method (RFEM) and 

point estimate method (PEM). 

While probabilistic slope stability analysis methods are comparatively more superior 

to conventional methods in terms of accuracy and versatility, there is a tendency to 

neglect the significant effects of soil variability. As such, inherent errors will be 

propagated in the computation of the probability of failure when spatial correlation of 

soil properties is not accounted for (El-Ramly et al., 2002). 

In probabilistic methods, parameters that influence the properties of soils are usually 

treated as random variables. In this case, the analysis shifts from a single deterministic 
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value to a range of values which constitute the probability density function (PDF). A 

number of statistical measures are employed in the analysis ranging from the mean, 

variance to standard deviation. 

 

2.6 Slope Monitoring  

2.6.1 Overview 

The outer layers of the earth’s crust are in continuous movement leading to 

deformations either horizontally, vertically or both due to physical aspects such as 

variations in the ground water level, tectonic phenomena and mass wasting events. 

The deformations can be monitored in sloping areas either in real-time or by remote 

sensing techniques so as to prevent or minimize the effects of these geologic hazards 

(Setan and Singh, 2001). 

Slope monitoring is a vital tool for prevention and prediction whose potential must be 

appreciated by not only academic and engineering professionals but also non-

technical and non-scientific stakeholders. Monitoring of slopes can prevent loss of 

life, infrastructure, and environment. Before any slope fails, there is usually 

measurable movement or small displacements and/or the development of tension 

cracks which act as precursors to imminent overall failure. It is documented that 

landslide occurrence is as a consequence of very small displacements over a very long 

period of time. However, these displacements can also be rapid in cases of ground 

vibrations such as during earthquake events (Ding et al., 1998).  

Monitoring involves the systematic observation and recording of the properties of a 

given system or process over time. In geotechnical analysis, the main focus is 

monitoring deformation, which involves regular tracking and measurement of the 

variations in the dimensions of a soil mass due to internal or external factors. The two 
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most common parameters monitored are displacement and groundwater levels, though 

most monitoring systems also incorporate other parameters such as erosion rate, pore-

water pressure, cohesive stress, and vegetation cover in addition to historical 

information and geomorphology (Moore and Burchi, 1986). 

Monitoring and data collection is a process which is normally implemented in five 

steps i.e. identification of monitoring objectives, establishing requirements, 

pinpointing the variables, actual measurement and recording of data as well as 

interpretation together with reporting of the results (Ding et al., 1998). Generally, 

factors considered during the fabrication of a monitoring system include installation 

complexity, implementation, equipment selection and design specifications. Design 

specifications relate to the likely magnitudes of movement, parameters to measure, 

purposes of different instruments, type and scale of deformation to be monitored, 

locations of equipment and checks using different survey methods and equipment. 

Planning stage entails an outline of the design specifications together with the desired 

accuracy and precision. Design specifications give a detailed procedure and guide of 

attaining the intended objectives by giving a step by step direction on human 

resources, reporting methods, size and frequency (Pardo et al., 2013).  

A monitoring instrument can be packaged as a single sensor such as a vibrating wire 

piezometer or designed in form of a set of sensors bundled together into a single 

panel. Examples of instruments commonly used in deformation monitoring include 

theodolites, Global Positioning Systems (GPS) (Jeffreys, 2004) and total stations 

(Rueger et al., 1994). On the other hand, remote sensing methods (Kaab, 2002) 

include satellite imaging (ASD-Network, 2006), laser (McIntosh and Krupnik, 2002), 

photogrammetric and radar surveys (GroundProbe, 2005; Anglo Coal and Reutech 



28 

 

Radar Systems, 2005). The following section gives a description of the common slope 

monitoring methods and interpretation of the results. 

 

2.6.2 Slope monitoring methods 

Effective geotechnical monitoring of structures including slopes must incorporate the 

right design, compliance to legislation, system scaling and monitoring requirements. 

Each monitoring task has specific requirements depending on the application, 

versatility and accuracy. Generally, slope monitoring involves a multifaceted 

approach from civil and structural engineers, geologists, geophysicists and 

hydrologists (Wunderlich, 2004). Conventional slope monitoring devices or sensors 

are subdivided into four main classes i.e. geodetic, geotechnical, geophysical and 

remote sensing.  

1. Geodetic monitoring 

This involves accurate mapping and measurement of the Earth’s fundamental 

properties such as movements or displacements in 1D, 2D or 3D (Dai et al., 2016). In 

slope monitoring, geometric elements such as height differences angles, and 

displacements are measured. Fundamentally, geodetic monitoring systems are 

composed of an interconnected web of reference, object and observation networks 

(figure 2.6) (Voyat et al., 2006; Welsch et al., 2000).  Basically, a reference network 

usually consists of stable control points and a multiplicity of witness points, located 

outside of the expected deformation area. The observation points which consist of 

sensors and transducers are placed either on the surface or inside the slope material 

being monitored. In other words, observation points are also known as measurement 

points. Finally, object points are used to discretize the slope. In most cases, the object 
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points are prismless tacheometry, terrestrial laser scanning or Global Positioning 

System (GPS).  

 

Figure 2.6: Design of a geodetic monitoring network (Welsch et al., 2000)  

 

2. Geotechnical monitoring 

Geotechnical monitoring generally deals with constant health check-up and 

observation of the ground behaviour and/or performance of structures such as slopes. 

The principal parameters of interest in geotechnical monitoring are ground water 

pressures, soil deformations and stresses. Instruments used include crackmeters, rain 

gauges, accelerometers, etc. (Diaz et al., 2018). A comprehensive discussion on 

geotechnical instrumentation is provided by Dunnicliff (1993), Sellers (2005) and 

McKenna (2006). 

 

3. Geophysical monitoring 

Geophysical monitoring entails systematic collection of data for spatial studies. 

Basically, gravitational and magnetic fields that originate from the interior of the 

Earth's regarding the internal structure and seismic activities. Geophysical 

measurements are focused on the variations of these electromagnetic and gravitational 

https://en.wikipedia.org/wiki/Rain_gauge
https://en.wikipedia.org/wiki/Rain_gauge
https://en.wikipedia.org/wiki/Accelerometer
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waves in space and time. For instance, a gravimeter or a gravitational wave sensor as 

well as a magnetometer can be used to monitor changes in the gravitational and 

magnetic field (Mussett and Khan, 2000). Geophysical monitoring can provide 

information concerning temporal and spatial changes in a number of physical factors 

within a slope (Takahashi et al., 2006). The key factors that can be monitored using 

geophysical methods are listed table 2.2.  

4. Remote Sensing 

There are several remote sensing technologies employed for various purposes 

including Ground-based Radar Interferometry, Satellite-borne Radar Interferometry, 

Photogrammetry, and airborne laser scanning. Comprehensive literature on remote 

sensing techniques with regard to soil/rock mass characterization can be found in 

research publications such as Sturzenegger and Stead (2009), Warneke et al. (2007) 

and Tonon and Kottenstette (2007).  

 

2.7 Artificial Neural Networks (ANN) 

2.7.1 Introduction 

ANNs are sophisticated connectionist systems inspired by human brain used in 

computational processes to establish the relationships between certain inputs and 

outputs from experience (Chen et al., 2019; Tsangaratos, 2012). ANNs are machine 

learning algorithms capable of learning, recalling and generalizing. Generally, ANNs 

belong to a group of advanced modelling techniques which are capable of modelling 

extremely complex systems. In the past few decades, ANNs have been used to predict 

the outcomes of independent variables for different systems. In geophysics and 

geotechnical processes, ANNs are employed in prediction of the stability status of 

slopes. The most common ANNs used in solving geophysical problems are the multi-

https://en.wikipedia.org/wiki/Gravimeter
https://en.wikipedia.org/w/index.php?title=Gravitational_wave_sensor&action=edit&redlink=1
https://en.wikipedia.org/wiki/Magnetometer
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layer perceptrons (MLPs) usually trained using back-propagation algorithm (Adeli, 

2001; Shahin et al., 2001; Rumelhart et al., 1986). 

 

Table 2.2: An outline of landslide features analysed using geophysical methods 

(Whiteley et al., 2019) 

Slope factor Property contrast Monitoring technology 

Landslide extents 

(x, y, z) 

Slip surface (subsurface 

and surficial extent) caused 

by or indicated by changes 

in density, water content, 

etc., of material 

Electrical resistivity, seismic 

reflection, seismic refraction, 

surface wave methods, 

ground‐penetrating radar 

(Chambers et al., 2011) 

Subsurface 

material type and 

structure 

Material density 
Microgravity  

(Sastry and Mondal, 2013) 

Relative degree of 

saturation 

Electrical resistivity, 

electromagnetics  

(Springman et al., 2013) 

Relative clay content 

Electrical resistivity, 

electromagnetics  

(Göktürkler et al., 2008) 

Material velocity (as a 

function of density) 

Seismic reflection, seismic 

refraction, surface wave methods 

(Renalier et al., 2010) 

Water table 

Height of water table 

Electrical resistivity, 

electromagnetics, seismic 

refraction  

(Le Roux et al., 2011) 

Relative flow direction 
Self‐potential  

(Perrone et al., 2014) 

Tension features 

(e.g., surface 

fractures) 

Saturation contrasts (e.g., 

preferential infiltration 

pathways) 

Electrical resistivity, 

electromagnetics, 

ground‐penetrating radar, 

self‐potential  

(Bièvre et al., 2012) 

Compression 

features (e.g., 

ridges) 

Variations in material 

composition 

Electrical resistivity, 

electromagnetics, 

ground‐penetrating radar  

(Schrott and Sass, 2008) 

 

2.7.2 ANN Basics 

Rafiq et al., (2001) defines an ANN as “a computational mechanism able to acquire, 

represent, and figure mapping from one multivariate space of information to another, 
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given a set of data representing that mapping”. It usually consists of numerous 

processing elements that are interconnected to each and working in collaboration to 

accomplish a given function.  

ANNs are classified based on a variety of factors including training procedure and the 

number of layers. In terms of layers, they can be single or multi-layered. Based on 

training procedure, they can be classified under supervised or unsupervised training. 

In this case, unsupervised training means training an input data set without knowledge 

of the output. For supervised learning, training an input data set requires clear 

knowledge of the output and as such a comparison is made between the input and 

desired output (Adeli and Wu, 1998).  

A general model of a single layer (or perceptron) consists of a single input and a single 

output. The product of the scalar input and the scalar weight together with a bias 

(offset) are fed to a summer, the result of which is sent into a transfer (activation) 

function producing an output (figure 2.7). Generally, the neuron output is calculated 

as 

 a f wp b             (2.11) 

with a as the output, f is the transfer function, w is the weight, p the input and b is the 

bias value. If a single artificial neuron has more than one input, the dimensions of 

these inputs is represented by a vector, while the corresponding weights by a matrix. 

Transfer functions are either linear or nonlinear based on the nature of the problem 

under consideration. However, linear, hard-limit and log-sigmoid transfer function are 

commonly used (Anderson, 1995). 
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Figure 2.7: Artificial Neuron Model (modified from McCulloch and Pitts, 1943) 

 

2.7.3 ANN Architectures 

In a given network, a number of neurons can be combined to form layers. A complex 

network consists many interconnected layers. A layer consists of an output vector, 

transfer function, weight matrix, boxes, bias vector and summers. The different types 

of networks are classified according to the input characteristics and mathematical 

procedures required to compute the outcome. The most common ANN architectures 

include (Masri et al., 2000): 

1. Feedforward Neural Network – FF-NN is the most basic form of ANN in which 

data processing is unidirectional i.e. data passes through the input nodes and exit 

on the output nodes. In other words, it has a front propagated wave and no back 

propagation by using a classifying activation function usually. This kind of ANNs 

are used in computer vision and speech recognition applications. 

2. Radial basis function Neural Network – RBF-NN functions work by comparing 

the distance of a given point with the centre, similar to the radius and centre of a 

circle. The model relies on the radius which is usually a Euclidean function to 

classify points into categories. One advantage of RBF based ANNs lies in the 

ability to have a memory i.e. remembering the previous output that can then be fed 

in the next time-step. They are used mainly in power restoration systems. 

3. Kohonen Self Organizing Neural Network – In this kind of ANN, the input 

vectors are organized into a discrete map referred to as Kohonen map. The map is 
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usually trained to create its own organization of the training data. The self-

organization process occurs into stages whereby in the first phase every neuron 

value is initialized with a small weight and input vector, while in the second step, 

the neuron closest to the point is the ‘winning neuron’ and the neurons connected 

to it also move towards the point. By repeated iterations, all the points are 

clustered and each neuron represents each kind of cluster. They are mainly applied 

in pattern recognition.  

4. Recurrent Neural Network (RNN)/Long- Short-Term Memory – This ANN 

works on the principle of saving the output of a layer and feeding this back to the 

input to help in predicting the outcome of the layer. In this case, each neuron will 

remember some information it had in the previous time-step, making each neuron 

act like a memory cell in performing computations. Therefore, the neural network 

will work on the front propagation but remember what information it needs for 

later use. Here, if the prediction is wrong, the learning rate or error correction is 

used to make small changes so that it will gradually work towards making the 

right prediction during the back propagation. RNNs are mostly applied in text to 

speech (TTS) conversion models and auto correct text programs.  

5. Convolutional Neural Network (ConvNet) - in this neural network, the input 

features are taken in batches like a filter which helps the network to remember the 

images in parts and can compute the operations. ConvNet are applied in signal 

processing and image classification models. The technique of image analysis and 

recognition is usually applied when agricultural and weather aspects are extracted 

from the open source satellites like LSAT to predict the future growth and yield of 

a given farmland.  
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6. Modular Neural Network – MNNs consist of a combination of different 

networks working independently and contributing towards the output. Each 

individual neural network has a set of inputs which are unique compared to other 

networks in terms of its structure and sub-tasks performed. These networks work 

independently and as such do not signal each other in accomplishing the tasks. 

MNNs are applied in many fields of study ranging from biological, psychological, 

hardware, to computational systems. 

 

2.7.4 ANN Models  

ANN models are specially designed by following certain rules and procedures 

depending on the problem being addressed. The three standard procedures involve 

identification of appropriate data consisting of input and output (target) data 

emanating from rigorous experiments or full-proof numerical models, using these data 

to train the network (i.e. to compute the connection between the inputs and outputs) 

and finally testing the workability of the trained network with another set of data to 

obtain a comparable output to the target (Caner et al., 2011). The most important 

attribute in ANN modelling is having a thorough understanding of the physical 

problem. The general procedure involves first identifying the input and output 

variables for the model (Maier and Dandy, 1997).  

Basically, an ANN contains a set layers and nodes that are organized in a certain 

structure to perform a particular function in a particular manner at a given time. There 

is a large number of ANNs distinguished from each other in terms of the transfer 

function used to get the output from the nodes, connection between the nodes of the 

layers, method of determining the weights between the nodes of different layers, the 

direction of information flow, and the number of layers (Sinha et al., 2015). Basically, 
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an ANN consists of three layers i.e. input, hidden and output layer as shown in 

Figure 2.8 (Caner et al., 2011).  

 

 

Figure 2.8: General configuration of a three-layered feed-forward artificial neural 

network (Caner et al., 2011) 

 

An ANN consists of a set of processing elements referred to as nodes connecting one 

layer to another. The number of nodes in input and output layers is a function of the 

intricacy of the problem at hand though determined from a trial and error process. The 

relative connection strength between nodes is achieved by assigning a synaptic weight 

to each link that is used to predict the input-output relationship (Sinha et al., 2015). 

The output, yj of any node j, is given as 

  1

z

j i i ii
y f W X b


            (2.12) 

where ,  z is the total number of inputs to node j, Wi is the input connection pathway 

weight, bi is the node threshold, Xi is the input received at node j and f is the transfer 

function.  

Conventionally, a sigmoid transfer function is preferred as it is continuous and 

differentiable everywhere defined as ASCE, (2000a) 

   
1

1 x
f x

e



.           (2.13) 

https://www.hindawi.com/journals/aai/2011/686258/fig1/
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where x is the input variable. For supervised learning, every input data feed in to the 

network will be trained comparing with the desired output. In that case, an error will 

appear together with the desired and the actual output. This error should be minimized 

and NN should be trained adhering to that. This is the case for most Back-Propagation 

(BP) algorithms. The error generated when the ANN output is compared with the 

target output, is given by  

    
2

i iE x y t
 

             (2.14) 

where  is the number training patterns, ε is the number of output nodes, yi is the 

ANN generated output and ti the component of the desired output/target T. The error 

obtained is then fed back into each thereby updating the weights (ASCE, 2000b). 

 

2.7.5 ANN Model Development  

As a convention in most ANN models, about 70% of the data is set aside for model 

training and testing (calibration datasets) while 30% is reserved for model validation. 

However, it should be noted that fixed requirements regarding the percentage of data 

to be utilized in each category do not exist. In most geotechnical problems, ANN 

models are developed by arbitrarily dividing the data into their subsets (Shahin et al, 

2004).  

Data pre-processing is an important exercise in ANN model development and 

applications. In this process, the activation function adjusts the output of each neuron 

to its limiting values. For instance, the data will be scaled and normalized to a range 

between -1 and 1 for the hyperbolic tangent function and a range of between 0 and 1 

for the logistic sigmoid function (Masters, 1993; Stein, 1993). 

The most common scaling and normalization is the simple linear mapping method 

where the variables’ extreme to the neural network’s practical extreme is adopted 
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(Masters, 1993; Stein, 1993). In this case, for a variable, x, with a maximum and 

minimum values of xmax and xmin, respectively, the scaled value, xn , is computed as  

 
min

max min

n

x x
x

x x





           (2.15) 

Determination of ANN model architecture is carried out after pre-processing and data 

division. In this step, the number of optimal hidden layers is ascertained through a 

number of iterations (Maier and Dandy, 1997). During learning or training, the 

connection weights are optimized. The most frequently used training method is the 

back-propagation algorithm (Rumelhart et al., 1986; Brown and Harris, 1994).  

Cross-validation is performed on the test data set in order to make a decision on when 

to stop training and avoid overfitting (Stone, 1974). After training, validation of the 

trained model is done utilizing validation set of data with the aim of evaluating the 

ability of the model to generalize and establish the input-output relationship.  

The prediction performance of the ANN model is usually measured using statistical 

tests such as the root mean squared error (RMSE), the mean absolute error (MAE) and 

the coefficient of correlation (r). First, the coefficient of correlation is a standard 

statistical test used to measure the relative correlation and goodness-of-fit between the 

predicted and observed data. The correlation coefficient varies from 0 to 1 where r = 1 

denotes strong correlation and r = 0 representing the weakest correlation. 

Mathematically, the correlation coefficient is computed as 

 
i j

j j

y d

y d

C
r

 
              (2.16) 

for which 
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where n = number of data; 1 2 3, , ...j ny y y y y  is the predicted (model) output; 
i jy dC is 

the covariance between the model output ( jy ) and the desired output ( jd ); y the 

mean of the model output, jy ; 1 2 3, , ...j nd d d d d is the desired (observed) output; 

jy is the standard deviation of the model output, jy ; 
jd is the standard deviation of 

the desired output, jd ; jy ; and d  the mean of the desired output. 

On the other hand, root mean squared error refers to the measure of error computed as 

(Hecht-Nielsen, 1990) 
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while MAE is calculated as (Twomey and Smith, 1997)   
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2.7.6 Application of ANNs in Slope Stability Analysis 

ANNs have found application in many disciplines of arts and sciences for regression 

analysis, prediction and forecasting (Jenkins, 1999). In slope stability studies, ANNs 

have been employed mostly to predict the health status of embankments and slopes. A 

number of researchers have strived to apply ANNs with substantial success such as 
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stability analysis of slopes (Sakellariou and Ferentinou, 2005), digital soil mapping 

(Behrens et al., 2014), stress- strain modelling of soils (Ellis et al.,1995), assessment 

of geotechnical properties (Yang and Rosenbaum., 2002), capacity of driven piles in 

cohesionless soils (Abu Kiefa., 1998), and optimum moisture content in chemically 

stabilized soils (Alavi et al., 2016). 

A research study by Ni et al. (1996) postulated a model which combines fuzzy sets 

theory with ANNs to assess slope stability. In their approach, several input parameters 

including maximum daily precipitation and maximum hourly precipitation, height, 

geological origin, land use, depth of weathering, gradient, direction of slopes, 

horizontal and vertical profile, location, soil texture and vegetation were used, while 

the output was being the slope failure potential. This model produced a good 

agreement with the analytical model.  
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CHAPTER THREE 

SLOPE STABILITY MODEL FORMULATION AND EXPERIMENTAL SETUP  

3.1 Introduction 

Soil mass wasting processes especially debris flows and landslides in sloping 

locations of the earth’s crust have become regular events in the past few decades and 

as such they form the most significant factors that should be considered during local 

or territorial management and physical planning. An in-depth study of these disaster 

risk scenarios will serve the critical purpose of reducing such calamities and by 

extension lay ground for developing a forecasting and prevention framework. It is 

therefore pertinent to develop methodologies of data collection using numerical 

approaches and real-time monitoring system in addition to fabrication of intelligent 

artificial neural network-based models on the available scenarios in order to 

implement an early warning system or forecasting platform. To achieve this, a set of 

electrical, optical and soft computing instruments were selected based on a number of 

factors including instruments vulnerability, time to install and get results, availability, 

ruggedness, site accessibility, and weather conditions, to develop a monitoring 

system.  

Experimental tests were carried out at the laboratory level using a hybrid Solar-

Powered Monitoring (SPM) system that consists of a combination of both electrical 

and optical transducers and customized to relay processed information via wireless 

broadcasting to a remote server. Deriving from the experimentally archived data, an 

intelligent artificial neural network was developed to learn from the acquired array of 

datasets and predict the health status of slopes.  

In this chapter, an outline of the principal methods of investigation and monitoring 

techniques are discussed. In summary, the investigation and monitoring methods are 
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divided into three main groups: numerical model formulation, real-time monitoring 

technology and fabrication of artificial neural network hierarchy. Details of the 

equivalent theoretical background for the derivation of numerical models are exposed, 

theory and working principles of the various transducers and system architecture are 

discussed and finally the basic structures of the ANN are described. The statistical 

tools and assumptions used in analysis and optimization in the study are also 

presented. 

 

3.2 Study Area  

Soil samples used in the experiments were excavated from Taptengelei and Kamelil 

escarpment along the foothills of Tinderet, Nandi County. Geographically, Kamelil 

area lies within latitude 0° 34' North and longitudes 34° 44' - 35° 25' to the East with 

an altitude ranging from 1,300 to 3500 m above sea level (Republic of Kenya, 2014). 

Geological survey of this site reveals that the basement system consists of 

metamorphosed and sheared volcanic rocks mainly of original basaltic composition 

belonging to the broader Nyanzian System which consists of mudstones, grits and 

phyllites of which the principal minerals are montmorillonite, quartz, feldspar, micas 

and actinolite. The resultant soils are well drained, shallow, dark red to brown, friable 

sandy clay, rocky, bouldery with acid humic topsoil manifesting as either dystric 

regosols, lithosols, humic cambisols or rock outcrops (Huddleston, 1951). 

The second study area, i.e. Taptengelei (35o21'00''E, 00o40'00''E), is an area known by 

locals to be very volatile and prone to landslides during prolonged rain seasons. 

Topographically, there exist elevations ranging from 2000 – 2400 m above sea level 

with slope gradients in the range of 0o - 58o. The predominant soil type in this area is 

kaolinite clay. Most landslides were found to occur along the upper and mid sections 
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of the valley, where stratigraphy is characterized by a 0.5 - 5 m thick film of colluvial 

soil overlying the rock mantle (Republic of Kenya, 2014).  

 

3.3 Numerical Formulation 

3.3.1: Overview 

The study of land mass deformations and movements whether in sloping regions or 

dam walls has been done for many years by different researchers using several 

approaches to try and explain these disastrous spectacles. There exist a number of 

numerical methods employed for the stability analysis of pure soil, mixed rock-soil or 

pure rock slopes ranging from the conventional LE methods to the more complex 

probabilistic approaches (Chen, 2000). Currently, there is access to several methods 

for slope analysis with varying strengths and limitations. Generally, there are three 

approaches widely used by engineers and geophysicists worldwide to model 

landslides and other related soil mass flows (Geist et al., 2009). 

The first approach is mostly applied to submerged masses where interactions with 

water, free surface flows and landslide kinematics are computed using the full Navier-

Stokes,  Euler or potential flow equations (Løvholt et al., 2015; Geist et al., 2009; 

Tappin et al., 2008; Watts et al., 2003; Lynett and Liu, 2002). These models are 

limited in application as they cannot be applied to subaerial slope materials. 

In the second approach, also known as longwave model, a time dependent landslide 

kinematics theorem is computed by taking the slope material as a secondary and 

coupled fluid film obeying longwave approximations (Cecioni and Bellotti, 2010; 

Fuhrman and Madsen, 2009; Ataie-Ashtiani and Jilani, 2007). Longwave models are 

generally complex in terms of computational procedures and limited physics applied; 
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hence they are usually more applicable in modelling deeply submerged underwater 

landslides. 

The third approach involves a detailed appraisal of either landslide kinematics, 

deformations and/or both to model full 3D multi-physics/multi-material Euler 

expression, Navier-Stokes equations or fully nonlinear potential flow equation. These 

models can be formulated as a one-way coupling e.g. for a rigid body, or computed as 

a two-way coupling e.g. for solid or deformable slides (Grilli et al., 2010; Abadie et 

al., 2010; Weiss et al., 2009).  Notably, these models are more appropriately applied 

to subaerial landslides as is considered in this study.  

For all the above-mentioned approaches, scientific models are employed to aid in the 

understanding of these phenomena. A scientific model is a depiction of a physical 

process in the real world using something else to represent it, for purposes of 

predicting its characteristics in space and time. There are several types of models 

ranging from visual to mathematical/numerical and computer models. In addition, 

visual models represent intangible facts in form of pictures, diagrams, and flowcharts. 

On the other hand, numerical models use mathematical concepts to describe a 

particular phenomenon. Generally, Newton’s laws and their derived theorems are 

used to explain and simulate the behaviour of phenomena (https://study.com/ 

academy/lesson/scientific-models-definition-examples.html, accessed 11/03/2020). 

In this study, four models were proposed to aid in the understanding of soil mass 

movements. The first two, are physically-based models applied on an idealized 

spherical-cap-shaped soil mass undergoing translational displacement, the third is an 

explicit hydro-dynamical numerical model derived from the conventional Mohr-

Coulomb postulates to be applied on any given slope, and finally a BP-FF ANN 

model for landslide prediction. 

https://study.com/%20academy/lesson/scientific-models-definition-examples.html,%20accessed%2011/03/2020
https://study.com/%20academy/lesson/scientific-models-definition-examples.html,%20accessed%2011/03/2020
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3.3.2 Spherical-cap-shaped slope morphology under planar translational failure 

3.3.2.1 Introduction 

This section if focused on the formulation and implementation of a numerical model 

applied on a special case of a spherical-cap-shaped soil mass on a convex 

configuration slope. Soil samples used for validation of this model were extracted 

from Kamelil escarpment. As alluded to earlier, soil movements occur when 

preparatory and triggering factors diminish the mobilized shear strength (Rybar et al., 

2002). Seismicity, storms and anthropogenic activities are the most common triggers 

of mass movements (Petley, 2009), as outlined in detail in chapter two.  

In this study, soil mass movement processes were studied with a view to develop 

physical models based on geomorphological (slope gradient, aspect, relative relief), 

soil characteristics (depth, structure, permeability, porosity), and hydrological factors, 

which can be employed in the characterization of a wide range of slope sections. For 

this case, empirical physics-based models are derived from first principles based on 

inertial forces that build up when a soil mass is inclined at an angle under modest 

wetting conditions. The objective of the study was to investigate the initiation of 

translational movement beginning from inertial forces acting on a soil mass, to the 

build-up of pore-pressures and shear stresses to the effect of these forces on the factor 

of safety and by extension the displacement downslope. 

 

3.3.2.2 Numerical Model Formulation  

A numerical model was proposed that describes the dynamics of a soil mass inclined 

at an angle, α, in a laboratory flume. In this study, a simplified case of a nearly 

concave-shaped slope section that resembles a spherical cap of relatively small height 

on a slope of approximately infinite lateral extent as depicted in Figure 3.1 below was 
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considered. The soil mass was considered as a homogeneous rigid-perfectly plastic 

material which undergoes shear failure when driving and frictional forces are not 

balanced. The volume in consideration is illustrated by the portion abcd which is 

approximated to a spherical cap of height Hcosα and base length L. From the 

definition of the volume of a spherical cap, the weight of a dry soil skeleton is derived 

as 
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where d is the dry unit weight of the soil defined by  

  
1

w
d

G

e


 


            (3.2) 

with G, the specific gravity of soil; and e, the void ratio. 

When the soil mass is exposed to wetting conditions usually through a rainfall 

simulator or irrigation event (introduction of water into the soil crystal matrix), the 

new weight of the saturated soil segment assuming there is negligible run-off is 
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where e is the effective unit weight of the soil defined by De Vleeschauwer and De 

Smedt (2002) as  

   
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H


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for which q is the additional weight on the soil surface by vegetation or structures. 

The factor m in equation (3.4) above is the wetness index defined by  Ray et al. 

(2010) as 

  
 

 h H h
h H h S n

m
H H

 
              (3.5) 



47 

 

where h is the saturated thickness of the soil above the failure plane and S = θ/n is the 

degree of saturation; n is the soil porosity and θ is the volumetric moisture content 

derived from the modified soil-water characteristic curve proposed by Fredlund and 

Xing (1994) as  
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      (3.6) 

where θs is the saturated volumetric water content, ψ is the soil suction, ψr is the 

residual soil suction, en is a natural number while β, , , are curve fitting parameters 

with β carrying the units of pressure.  

The mathematical model for the effective unit weight of the soil (equation 3.4) as 

proposed by De Vleeschauwer and De Smedt (2002) is valid with its assumption that 

water pressures in the wet pores are transmitted to the failure plane through the 

interconnected wet soil pores. In contrast, we propose that for more precise results, 

the unsaturated zone soil moisture content must be accounted for in the computation 

of the wetness index and the effective unit weight as opposed to earlier studies where 

effective unit weight of the soil was either considered for purely saturated conditions 

or on purely dry soil skeleton. Based on earlier studies by Sidle and Ochiai (2006), we 

propose substitution of the dry unit weight with the moist unit weight (γm) in equation 

(3.4) resulting in 

   
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1em m s
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where  

           1 1m wG n                         (3.8)  
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is the moist unit weight of the soil, and w  is the unit weight of water. 

 

 

 

Figure 3.1: Schematic illustration of a spherical-cap-shaped slope section (shaded) and 

an extract of the inertial forces acting on it 

 

Therefore the total weight of the moist but unsaturated soil (Wmoist) will now be 

obtained by utilizing equation (3.7) as 
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Consequently, the effective normal and shear stresses for moist soil mass respectively 

are derived (considering the base area = πL2/4) as 
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The empirical model for precipitation representing a single rainfall event over a 

period of time is derived from an odd Fourier Series expression as 
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where k and  are curve fitting parameters, determined from experimental validations. 

Conventionally, unsaturated soil hydraulic properties are evaluated from water 

retention characteristic curves. These curves are used to give the relationship between 

water content (θ) and water (matric) potential (h) in the soil. van Genuchten (1980) 

proposed a mathematical model that has been used in describing water retention 

curves as  
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where  S is the effective water content, θ is the volumetric moisture content, while θs 

and  θr are  saturated and residual water contents respectively, h is the soil matrix 

potential,  is related to the inverse of the air entry suction, and n is a measure of the 

pore-size distribution. Therefore, as infiltration proceeds, the pore-water pressure in 

the soil mass at point h with respect to the phreatic surface is given by 

2cosw wu h H    .                   (3.14) 

An empirical equation relating the apparent soil cohesive stress and volumetric water 

content is proposed taking the form, 
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where ϖ is the coefficient of cohesive stress which is a function of porosity, surface 

tension and matric suction within the soil grains, while ϑ is a curve fitting parameter. 

Assuming that there is minimal seepage through the soil mass in consideration and 

that the groundwater level in this segment is parallel to the incline plane, then the 

shear stress of the soil with effective cohesion c and effective angle of shear 

resistance  , is given by (Bishop, 1967): 
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Assuming that slope stability is characterized by the Mohr-Coulomb failure criterion 

and that there are no external loads, the factor of safety will then be computed as 
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The time-independent displacement component of the soil mass downslope which is a 

function of the FS, slope and internal friction angle has been modelled by the relation 

       
21

(1 ) sin cos tan
2

S g t FS       ,         (3.18) 

where   is a curve fitting parameter.  

 

3.3.2.3 Experimental setup and design 

A solar-powered monitoring (SPM) system was fabricated comprising of a model 

flume (hereinafter referred to as the ‘Chep-flume’) installed with both electronic and 

optical displacement sensors connected to a data acquisition panel and a rainfall 

simulator system. The dimensions of the Chep-flume were 1.6m long, 0.6m width and 
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0.5m high (figure 3.2 - schematic diagram and picture). The flume framework was 

made from steel angle bars while the sides were made from sheets of plywood sheets. 

The base was made of thick iron sheeting material covered on the upper part by a 

layer of rough concrete.  The inclination/slope angle of the flume was achieved by the 

use of a hydraulic jack that could lift or lower the rear side.  

A rainfall simulation system consisting of a water source, sprinkler set and flow rate 

controller was designed. The sprinkler system was composed of an array of equally 

spaced nozzles placed 2 m above the flume. It was mounted on the system in such a 

way that the flow rate could be controlled remotely via an electronic switch. 

Monitoring of the incident rainfall was realized via a rain gauge which was wirelessly 

connected to a Steven’s™ Vantage Console for onward transmission of data to a 

remote computer. 

Several transducers and sensors were connected to the system for purposes of 

monitoring physical parameters including pore-water pressure, volumetric water 

content and translational displacement. Two moisture probes, two vibrating wire 

piezometers and one set of ultrasonic sensors were installed on the system at different 

points. Pore-water pressure in the soil mass was measured by means of a vibrating 

wire piezometer connected to a 4–20-mA data logger. Soil moisture content and 

displacement were monitored using Arduino-based resistivity and ultrasonic 

transducers, respectively. Arduino-based sensors were connected to a microprocessor 

for interface with a PC. A flowchart of data from the array of transducers to the data 

loggers connected to the remote server is shown in figure 3.3. 

 

https://www.tandfonline.com/doi/full/10.1080/24749508.2019.1608408#F0004
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Figure 3.2: SPM system setup (schematic diagram and picture) (Source: Author, 2020) 

 

 

Four experiments were carried out with a rainfall simulator, while one control system 

was set up with no rainfall applied to it. For each soil sample collected, approximately 

80% of it (≈120 kg) was placed in the model flume to form a single flat layer and then 

the remaining 30 kg was poured at the centre to form the spherical-cap-shaped mass. 

No compaction of the soil was conducted. One side of the flume was then tilted at an 
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angle of 58° to the horizontal using a high-lift jack. Failure of the soil mass was 

facilitated by the use of an artificial rainfall from the simulator. The spherical-cap-

shaped model of the slope was chosen from the fact that, for a given slope of 

relatively high gradient with negligible vegetation cover, due to uneven erosion 

incidences, moderate bump-shaped soil masses are left behind which resemble 

spherical caps of finite length along the incline plane. 

 

 

 

Figure 3.3: SPM flowchart 
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3.3.3 Double-Spherical-Cap-Shaped Slope Morphology Under Planar 

Translational Failure  

3.3.3.1 Introduction 

Along most slopes of relatively high gradient, the terrain is never uniform but rather 

composed of majorly hill-like or more precisely, spherical-cap shaped soil masses of 

height less than 5 m. In this study, we consider a model of a slope section composed 

of a homogeneous rigid-perfectly plastic material having a nearly double spherical-

cap-shaped morphology defined on the lower side by a concave-shaped failure surface 

as illustrated in Figure 3.4 below.  

The pertinent assumption in this model is that failure must be preceded by crack 

formation at the head-side of the landmass while the toe must be saturated hence 

eroded. Cracks are usually caused by differential settling, drying and shrinking of soil, 

as well as associated construction activities. For unsaturated conditions, the crack 

must be deep enough to make a connection with the ground water table or perched 

phreatic surface.  

During a rainfall storm, three scenarios are likely to manifest. Primarily, overland 

waterflow will fill the crack thus pushing the soil mass laterally and also increasing 

negative pore-water pressure for the region just above the ground water table resulting 

into formation of a failure plane, which is concave-shaped because of preferential 

gravitation water flow defining the phreatic surface. Furthermore, infiltration of rain 

water into the soil mass will act to increase its weight and by extension the 

gravitational driving force downslope. Finally, for shrinking and swelling soils, 

infiltration of rain water will lead to swelling especially for regions above the phreatic 

surface thus pushing it downwards.  
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At any given time, when driving forces exceed the shear strength of the soil mass, 

failure can occur in many ways but in general two forms are dominant. First, when the 

soil mass becomes saturated, considering seepage force and steady infiltration at the 

same time, it will undergo liquefaction and therefore flow like a non-Newtonian fluid 

along the failure plane; and secondly, the unsaturated soil mass will undergo 

translational failure (even when the failure plane is nearly circular) downslope along 

the failure plane (in this case seepage force is ignored) as long as the failure line is 

composed of saturated granules thus acting as a lubricating surface. 

 

3.3.3.2 Numerical Model Formulation 

In this study, a derivation of kinematic and constitutive equations was conducted 

relating the inertial forces acting on a slope material (a soil mass) and the factor of 

safety at different slope angles for a given set of hydrological conditions. For 

mathematical convenience, we consider a simplified case of a soil mass resembling a 

spherical cap on a slope of height Hcosα (measured from a line defining the incline 

plane) but with infinite lateral extent. It is assumed that after failure, the vacancy/hole 

left when the soil mass undergoes translation downslope or is liquified, resembles a 

mirror image of the upper spherical cap thereby leading to the conclusion that the total 

volume of soil failed is equivalent to two spherical caps sharing a common base 

(double spherical-cap-shape) as illustrated in figure 3.4. 

The volume in consideration is illustrated by the portion abcdefg (figure 3.4) which is 

approximated to double spherical caps of base length L. From the trigonometric 

relations involving spherical caps, the weight of the double cap for moist soil 

(computed through geometry of the slope) will therefore be given by 
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where  is the slope angle and e is the modified effective unit weight of the moist 

soil.  

In this consideration, it is assumed that all the incident rainfall infiltrates into the soil 

mass neglecting surface runoff and/or evaporation. It is further assumed that surface 

runoff can only occur when the soil mass in consideration is fully saturated i.e. 

precipitation rate is less than equilibrium infiltration capacity. As the soil mass is 

subjected to moderate infiltration rate, the volumetric water content continues to 

increase thereby necessitating a corresponding change in pore-water pressure defined 

by  

2cosw wu h H    ,                   (3.20) 

where w is the unit weight of water. 

Considering the base area of a spherical cap as,  2 2 2cos
4

curveA L H


  , the 

effective normal ( n )and shear stresses ( d ) for this moist soil mass respectively is 

then computed as 
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Figure 3.4: A section of a concave shaped rigid-perfectly plastic soil mass on a slope with 

an exploded view of the shaded part of the slope indicating Inertial forces acting on the 

soil mass. 

 

Considering that the groundwater level coincides with the failure plane, then the shear 

strength of the soil with effective cohesion, c', and effective internal angle of friction, 

ϕ', is given by (Bishop, 1967): 

  tanr c u       

or re-arranging to make use of equations (3.20) and (3.21), to obtain, 

        2 2cos cos tanr e wc H H           
, 

or         2cos tanr e wc H        .        (3.23) 

Bearing in mind that slope stability is controlled by the Mohr-Coulomb failure 

criterion void of external stresses, then the factor of safety is therefore derived as 
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The time-dependent displacement of the soil mass downslope which is also a function 

of the crack depth, factor of safety, slope angle and internal friction angle will take the 

form of equation (3.18).  

 

3.3.3.3 Experimental setup, design and assumptions 

The samples used in the experiment are friable sandy clay soils excavated from 

Taptengelei escarpment (35o21'00''E, 00o40'00''E) averagely composed of 50% sand, 

18% silt and 32% clay (Gachene and Kimaru, 2003). Validation experiments were 

done using the SPM system as described in section 3.3.1.3 above. A set of sensors 

including two moisture probes, two vibrating wire piezometers and one set of 

ultrasonic sensors were installed in the flume. A stand-alone wireless rain gauge was 

positioned next to the flume. All the sensors were attached to the SPM system for data 

acquisition.  

A total of five soil samples were collected from the study site, four of which were 

exposed to the rainfall simulation process while one was used as a control experiment 

for comparative study. Each of the uncompacted and unconsolidated soil samples 

were placed in the flume carefully so as to minimize structural disturbance. The setup 

was prepared in such a way that only water from the rainfall simulator was allowed to 

infiltrate into the soil sample so that the volumetric water content measured was 

confined to infiltration only. Each soil sample was placed in the flume and exposed to 

constant rainfall intensity and duration. Rainfall simulation tests were performed on 

each soil sample at different angles ranging from 30°–70° for a period of about 45 

minutes. An embedded flow rate control device was fitted to a simple shower system 

to simulate rainfall at an intensity of approximately 45 mm/hr. For each slope angle, 
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parametric data of water content, pore pressure and displacement were collected under 

these constant rainfall conditions until mass failure occurred (Orense et al., 2004). 

These experiments were anchored on three major assumptions. First, it is assumed 

that all the incident rainfall water should infiltrate into the soil with no runoff or radial 

seepage. Secondly, the variation of the mean values of VWC and PWP with time 

remained unchanged for all the experiments. Finally, it was assumed that the soil 

mass will become nearly saturated after 45 minutes when a rainfall intensity of 45 mm 

hr−1 is maintained. 

 

3.3.4 Hydromechanical Landslide Model  

3.3.4.1 Introduction 

Slope failures which have had disastrous impacts to human life and the environment 

in general have been linked to many factors including lithological properties, soil 

behaviour, slope geometry, hydraulic conductivity, rainfall intensity and duration, 

surface cracks and percentage of vegetative cover (Chen and Zhang, 2014). Slope 

stability analyses especially those based on flume-based experiments identified grain 

size, sand content, shear strain and maximum pore pressure as the triggering factors 

(Olivares and Damiano, 2007).  

Earlier research reports had also indicated a strong dependence of soil shear strength 

on the amount of soil moisture present (Muntohar and Liao, 2009; Rahardjo et al., 

2007). In essence, the most dominant factors that have been pinpointed to modify the 

stability status of slopes in unsaturated soils are hydrological in nature with rainfall 

intensity and duration emerging conspicuously as the key parameter (Zhao and Zhang, 

2014; Ray et al., 2010).  
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Over the years, researchers have employed several models in varied forms and 

scenarios to analyze hydrologically influenced landslide processes and mechanisms. 

The two dominant approaches utilized in most scientific studies are physically-based 

and statistical models. Statistical models are based on relations and assumptions 

between triggering factors and the probability of occurrence of slope failure, while 

physically-based models employ the relationship between soil water content and 

predisposing aspects to analyze landslide phenomena (Wu et al., 2015; Springman et 

al., 2013). Because of the spatial-temporal variability of landslide processes, 

physically based models are preferred over statistical ones.  

In this study, a hydro-dynamical empirical equation has been derived that falls under 

the broader category of physically-based models, to describe rainfall induced 

landslide phenomena. This model as derived from first principles, outlines the effect 

of VWC derived from rainfall events, on the slope parameters ranging from the 

resultant inertial forces to slope failure due to shear stress. The model was then 

validated by experimental tests on a laboratory flume. The ultimate goal in this 

research study was twofold: firstly, is to derive and validate a mathematical 

expression that describes the dependence of the factor of safety (FS) and eventual 

slope failure on the VWC, and secondly, to ascertain the minimum value of the VWC 

that can cause slope stability for purposes of developing an early warning system. 

 

3.3.4.2 Numerical Model Formulation 

Physical processes are usually described by mathematical models in form of equations 

for purposes of enhancing the understanding of the scientific facts associated with 

them. In this study, we considered a soil mass located on a slope of infinite lateral 

extent inclined at an angle  as a homogeneous rigid-perfectly plastic material (as 
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shown in figure 3.4) held in position by basal friction due to cohesive forces between 

soil grains and/or internal friction along a linear failure plane as our base prototype. 

From theorems of mechanics, the downward component of the gravitational force 

along the incline plane for moist soil will take the form, 

   sin  1- 1 sind T s wF m g G n V            (3.25) 

where w is the unit weight of water, n is the porosity, V is the total volume of the soil, 

mT = ms + mw is the total mass of the moist soil, and  is the volumetric moisture 

content.  

The resultant resistive force considering the friction component at the base of the soil 

mass with the coefficient of dynamic friction, tan  , is given by 

     1- 1  cos tanr s wF G n gV     ,      (3.26) 

with  as the soil internal angle of friction. 

For cohesionless soils such as coarse sand, Newton’s second law of motion will yield 

      1- 1  sin 1- 1  cos tans w s wgma G n V G n gV          , 

or     sin cos tana g     .        (3.27) 

Askarinejad et al. (2012) formulated a simplified equation of defining apparent 

cohesion as a soil property dependent on the degree of saturation (Sr=θ/n), matric 

suction (ua - uw) and internal friction angle (), mathematically expressed as,  

    tanr a wC S u u   .         (3.28) 

Therefore, the cohesive force component in three degrees of freedom is derived from 

equation (3.28) as, 

   
3

 cos tan
2

r a wcF AS u u    ,       (3.29) 

where A is the cross-sectional area of the base along the plane. 



62 

 

Consequently, by taking into consideration equation (3.29), Newton’s second law of 

motion law for cohesive soils will therefore be derived as 

       
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Equation (3.30) defines the tangential acceleration as a function of the slope angle, 

internal friction angle, slope height, pore water pressure and water content, as 

opposed to earlier models which incorporated many other parameters such as 

cohesive stress. 

Computationally, the factor of safety is defined as the ratio of resistive to driving 

forces for a given soil mass on a sloping plane. For the two scenarios i.e. for 

cohesionless and cohesive soil models, the factors of safety respectively are expressed 

as 

tan
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F
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F




           (3.31) 

and  
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.  (3.32) 

While equation (3.31) is a standard expression for the factor of safety for many non-

cohesive soils, as conventionally derived by geotechnical engineers, equation (3.32) 

as derived in our study, differs substantially from conventional constitutive equations. 

In equation (3.32), the FS in the model is expressed as a function of the slope height 

and angle, porosity, internal friction angle, matric suction and VWC. This equation is 

simplified in the sense that once the slope height and angle of a soil mass are 
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ascertained, slope stability measurements will only require two sets of sensors (i.e. 

PWP and VWC transducers) as opposed to conventional models requiring monitoring 

of very many parameters. More precisely, measurement of soil cohesion is usually 

tedious and relatively expensive as it requires a triaxial machine. In this model, the 

cohesion term is simplified by expressing it in terms of the degree of saturation (and 

by extension VWC) and PWP, making it comparatively easier to monitor. 

According to studies by Vanapalli and Fredlund (2000), it is desirable to use the 

normalized water content in the calculation of factor of safety which was derived by 

van Genuchten (1980) as 

r

s r

 

 


 


            (3.33) 

where  is the water content, r and s are the residual and saturated water contents 

respectively. 

The equation for the factor of safety (3.32) describes the dependence of FS on 

normalized VWC only when other lithological factors of the soil mass are known. 

This is a remedy to geotechnical engineers and scientists who have employed so many 

sensors to measure several parameters that affect the FS. This therefore is a cost-

effective and relatively easier method of computing the FS.  

Finally, at the critical safety factor, i.e. FS = 1, the corresponding value of the critical 

water content after algebraic rearrangement of equation 3.32 yields 

3 1 tan
 1
2 (1 ) tans wHG n n

 

 

  
    

  

        (3.34) 

where  is a dimensionless curve fitting parameter. 

This is the threshold VWC necessary for a slope to fail. The threshold VWC is vital 

when designing an early warning system or disaster mitigation control centre. When 

the FS is equal or less than unity, there is high probability of shear failure. This 
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process can be quantified by monitoring local displacement of certain sections of the 

slope. The proposed empirical equation for displacement is derived from kinematic 

equations of motion i.e. 

    
2 3 1 1 1

 t sin cos tan tan
12 (1 )

1
a w

s w
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                (3.35) 

where  is a curve fitting parameter and t is the time duration. Again, in this regard, 

the time-dependent displacement has been expressed in terms of only three 

measurable parameters i.e. PWP, VWC and time. This therefore means that we can 

ascertain the time of onset of failure by making t subject of the formula in equation 

3.35. Experimentally, measured data of VWC, PWP and displacement can be 

computed in the equation to obtain the critical time for onset of slope displacement. 

 

3.3.4.3 Experimental setup, design and assumptions 

The soils used in the experiment were of igneous origin which belong to ferralic 

cambisols classification excavated from Kamelil escarpment (34° 44' - 35° 25'). 

Averagely, they are composed of 60% sand, 16% silt and 24% clay with a pH of 4.5–

5.0 (Gachene and Kimaru, 2003).  

An SPM system described in section 3.3.1.3 above was used for validation 

experiments. As alluded to earlier, the SPM system is composed of the flume, rainfall 

simulator, and embedded sensing elements including one wireless rain gauge, two 

moisture probes, two vibrating wire piezometers and one set of ultrasonic sensors. 

Data from all the sensors was captured via a control panel which could relay them 

wirelessly to a remote pc as depicted in the flowchart (figure 3.3). 

https://iopscience.iop.org/article/10.1088/2515-7620/ab50f6#ercab50f6f3
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A series of six experiments were setup to evaluate the performance of the derived 

hydromechanical model on a soil mass at different inclination angles (30o – 70o) in 

terms of the factor of safety (FS) and shear displacement. Since FS is a dependent 

variable i.e. a function of slope angle, pore-water pressure, internal friction angle and 

cohesive stress, which are also controlled by the VWC, it is computed from data 

obtained for each of these parameters based on the derived equation. 

  

3.4 ANN model  

3.4.1 Introduction 

ANNs possess very vital features which make them valuable and attractive for 

classification and forecasting processes. Most importantly, they are data driven self-

adaptive models which can learn from examples and identify unknown 

linear/nonlinear relationships among the input and output data. In this section, an 

ANN model, more specifically a multilayer perceptron (MLP) network trained with a 

back-propagation algorithm, is developed to estimate the Factor of Safety (FS) of an 

artificial slope confined in a laboratory flume. Soil sample parameters including 

apparent cohesion, slope angle, pore-water pressure and volumetric moisture content 

(which form the input layer) were varied during the experiment while computing the 

corresponding FS (output layer) using the hydro-dynamical landslide model discussed 

in section 3.3.4. Results obtained were used to develop the ANN model whose results 

were compared with the numerical results from the hydro-dynamical model. 

 

3.4.2 ANN model formulation 

Multilayer perceptron (MLP) networks are the most commonly used category of 

ANNs in the study of geotechnical processes. The architectural structure of MLPs is 
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normally feed-forward though they are trained with a back propagation (BP) 

algorithm. MLPs usually consist of an input layer, one or more hidden layer(s) and an 

output layer (Rumelhart et al., 1986). The most general procedure of developing an 

ANN model for a given task involves a number of basic steps namely identification of 

the inputs and output(s), pre-processing and division of data, pinpointing the 

appropriate network architecture, determination and optimization of the synaptic 

weights (training), setting up of the stopping criteria and model validation (Caner et 

al., 2011; Shahin et al., 2002).  

From experimental studies, five parameters were identified to have a significant 

impact on the stability of a cohesive slope. These parameters which include slope 

angle (α), internal friction angle (), cohesive stress (C), volumetric water content 

(VWP) and pore-water pressure (PWP) are treated as the inputs to the ANN model 

while the factor of safety (FS) is taken as the desired output. A cross-validation 

procedure is used as the stopping criterion in calibrating the ANN so as to avoid 

overfitting (Stone, 1974).  

During ANN model development, data was divided into three sets i.e. 247 data points 

were set aside for training, 50 for testing and 59 for validation, in line with the ANN 

modelling rules for a given statistical population (Shahin et al., 2004; Masters, 1993). 

The calibration data was further pre-processed by scaling or normalization to give a 

transformation bounded in the range of -1 to +1 with the aid of  equation (3.36)   

m

max min

value ean
n

X X
X

X X





,          (3.36) 

where Xn is the normalized dataset; Xvalue is the original/experimental value in the 

dataset; Xmin and Xmax is the minimum and maximum value of dataset respectively.  
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When data division and pre-processing was complete, the ANN model was trained by 

repeatedly presenting a series of input and output pattern sets to the network for it to 

learn from and establish a connection relationship. The network gradually learns the 

input/output relationship by adjusting the synaptic weights to attain minimal error 

between the target and predicted output from the training sample. Furthermore, cross-

validation is utilized as the stopping criterion in order to eliminate overfitting. 

Validation data sets were then used to evaluate the precision of the ANN model 

developed. 

The network architecture and parameter settings determine the performance rating of 

the developed ANN model. Usually, a trial-and-error method is used to determine the 

network architecture but in general, the universal approximation theorem proposes 

that a network with one hidden layer is capable of approximating any nonlinear or 

continuous function MLP (Cybenko, 1989). Generally, the transfer function, epochs, 

learning rate, number of hidden nodes and layers, determines the ANN model design 

(Mollahasani et al., 2011).  

In this study, the tanh and sigmoid transfer functions were used in the hidden and 

output layers respectively, while learning rate and momentum were determined by the 

software program. The software program also generated reports of the mean absolute 

error (MAE), root mean squared error (RMSE) and correlation coefficient (r) values 

for each model. As a result, the network with the optimum R, lowest RMSE and 

MAPE values on the training data sets was selected as the optimal model. 

By definition, RMSE is the measure of the difference between values predicted by a 

model and the actual experimental values defined mathematically as 

2

, ,1
( )

j

obs i model ii
X X

RMSE
j







         (3.37) 
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where Xobs and Xmodel are observed and modelled values at time/place i respectively, 

while j is the number of data points (Nahm, 2016). 

On the other hand, the correlation coefficient indicates the strength and direction of a 

linear relationship between model output and experimental values. For a series with i 

observations and j model values, the correlation coefficient is used to estimate the 

correlation between the model and observations as  

, ,1

2 2

, ,1 1

( ) ( )

( ) ( )

j

obs i obs model i modeli

j j

obs i obs model i modeli i

x x x x
r

x x x x



 

  


  



 
  (3.38) 

If the correlation is +1, it indicates the case of a perfect increasing linear relationship, 

and -1 if it is a decreasing linear relationship. Values in-between +1 and -1 indicates 

the degree of linear relationship between two sets of observations. A correlation 

coefficient of 0 implies there is no linear relationship between the variables. The 

square of the correlation coefficient (R2) indicates how much of the variance between 

the two variables is described by the linear fit. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

The use of computational methods in analyzing soil mass dynamics makes it possible 

to evaluate, with a sufficient degree of precision and in a simple manner, the 

characteristics of a given slope under conditions of intense but periodic rainfall or 

irrigation events modelled from simple physics-based equations. Data from numerical 

results arising from the derived model are then compared with experimental data 

obtained from the laboratory flume for purposes of validation (Trani et al., 2020; 

Wines, 2020). Although the validation samples were independent of in-situ field 

conditions because they were disturbed in one way or the other during sample 

collection, the change in geology and other soil properties was assumed negligible.  

This chapter gives an exposition of both numerical and experimental results as well as 

the deductions drawn from the findings arising from the study. The first part deals 

with spherical-capped slope sections mostly found in relatively steep slopes of 

Kamelil study area, which is characterized by soils of low clay content and by 

extension low cohesive strength. The second section outlines the results and 

discussion of the hydrological and kinematic characteristics regarding the relatively 

more cohesive soils found in Taptengelei area, for which double spherical-capped 

slope failure morphology is prevalent. Thirdly, hydro-dynamical model results as 

compared with experimental findings are discussed, with a view of applying this 

model to a wide range of slope sections. Finally, results of ANN models are discussed 

and compared with experimental data, with the aim of developing a framework for 

prediction and development of an early warning system.  
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4.2: Numerical Results, Experimental Validation and Discussion 

4.2.1: Spherical-cap-shaped slope morphology under planar translational failure 

4.2.1.1: Overview 

This study is based on geotechnical and geophysical investigations undertaken on soil 

samples from Kamelil location, Nandi county. The first stage of the investigation 

involved derivation of a number of numerical models based on inertial forces and 

geophysical factors, while the second and final step was focused on testing the 

derived models with respect to laboratory experiments.  

The overriding focus in this study was to formulate numerical models to be applied on 

a special case of a spherical-cap-shaped slope section. Amongst other assumptions, 

was first to consider the soil mass as a homogeneous rigid-perfectly plastic material 

obeying Mohr-Coulomb failure criterion, and secondly, assume the critical slip 

surface is parallel to the inclined homogeneous undrained slope (tangent to a firm 

base) through the toe. This is in accordance to earlier investigations by Zhu et al. 

(2015), who found out that for slope angle greater than about 53°, the slip plane is 

parallel to the inclination plane. For this research study, an inclination angle of 58o 

was selected. Five samples were tested, one of which was a control experiment. The 

results of each parameter measured were recorded and an average computed that was 

then used in the model for comparison. 

 

4.2.1.2: Results and Discussion  

In this study, a number of numerical models were derived from first principles based 

on inertial forces, shear state and rheological behaviour of the slope material, in this 

case, a soil mass (section 3.3.2.1). A number of physical parameters ranging from 

rainfall intensity to PWP were expressed as empirical equations while derived 
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quantities, especially FS and displacement, were expressed as dependent functions of 

the other factors. A comparative study of the numerical and experimental results for 

each parameter considered is outlined below. 

 

(a) Rainfall Model 

In general, most researchers use rainfall simulators that have been developed to 

simulate the typical conditions of natural rainfalls, such as impact velocity and size 

distribution of raindrops (Davidová et al., 2015). In this consideration, a numerical 

model (equation 3.12) describing a single pulsed representation of constant rainfall 

intensity (Ojha et al., 2014) over time was derived to describe the characteristics of 

the simulated rainfall, and by extension natural precipitation. In the experiment, a 

rainfall amount of 45 mm/hr lasting for 45 minutes was maintained for all the 

experiments. It was assumed that 45 minutes was long enough for all the rainfall 

water to infiltrate into the soil. This rainfall conditions were maintained in the study 

of soil-water characteristics of the slope at any given time. Computational results 

from the model for a single rainfall event as a function of time are compared to 

experimental data as illustrated in figure 4.1(a). The numerical model simulation 

results were found to fit experimental findings well with R2 value of 0.9641, implying 

this model holds a promise in describing rainfall characteristics in the field. 

https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662016000600513#B7
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Figure 4.1: Results of computational and experimental (a) Rainfall intensity; (b) Pore-

pressure; as a function of time in minutes. Inset: statistical analysis 

 

(b) Soil Moisture Content 

Modelling and monitoring of VWC is a key step in understanding its variability in 

time and space as well as its exchange relationships with the surface and atmosphere 

for purposes predicting weather and climatic conditions as well as forecasting 

geological disasters and developing early warning systems (Brocca et al., 2017; Li et 

al., 2016). In this study, a numerical model for the VWC proposed by Fredlund and 
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Xing (1994) was employed in describing the soil water characteristics. This model 

was derived based on hydraulic properties of the soil, topographic characteristics, 

interaction with surface water systems, precipitation features, and meteorological 

conditions. Further studies led to the expansion of this model to take into 

consideration other factors such as specific moisture capacity, specific storage 

(computed as the inverse of the soil skeleton bulk modulus), pore water pressure 

(negative in unsaturated zone), time elapsed, relative permeability, dynamic viscosity 

of water and vertical elevation coordinates (Huang et al., 2016). 

Since the intensity of rainfall was lower than the intensity of absorption, then 

according to Chekalin et al. (2017), the water layer that appears on the soil surface, 

will be too small and hence neglected in computation of the volumetric water content 

(VWC). In effect, all the water from the incident rainfall finds its way into the soil 

matrix by way of infiltration which serves to increase the VWC (Santos et al., 2014) 

leading to a corresponding rise in the weight of the soil mass (and by extension the 

normal stress) as well as a change in PWP, internal friction angle and cohesive stress.  

Numerical model simulation results for VWC over time were compared with 

experimental data as illustrated in figure 4.2(a) below. From the results, VWC was 

found to rise from a modest value of 20% (equivalent to the residual soil moisture 

content) to nearly saturation i.e. 93%, and began to drop steadily but with variations 

between model and experimental results. 

Discrepancies between the simulated and measured soil moisture time series were 

noted especially at the fringes and near saturation conditions, which was attributed to 

variations in the hydraulic parameters (Gabiri et al., 2018) observed at different 

depths, soil heterogeneity, model uncertainty, and measurement errors (Gribb et al., 

2009). The variations in the saturated hydraulic conductivity are caused by sampling 
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and measurement errors in addition to existence of macro pores due to soil cracking 

(Bodner et al., 2013). In addition, due to the hysteretic effect of water filling and 

draining the pores, different wetting and drying curves are obtained especially near 

saturation conditions (Chou, 2016). In general, this numerical model simulated the 

soil moisture characteristics with time reliably with a coefficient of determination of 

0.9291.  

 

(c) Pore water pressure 

Pore-water pressures (PWP) play an important role in defining the stability of rainfall-

triggered landslides or debris flows, more precisely, in defining the slip surface 

(Cascini et al., 2013; Fredlund et al., 1978). PWP in the soil is a function of rainfall 

infiltration regime but the presence of coarse-textured unsaturated pumiceous layers at 

different depths also determines the PWP profiles (Damiano et al., 2017). 

Unfortunately, there exists no direct empirical or mathematical relationship between 

PWP and other parameters (Mustafa et al., 2015). In this study, an empirical 

mathematical model (equation 3.14) was derived from the van Genuchten equation to 

describe the relationship between PWP and VWC. This model is a function of rainfall 

infiltration, water flow, and drainage.  

The derived model results were compared with experimental findings as illustrated in 

figure 4.1(b). Evidently, as the VWP rises as a result of the steady infiltration, the 

negative pore pressures remained almost constant in the initial stages because of the 

unsteady lateral water flow from a higher part to the lower part of the slope system, 

presence of  pumiceous layers delaying the flow and impartial filling of pore spaces 

(Zhang et al., 2019). But after some time (for this case 30 minutes) there was an 

exponential rise in the negative pore-pressure peaking at 20 MPa, a point at which it 

https://en.wikipedia.org/wiki/Hysteresis#Matric_potential_hysteresis
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stagnates for some time, when the soil is nearly saturated, signifying almost all pore 

spaces are filled. The time taken for the PWP to peak is determined by the infiltration 

rate, drainage and type of soil (Zhang et al., 2019). 

Computational results from the model agree well with the experimental data except 

that after failure, the model envisages a faster drop in pore pressures because of the 

envisaged steady drainage, but in the experiment, PWP remained almost constant 

because of the impermeable base of the flume retarding the vertical drainage. It was 

also observed that the pore-water pressures in the soil mass continued to rise even 

when the rainfall event had been halted indicating its strong dependence on 

infiltration rate rather than rainfall intensity directly. This means that pore-pressures 

will therefore vary according to the moisture content present in the soil at any given 

time regardless of the source of water. Numerical model results as compared to 

experimental data produced RMSE and correlation coefficient of 0.5473 and 0.9261 

respectively, which indicates a close concurrence. 

(d) Factor of safety 

Introduction of water into the soil mass on a slope through rainfall infiltration or 

irrigation event serves to increase the weight of the sliding plane and lubricating the 

soil particles, thereby increasing the driving forces downslope and/or significantly 

reducing the shear resistive forces consequently leading to a drop in the factor of 

safety (FS). The value of the FS indicates the health status of a given slope. Values 

greater than unity indicate higher shear strength, while values lower than one point to 

a very unstable slope. The FS is a function of cohesion, moisture content, pore-

pressure, internal friction angle, and slope angle (Wang et al., 2016; Wanatowskiand 

and Chu, 2012).  
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Figure 4.2: Computational and experimental results of (a) Water content; (b) 

Displacement; varying with time in minutes. Inset: statistical analysis  

 

In this study, a numerical model describing the FS as a function of slope angle, 

cohesive stress, VWC, PWP and internal friction angle was derived. The 

computational results of this model are compared with experimental findings obtained 

using a laboratory flume as illustrated in figure 4.3. As evidenced from the figure, in 

the first 40 minutes, the FS remains averagely constant, because the PWP which is a 

function of VWC and is directly proportional to FS is still negative and low. 
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However, as VWC increases, a corresponding exponential rise in negative PWP 

together with a drop in cohesive stress leads to a decrease in FS to below unity, a state 

that exacerbates slope failure. Notably, it is observed that FS values drop significantly 

when the PWP rises to the positive phase. Furthermore, it was noted that PWP 

continued to rise while FS constantly dropped even when the rainfall event had been 

halted. These conditions are attributed to the continuous progression of the vertical 

wetting front and hydraulic conduction in the deeper layers of the soil.  
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Figure 4.3: Computational and experimental FS results with time 

 

Statistical comparison between computational and experimental results indicated a 

close agreement with RMSE of 0.0385 and R2 of 0.6341. This implies that the 

numerical model derived can be successfully employed in describing the stability 

status of a slope by way of factor of safety computations. However, discrepancies 

between experimental and numerical model results emanated from systematic errors 
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and presence of interlayer heterogeneity (Alvioli et al., 2016) in the slope material 

leading to formation of a number of stratigraphic fringes. 

 

(e) Downslope displacement 

Slopes fail when slope geophysical and geotechnical factors as well as lithological 

aspects are compelled to change by hydrological, seismic or manmade activities. 

Slope instability is evaluated by way of FS values less than one. In the unstable state, 

slopes fail by downslope motion of the soil or rock (Patil and Gopale, 2018; Fredlund 

and Rahardjo, 1993).  

In this research study, a numerical model (equation 3.18) describing the downslope 

displacement of the soil material under wetting conditions was derived based on the 

FS, slope angle, gravitational acceleration and internal friction angle. Computational 

results from this numerical model were compared with experimental findings as 

illustrated in figure 4.2(b), with RMSE of 0.1496 and R2 of 0.6818. 

From the figure (4.2(b)), the soil mass remained in the static state until after the 50th 

minute when FS values fell below unity, when small portions of the material began to 

move downslope, signifying genesis of imminent failure. It was observed that prior to 

failure, small cracks developed which slowly coalesced into bigger ones. Failure of 

the slope was confirmed from downslope displacement of the soil mass, characterized 

by toppling of small portions commencing from the developed cracks. In all cases, the 

slip surface was parallel to the slope inclination, because of the tangential 

gravitational forces. 

Conventionally, failure in brittle materials begins with the formation of microcracks 

or flaws in the material. In rocks, as well as cohesive soils, failure begins at the grain 

boundaries, inter-granular cracks or tensile cracks that propagate from their tips 

https://link.springer.com/article/10.1007/s10346-019-01279-4#ref-CR5
https://www.tandfonline.com/doi/full/10.1080/24749508.2019.1695714
https://www.tandfonline.com/doi/full/10.1080/24749508.2019.1695714
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when frictional sliding occurs along the flaws (Lade, 2010). Wang et al. (2018), noted 

that the development of cracks in soils is a typical consequence of cyclic variations of 

VWC, while Yang et al., 2019 pointed out that cracks occur when soils swell/shrink 

as induced by drying-wetting cycles. Therefore, mechanical cracking significantly 

affects the hydraulic conditions of the soil leading to massive displacement 

downslope (Qi and Vanapalli, 2015), as such, it is a sure indicator of internal shear 

strains. 

From the data, it can be seen that, even after the rainfall event had been halted, the FS 

continued to drop because the PWP kept on increasing.  This explains why most 

slopes collapse several hours or sometimes a short while after a rainfall event. For this 

reason, it is recommended that slope monitoring should not be entirely based on 

rainfall parameters such as intensity and duration only to make predictions and 

decisions about slope health, as has been the case in many studies (Abraham et al., 

2020; Pradhan, 2019; Zhao et al., 2019), but rather, monitoring internal triggers such 

as VWC profiles and PWP (Conte et al., 2020; Carey et al., 2019) should be made a 

continuous activity. In other words, monitoring of internal parameters especially 

VWC and PWP should be sustained for several days after the storm, as they are 

responsible for the development of internal stresses manifesting as microcracks (Qi 

and Vanapalli, 2015), leading to eventual slope failure. 

 

4.2.1.3: Summary, Conclusion and Recommendations  

Climatic changes, erosion, deposition, weathering, biological and human activities as 

well as other geological processes are responsible for the irregular morphology of the 

ground surface (https://sciencing.com/topography-deserts-8178249.html, accessed, 

30/06/2020). In sloping areas, a variation in the soil characteristics usually gives rise 

https://www.sciencedirect.com/topics/engineering/frictional-sliding
https://www.frontiersin.org/articles/10.3389/feart.2019.00292/full#B37
https://sciencing.com/topography-deserts-8178249.html
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to uneven ground surface topography. Additionally, erosion processes and 

readjustment of the soil mass always leads to detours on the slope covered by 

vegetation or in some cases bare (Baartman et al., 2018; Gandhi et al., 2018). In this 

study, a novel hypothesis of considering the convex-shaped detours as spherical caps 

whose base lies along the incline plane is conceived. 

Geohydrological and kinematic studies performed on these spherical-cap-shaped 

slope formations have given rise to a number of inferences. Firstly, for steep slopes 

whose inclination is greater than 53o, for which downslope motion is dominated by 

the gravitational component (Chatterjee and Krishna, 2019), translational 

displacement was the overriding mode of failure. Secondly, the derived numerical 

models regarding translational failure for spherical-cap-shaped slope sections have 

been shown to agree well with the experimental results obtained from measurements 

using the SPM system, specifically for shallow soil masses.  

Finally, the model for the factor of safety and by extension the other hydrological 

models derived are unique in that they take into consideration the moist soil unit 

weight as opposed to earlier models which were applied only in extreme conditions of 

purely dry soil or saturated conditions. This model for the FS is also more convenient 

as it contains fewer variables as many of them are computed as empirical functions of 

the water content. This model for the factor of safety is convenient for shallow 

landslides at relatively steep slopes. 

Since the study was confined to one particular angle throughout the experiment, it is 

recommended that further investigations should be done to extent the validation of 

these models in other hydrological conditions and angles. Similarly, different soil 

types should be tested to ascertain the reliability of these models. We also recommend 

an experimental testing of this model in the in-situ conditions at different locations. 
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4.2.1.4 Novelty in the formulation 

In this study, as anchored on the first objective, five significant findings were realized 

based on numerical formulation and experimental validation. These findings will 

serve the purpose of enriching the existing literature and constitutive modelling as 

well as introduce new mathematical equations that describe the motion of granular 

slope material, in this case soil from Kamelil escarpment, under antecedent rainfall 

conditions. These novel ideologies include modification of the existing constitutive 

models to better describe the experimental results as well as deriving new empirical 

models to represent slope parameters. These include:  

(i) Consideration of the soil mass as a nearly spherical-cap-shaped unit as opposed to 

the conventional method of slices; 

(ii) Consideration of the moist unit weight (γm) in the computation of the wetness 

index and the effective unit weight as opposed to earlier studies where effective 

unit weight of the soil was either considered for purely saturated conditions or for 

purely dry soil skeleton.  

(iii)Proposal to model incident rainfall as a Fourier pulsed expression 

(iv) Modelling soil cohesion as a function of VWC 

(v) Proposed new equation for factor of safety based on the above conditions 

 

4.2.2 Double-Spherical-Cap-Shaped Slope Morphology Under Planar 

Translational Failure 

4.2.2.1: Overview 

The second part of the study focused on soil samples collected from Taptengelei 

escarpment in Nandi county. The predominant soil type in the study area was 

averagely composed of 50% sand, 18% silt and 32% clay (Gachene and 
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Kimaru, 2003),  with slope gradients rising up to 58o at the upper regions. Physical 

observation of these soils during the dry season indicates deep cracks at various 

sections, implying shear strains underneath due to drying-wetting cycles, common in 

clayey soils.  Conventionally, soils with high content of swelling and shrinking clay 

will in general plastically deform at high volumetric water contents (Ngecu et al., 

2004).  

In the study, a model of a slope section composed of a homogeneous rigid-perfectly 

plastic material having a nearly spherical double-cap-shaped morphology defined on 

the lower side by a concave-shaped failure plane was considered. The pertinent 

assumption in the model was that failure must originate from a crack located at the 

head-side of the landmass while the toe must be saturated. Furthermore, the crack 

depth is assumed to be relatively deep enough to connect with the ground water table 

or perched phreatic surface.  

A set of numerical expressions were derived with respect to the spherical double-cap-

shaped slope sections. The computational results from these numerical models were 

then compared with experimental findings based on laboratory flume tests. Inferences 

captured from the results are then discussed forthwith. 

 

4.2.2.2: Results and Discussion  

The response to antecedent rainfall by a nearly spherical double-cap-shaped slope 

material was investigated in this study. Several geophysical and geohydrological 

aspects were monitored in order to establish the behaviour and failure conditions of a 

soil mass with this kind of morphology in a laboratory flume. A study of the 

numerical and experimental results for each parameter considered is outlined below. 

A summary of the measured and derived parameters is illustrated in table 4.1. In the 
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table, rainfall, VWC and PWP were measured directly while cohesive stress and FS 

were computed. 

 

Table 4.1: Summary of geotechnical parameters  

 Rain 

(mm) 

VWC 

(%) 

C 

(Pa) 

PWP 

(Pa) 

FS 
(α=45) 

FS 
(α=50) 

FS 
(α=55) 

FS 
(α=60) 

FS 
(α=65) 

FS 
(α=70) 

MIN 0 13.5 14560 -14100 1.39 0.61 0.61 0.06 0.06 0.00 

MAX 45.3 79.9 36370 -100 9.27 6.78 5.80 4.02 3.06 2.48 

 

(a) Rainfall characteristics 

In this study, an artificial slope mounted in a laboratory flume with unconsolidated 

soil mass from Taptengelei enclave was treated to rainfall events lasting 45 minutes at 

a rate of 45.3 mm/hr. Because rainfall intensity is considered to take the form of a 

random temporal series of discrete events, in this study, it is assumed to behave as an 

idealized series with a uniform distribution. A discrete Fourier series model was 

chosen to model the simulated rainfall characteristics over time. This model was then 

compared with simulated rainfall as indicated in figure 4.1(a). 

Rainfall intensity and duration has been identified as the key factor that fuels in soil or 

rock slopes. This is because most slope failures usually occur in rainy seasons or 

during irrigation events. For highly cohesive soils, instability is induced when rain 

water fills cracks thus recharging the potential failure surface and causing an upsurge 

in PWP (Lu et al., 2020).  

 

(b) Soil Water Content 

The soil water content is a function of topographic parameters (elevation, longitude, 

latitude, slope angle, and slope aspect), soil properties (soil bulk density, saturated 
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hydraulic conductivity, soil clay content, field capacity, and soil organic carbon 

content), climatic factors (potential evaporation, mean annual precipitation, and 

aridity index), land use, and rock fragment content (Li et al., 2019; Zhu et al., 2014). 

Assuming the soil mass is not covered by vegetation, the VWC will basically depend 

on rainfall amount, intrinsic soil properties such as hydraulic conductivity, clay 

content and slope gradient.  

In this study, the cumulative rainfall was incorporated in the Horton’s infiltration 

model, in order to compute the volumetric water content (VWC) in the soil (assuming 

no surface runoff and negligible evaporation). As a result, the VWC was observed to 

exponentially rise with time as the incident rainfall was kept constant to maximum 

value of about 80% but begun to gradually decrease when the incident rainfall 

simulation was stopped (figure 4.4). It is important to note that when the rainfall 

simulation was stopped, the decrease in VWC was gradual because of the apparent 

soil water storage capacity (Groh et al., 2020; Guo, 2020). Results from the numerical 

model and experimental data agree well within statistical assumptions with a 

coefficient of correlation of 0.9666. 

Soil VWC has a direct impact on climatic factors, geological processes and by 

extension hydrologic cycles, biochemical sequences as well as the ecosystem (Briggs, 

2016; Seneviratne et al., 2010). In slope stability studies, VWC has been identified as 

the proxy for landslide triggering mechanism as it leads to localized increase in PWP 

or decrease of matric suction (Wicki et al., 2020). Bogaard and Greco (2018) 

proposed cause-trigger-framework hinged on a combination of two processes i.e.  

causal factors (hydrological prewetting as a result of antecedent saturation) and 

triggering factors (meteorological triggering arising from saturation change), all of 

which are functions of VWC. They further underscored the fact that the rate of 
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saturation increase, especially for short-duration rainfall events, is the key trigger for 

shearing in soils. As a result, therefore, monitoring of VWC continually within an 

appropriate sensor-reporting framework, can serve as a reliable warning system for 

landslip processes. 
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Figure 4.4: Computational and experimental results of the volumetric water content as a 

function of time (Inset: statistical analysis) 

 

(c) Pore water pressure 

Pore-water pressure in the soil develops as a result of several factors including water 

elevation difference, unit weight, osmosis and water-air interaction (Chao and Ning, 

2019). In unsaturated soils, PWP is usually negative, and this is attributed to the 

surface tension of pore water in voids throughout the vadose zone causing a suction 

effect on surrounding particles, referred to as matric suction (Das, 2011). When soil 
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VWC increases in the soil by way of infiltration, the matric suction is reduced causing 

a resultant decrease in the shear strength of the soil (Zhang et al., 2015). 

In this study, a pair tensiometers were installed in the soil mass to monitor PWP 

characteristics. The results of the measurements were compared with the 

computational data from the mathematical model (equation 3.20), as illustrated in 

figure 4.5. 
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Figure 4.5: Variation of pore-water pressure with time (Inset: statistical analysis) 

 

In the initial stages of the experiment, i.e. the first 26 minutes, the PWP remained 

averagely constant and negative, due to a larger elevation difference between the 

phreatic surface and wetting front (Coduto et al., 2011; Das, 2011). However, as 

infiltration gradually took place, the voids in the soil matrix were filled with water 

molecules, leading to a build-up in PWP. Because PWP is directly dependent on 
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infiltration rate (http://environment.uwe.ac.uk/geocal/SoilMech/water/water.htm, 

accessed 04/07/2020) and by extension the soil VWC, but not rainfall characteristics, 

it was established from the results that PWP continued to increase even after the 

rainfall event had been halted.  PWP is a key factor in determining the value of the 

FS. Results of the model and experiment for PWP agreed well with R2 = 0.9894. 

 

(d) Apparent soil cohesion 

In general, the bulk cohesion of granular materials is controlled by intrinsic material 

properties (surface energies, elastic moduli), particle properties (size, size distribution, 

morphology) and liquid content in the system (Herminghaus, 2005; Begat et al., 

2004). In wet granular media, cohesion arises from van der Waals forces, electrostatic 

forces, surface tension and liquid bridging (capillary effects) (Landau and Lifshitz, 

1987). Cohesive stress is directly proportional to the shear strength of a material and 

by extension the factor of safety (Piciullo et al., 2018).  

Researchers in the field of materials science and fluid mechanics have proposed 

rheological equations and mathematical models that describe the characteristics of 

cohesive materials especially granular media. In most cases, the models are based on 

elasto-plastic, visco-elastic or in combination to investigate the effect of cohesion on 

the micro and macro behaviour of granular assemblies (Kievitsbosch et al., 2017; 

Adams and Perchard, 1997). In this study, the apparent soil cohesion was derived 

from its relationship with VWC and intergranular interface (equation 3.15). 

computational results from the model were compared with experimental as indicated 

in figure 4.6. 

http://environment.uwe.ac.uk/geocal/SoilMech/water/water.htm
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Figure 4.6: Pore-water pressure profile as function of with time for a soil slope (Inset: 

statistical analysis) 

 

From the data, apparent cohesive stress was found to gradually increase from a 

modest value of 1.41 x 104 Pa to 3.45 x 104 Pa during the first phase of wetting as a 

result of infiltration but exponentially dropped as the water content in the soil matrix 

increased. This trend is attributed to the dependence of cohesive strength on the 

amount of liquid (in this case water) in the granular system. In other words, the 

presence of water molecules in the granular medium lead to a change in the cohesion 

due to capillary, electrostatic, and van der Waals forces (Vondráčková et al., 2016; 

Kimiaghalam et al., 2016).  

In a wet system, particles exist in three distinct states depending on the water content 

i.e.  pendular state (low moisture content), funicular state (intermediate moisture 

content), and the capillary state (high moisture contents) (Iveson et al., 2001). In the 

pendular state, all particles are held together by liquid bridges at their contact points, 
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hence cohesive stress will increase exponentially with VWC. In the funicular state, 

pores are partially saturated by liquid, leading to a steady decrease in the cohesive 

stress, proportional to the degree of saturation. Finally, in the capillary state, all voids 

between particles are filled with water molecules, resulting to complete loss of 

cohesive strength (Seemann et al., 2008). This is the reason why cohesive stress 

increases exponentially with VWC at low water contents but decreases when the 

water content is increased beyond the critical limit (Begat et al., 2004). 

 

(d) Factor of safety 

The stability of soil slopes is a function of shear stresses acting on the slip surface. In 

general, the stability of a slope is evaluated by way of a factor of safety (FS), basically 

defined as the ratio of the soil shear strength to the shear stress of a possible sliding 

surface in the slope. There are several factors that affect the stability of slopes and by 

extension modify the FS characteristics. These factors include slope angle, cohesive 

stress, internal friction angle and pore-water pressure (Li and Chu, 2019; Das 2011).  

In this study, a numerical model was derived based on intrinsic soil properties and soil 

water content to describe the characteristics of FS on a soil slope. Six experiments 

were conducted based on soil slopes at six different inclination angles in a laboratory 

setup using a flume. For each angle considered, both computational and experimental 

results were compared and a corresponding coefficient of correlation obtained (figure 

4.7).  

It is discerned from figure 4.7 that the FS, for all angles, at first increases steadily, but 

after a short time (approximately 5 minutes), a sudden drop is witnessed. This trend is 

attributed to an increase in apparent cohesion with VWC in the initial stages, but after 

a short while, the cohesive stress will begin to decrease while the PWP will begin to 

https://link.springer.com/article/10.1007/s13201-019-1038-1#ref-CR4
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rise leading to a steady drop in FS. In cases where the recorded FS values were below 

unity, i.e. when shear stresses were dominant/exceeded frictional and drag forces, the 

slope failed. Because of the non-uniform wetting front in the soil mass, failure was 

preceded by growth of randomly distributed cracks, collapse of small portions and 

thereafter translation of the larger mass leaving a dome-shaped void resembling an 

inverted spherical cap.  

Fellenius (1936) proposed the method of slices while Bishop (1955) came up with the 

method of slip circle in the stability analysis of slopes. These two methods, although 

still used by some engineers, ignored the impacts of the stress state and its variation as 

prerequisites of slope stability (Zhu et al., 2017). In the last decade, many researchers 

have strived to investigate and identify the sliding centre and slip surface (Zheng and 

Tham, 2009). In most cases, the results of these studies led to overestimation of the 

available shear strength (and by extension the FS) or underestimation of the FS 

(Galavi and Schweiger, 2010).  

In mitigating the shortcomings of the previous analysis methods, Chae et al. (2015) 

presented a modified equation of infinite slope stability analysis based on the concept 

of the saturation depth ratio to analyze the slope stability change associated with the 

rainfall on a slope. This method eliminates the need for approximating the slip circle 

location and centre. However, this method does not give any description regarding the 

shape and form of the sliding mass before and after failure. In reality, post-failure 

observation in areas where landslides or debris flows have occurred reveals that the 

sliding mass left a dome-shaped hole with respect to the ground surface (Friele et al., 

2020; Wang et al., 2018). 
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Figure 4.7: Factor of safety (model and experimental) profiles for different angles as a 

function of time 

 

 

In this study, spherical double-cap shaped soil mass was presented against earlier 

studies that were based mainly on wedge-shaped failure mass or imaginary slip circles 

(Hazari et al., 2019; Gutiérrez-Martín et al., 2019), while accounting for the initial 

shape of the sliding mass as evidenced from the vacancy left after failure. This 

postulation was based on the fact that rainfall infiltrates into the soil along a 

gravitational gradient that is not linear but rather curved outwards, like a convex 
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surface. If a discontinuity like a crack or a flaw exists at the upper end of a cohesive 

soil mass, it will provide preferential water flow channel that will act as the initial 

point of the critical slip surface or form a perched phreatic surface for shear 

displacement to occur. This slip surface originates from the crack tip and terminates at 

the toe side of the slope, but describing a nearly circular path. This surface acts as a 

slip surface for the upper soil mass to undergo translational displacement when shear 

strength is diminished. In this case, the vacancy left after failure will resemble a 

spherical cap on the lower side, with the incline plane as the base. Since the outer 

portion of the slope also resembles a spherical cap, the ideology of spherical double-

cap morphology with a common base line, as modelled by the numerical equation and 

confirmed from laboratory experiments, is validated.  

Discontinuities in the soil mass such as cracks are usually caused by differential 

settling, drying and shrinking of soil, and associated construction activities. Presence 

of cracks in soil slopes affects the stability of the slopes through three effects. First, 

cracks provide preferential flow channels which increase the soil permeability and 

decrease the soil strength. Second, water-filled cracks exert an additional driving 

force on the slope. Finally, cracks can form a part of the critical slip surface that has 

no shear strength, hence inducing failure (Raghuvanshi, 2019; Salunkhe et al., 2017).  

Geological and hydrological characteristics of a discontinuity surface such as 

orientation,  roughness, aperture and continuity determines the potential failure plane 

on the soil slope (Johnson and Degraff, 1991). For these reasons, experimental as well 

as numerical simulations have proved the presumption that in the presence of cracks 

at the upper part of the slope, the failure volume takes the shape of a spherical double-

cap.   

 

https://www.sciencedirect.com/science/article/pii/S1018364717304470#bb0240
https://www.sciencedirect.com/topics/engineering/discontinuity-surface
https://www.sciencedirect.com/topics/chemistry/surface-roughness
https://www.sciencedirect.com/science/article/pii/S1018364717304470#b0160
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4.2.2.3: Summary, Conclusion and Recommendations  

Evidently, a cohesive soil (generally rich in clay content) with discontinuities on a 

slope of modest inclination angle, will most likely fail as a block but not wedge-like 

as is commonly assumed in many research findings. As has been established in this 

study, the failure mode is determined by the nature and orientation of discontinuities 

and from the vacancy left when the soil mass has failed. In this study, it was actually 

dome-shaped resembling a section of a sphere. Analysis of pre- and post- failure 

formation of the slope has revealed that the best approximation of this failure mode is 

double-cap shaped slope morphology, as proposed. The underlying assumption in this 

study is that the slope material must be relatively shallow, with inclination angle 

between 50 – 58o (Zhu et al., 2015), high clay content (highly cohesive) and presence 

of one or more cracks at the head of the landmass. 

 

4.2.2.4 Novelty in the formulation 

In conclusion, two outstanding outputs were realized from the research study as an 

enrichment to earlier constitutive models:  

(i) Consideration of the sliding soil mass as a spherical double-cap-shaped unit with 

the failure line appearing as a section of a sphere as opposed to the conventional 

circular-shaped failure line. 

(ii) Derivation of a new equation for the factor of safety based on spherical double-

cap morphology  
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4.2.3 Hydromechanical Landslide Model 

4.2.3.1 Overview 

Soil mass movements are complex processes possessing high spatial-temporal 

variability. Many scientific studies have strived to establish mechanisms and 

triggering factors for slope failure through numerical models and rigorous 

experiments for many years. Amongst many other parameters, the most recent studies 

through field observations and measurements have indicated that most slope failures 

in unsaturated soils are triggered by hydrological factors and/or earthquake events 

(Wicki et al., 2020; Guzzetti et al., 2009). This is in reaction to the realization that 

most triggering factors are intrinsic functions of the VWC either directly or indirectly 

(Wu et al., 2015).  

In essence, both causal factors (hydrological pre-wetting as a result of antecedent 

saturation) and triggering factors (meteorological triggering arising from saturation 

change) are modulated by VWC. In other words, the rate of saturation increase, even 

for short-duration rainfall events, is the key trigger for shearing in soils (Bogaard and 

Greco, 2018). As underscored in the mathematical formulation (chapter three), slope 

parameters are all dependent on VWC and by extension the shear strength of the 

slope. It is in this context that a hydromechanical model (equation 3.30 - 3.32), which 

incorporates all hydrological factors affecting slope stability, was derived. 

Computational as well as experimental results for the hydromechanical model 

describing both the shear displacement and factor of safety for a soil mass inclined at 

different angles is presented. 
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4.2.3.2 Research output and Interpretation  

In this experiment, a series of six experiments were setup to evaluate the performance 

of the derived hydromechanical model on a soil mass at different inclination angles 

(30o – 70o) in terms of the factor of safety (FS) and shear displacement. To achieve 

these objectives, laboratory flume experiments were undertaken to simulate field 

conditions. Generally, flume experiments allow the study of these processes under 

controlled and easily observable conditions (Aldefae et al., 2019).  

For each inclination angle considered, a soil mass was placed in a flume in layers 

beginning with a 5 cm layer of coarse sand at the base, then soil layers on the upper 

part. The physical properties of the collected soil samples are shown in table 4.2. A 

rainfall simulation was then applied for a period of 45 minutes. In the process, sensing 

elements installed in the flume recorded a number of geotechnical and geophysical 

parameters considered in the computation of the FS. Runoff and radial seepage were 

assumed negligible in these experiments. 

 

Table 4.2: Physical properties of the soil samples (before the experiment) 

Parameter Value 

Specific Gravity 2.73 

Field Density (Kgm3) 15.8 

VWC (%) 12.9 

C (kPa) 17.2 

PWP (kPa) -47.9 

Internal friction angle 23.9 
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In this study, a hydromechanical model based on elastoplastic properties of the soil 

was used to describe the variation of the factor of safety with VWC (Chueasamat et 

al., 2018) at different inclination angles. As such, these experiments were geared 

towards establishing the behaviour and role of VWC as it infiltrates into the soil on 

the stability of slopes. Each of the physical parameters affecting the FS are considered 

in detail in the next section. 
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Figure 4.8: Plot of (a) volumetric water content (VWC) and (b) pore-water pressure 

(PWP) with time 
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(a) VWC and PWP  

In all the experiments (figure 4.8(a)), a steady increase in VWC as the incident 

rainfall gained entry into the soil mass via infiltration was observed. Since the 

distribution of non-triggering infiltration events to slope instability are clustered 

around 60-75 % antecedent saturation, which is the potential range of the field 

capacity (Assouline and Or, 2014), a VWC value above this range was chosen. For 

this reason, the rainfall simulation was halted at 45 minutes into the experiment, 

corresponding to antecedent saturation of 94%.  

Furthermore, it was observed from the data (figure 4.8(b)) that increase in VWC led 

to a significant change in PWP (Damiano and Olivares, 2010; Rahardjo et al., 2007), 

for all experimental scenarios. Notably, for the first 30 minutes into the experiment, 

PWP remained constant and negative, even when the VWC had risen to about 30 – 

35%.  However, as the wetting front progressed downward, a phreatic surface formed 

at the base of the flume leading to an increase in PWP with the steady infiltration. 

After 45 minutes into the experiment, when the rainfall simulator was stopped, the 

PWP had reached -7.8 kPa, but continued to rise because of the ensuing downward 

infiltration leading to a rise in the water table. 

As a consequence of the rising VWC and PWP, tension cracks began to appear on the 

surface of the soil mass. It was however deduced from the data that these cracks 

emanated from the rapid pore-water pressure rise due to the increase in the water level 

(Damiano et al., 2017). Although shear stress measurements were not performed, 

because of laboratory limitations in terms of equipment like triaxial machines, it was 

deduced from the experimental results that the shear strength of the soil mass 

drastically deteriorated when the PWP increased, leading to crack formation and 

eventual failure (Yang et al., 2019; Wang et al., 2018; Qi and Vanapalli, 2015). 

https://link.springer.com/article/10.1007/s10346-020-01400-y#ref-CR2
https://www.frontiersin.org/articles/10.3389/feart.2019.00292/full#B37
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(b) Factor of safety 

Conventionally, the health status of slopes is analysed by application of the Mohr-

Coulomb criterion and computation of the factor of safety (FS) against probable 

failure. Basically, the FS is usually calculated as an empirical function of the slope 

angle, PWP, cohesion, and internal friction angle (Orense et al., 2004). However, in 

this study, the derived hydromechanical model (equation 3.32) was modified in such a 

way that FS is directly dependent on the VWC and PWP as well geotechnical factors 

such as slope angle and internal friction angle.  

Experiments based on a laboratory flume together with a rainfall simulator were 

performed to establish the relationship between VWC and PWP on FS and by 

extension displacement leading to eventual failure. Results from the measurements 

were used to compute FS values for inclination angles ranging from 30–70° 

(figures 4.9(a)–(e)). From the data and as illustrated in figure 4.9(a)–(e)), the FS 

remained above unity (implying no failure or displacement even in near saturation 

conditions) for slope angles 30° and 40°. At slope angles of 50° and 60°, the soil mass 

collapsed 19 and 5 minutes after the end of the rainfall event when the VWC had 

reached 88% and 84% respectively. Finally, for the slope angle of 70°, the soil mass 

failed 43 minutes from the beginning of the experiment when the VWC approached 

76%. Statistical comparison between experimental and computational yielded a 

significant agreement based on R2 values which were greater than 0.9 for all the 

experimental trials. This underpins the accuracy of the derived model in predicting the 

FS of a soil mass. 

From the results, it was noted that, at low values of the VWC, the FS exponentially 

increased with time corresponding to an increase in VWC until a critical point was 

reached referred to as the ultimate cohesive strength (UCS). At this point, water 

https://iopscience.iop.org/article/10.1088/2515-7620/ab50f6/meta#ercab50f6f5
https://iopscience.iop.org/article/10.1088/2515-7620/ab50f6/meta#ercab50f6f5
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molecules make relatively stronger bonds with soil grains due to adhesive forces 

compared to soil interparticle bonding. In this case, water molecules form a single 

layer that acts as an interface between soil grains, resulting in a material with 

comparatively stronger bonds. When more water is added into the soil mass, more 

water molecules occupy the space between soil molecules forming a new layer that 

makes bonds with water molecules adhering to the soil grains. This new layer causes 

electrostatic shielding between the soil grains and as a consequence the soil cohesive 

strength is drastically diminished (Zhu, 2019; Wagner, 2013).  

Additionally, a drop in the cohesive strength was reflected in the system by a decrease 

in the FS (Aharonov and Scholz, 2018). However, the instantaneous rise in PWP was 

responsible for the final loss of soil shear strength and by extension the FS (Li and 

Chu, 2019; Zhang et al., 2015). Basically, when the inclination angle increased, the 

downward gravitational component of the driving force also increased in obedience to 

Newton's second law of motion, consequently lowering the shear strength and FS of 

the soil mass (Yang, 2019; Parsons and Milburn, 2018).  

 

(c) Shear Displacement 

As indicated in section 3.3.4.3, measurement of soil mass displacements was done 

using a pair of ultrasonic range sensors mounted on the front side of the flume. 

Displacement occurred when the soil mass lost its residual shear strength (Brakorenko 

et al., 2019; Fredlund and Rahardjo, 1993). As alluded to earlier, slope failure as 

evidenced by displacement downslope began with the development of cracks on the 

surface which coalesced into bigger ones and eventually formed a demarcated 

boundary of the failing mass (Zhang et al., 2015). Figure 4.10 gives a graphical 

https://www.tandfonline.com/doi/full/10.1080/24749508.2019.1695714
https://iopscience.iop.org/article/10.1088/2515-7620/ab50f6/meta#ercab50f6f6
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illustration of the measured displacements for inclination angles ranging from 30 – 

70o.   

From figure 4.10, it is observed that there is no change in slope movement until 43 

minutes (for slope angle 70o), 54 minutes (for slope angle 60o) and 63 minutes (for 

slope angle 50o) from the beginning of the experiment, when bulk soil displacement 

was registered. However, there were some infinitesimal displacement values recorded 

until this time point which were not considered in the analysis because they were 

regarded as noise arising from the electrical signal generated during transmission of 

the data. 

From the measurements, maximum displacement of 0.8 m was recorded, due to the 

size restrictions of the flume used. From the data, it was noted that the higher the 

slope angle the higher the displacement relative to the original position. In addition, 

results from shear displacements in the soil mass were used to compute the values of 

the acceleration for each angle considered. The average values of the computed 

acceleration of the soil mass downslope were found to be 0.01340, 0.01791 and 

0.01943 m s−2 for slope angles 50°, 60° and 70° respectively. 

 

4.2.3.3 Summary, Conclusion and Recommendations  

Based on experimental tests carried out, the type of failure mechanism was found to 

be retrogressive planar displacement due to gravitational shear stress as recognized 

from the appearance of tension cracks along the surface of the soil mass before failure 

(Liu et al., 2020; Bouissou et al., 2012). This is because, crack location, depth, size, 

and direction on a slope is usually the evidence of rising pore-water pressures 

underneath (Mukhlisin and Khiyon, 2018). Furthermore, the failure surfaces formed 
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in these experiments were of the shallow and non-circular (translational) retrogressive 

type.  
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Figure 4.9: Characteristics of the factor of safety for slope angles (a) 30°, (b) 40°, (c) 50°, 

(d) 60° and (e) 70o with time under wetting conditions. Inset: Statistical comparison 

between model and experimental data for correlation purposes 
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Figure 4.10: Variation relative displacement with time 

 

In conclusion, it is discernible from the experiments that the factor of safety, which is 

an indicator of slope stability, is modified greatly by the slope angle, VWC and PWP 

(Duncan and Wright, 2005). In addition, based on the above causes, the increase in 

soil moisture content associated with rainwater infiltration is significant in inducing 

slope failure. 

The hydromechanical model as derived for the factor of safety conceived a remedy to 

many geotechnical scientists in terms of the simplified equation and the reduced 

number of variables required. More pertinently is the exclusion of direct measurement 

of cohesive stress which requires relatively expensive triaxial tests to monitor. The 

model requires only two physical parameters i.e. VWC and PWP to ascertain the 

health status of a given slope. An additional measurement of displacement will be 

used to confirm the initiation of deformation when the FS is below unity. Therefore, 

the displacement obtained in this study represents the stage at which plastic 

deformation occurs but not the runout displacement. 
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A comparison between experimental data and the hydromechanical model revealed a 

close agreement (R2 values above 0.9) for both FS and shear displacement. This 

implies that the derived model can be employed in describing slope stability cases in 

soil slopes. However, since this model was tested in a controlled environment 

(laboratory flume), it is recommended that it is also tested in situ field conditions.   

In this section, two novel ideologies were presented in the scope of slope stability 

studies involving cohesive soils, namely 

(i) First, the numerical model for the factor of safety (equation 3.31) is unique in the 

sense that if the slope height and angle are known, only three measurements 

(VWC, PWP and internal friction angle) can be made to establish the stability 

index of the slope, as opposed to earlier models which required monitoring of 

shear and cohesive stress directly. 

(ii) Lastly, the threshold VWC for slope failure as derived, can be utilized in the 

development of an early warning system. 

 

4.2.4 ANN Model Results 

4.2.4.1 Overview   

Slope stability is a state influenced by various factors ranging from slope geometry, 

stress conditions, and soil properties. External water loading, pore-pressure changes, 

and hydrodynamic impact from water flow are the major determinants of actual soil 

properties. Prediction of slope movements is complex owing to the non-linear 

dependence of the causative parameters on each other. This means that common 

physics-based relations cannot apply and therefore a general need to study these 

processes together with the underlying uncertainties using new methods of prediction 

such as using intelligent artificial neural networks. ANNs once trained, will predict 
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with relatively high precision the likelihood of slope failures (Chakraborty and 

Goswami, 2017; Lu-Sheng et al., 2002). In this section, a description of the developed 

ANN model is given together with the training, testing and validation results as well 

the descriptive statistics relating the predicted and target data.  

 

4.2.4.2 Results and Validation  

Model architecture 

The prediction power of a model is a function of its generalization competence. To 

achieve competent generalization, early stopping is usually preferred to avoid 

overfitting (Carbune et al., 2020; Golovin et al., 2017). In this study, a data set of 297 

points collected from experimental trials in Kamelil escarpment were randomly split 

into two sets; 80% (247) for model training (to compute the gradient and updating of 

the network parameters, such as weights and biases) and 20%(50) for model testing 

(to test the model error validation). Input parameters included: soil water content, 

apparent cohesion, pore-water pressure, slope angle and internal friction angle while 

the target data was the factor of safety.  

A multilayered ANN was used to develop a model using non-linear combinations of 

the input parameters (Hastie et al., 2001). The ANN employed in this study is a feed-

forward network with sigmoid activation functions in the hidden layers and a linear 

activation function in the output node, as generated from the commercial software 

Neuroph© and Microsoft Excel© embedded program ForecastXL©. During ANN 

development, it is a requirement that the learning rate, number of nodes in a hidden 

layer, and maximum number of training epochs are stated (Hill and Minsker, 2010). 

In this study, 8 neurons in hidden layers with 5 input variables, 0.8 learning rate, and 

https://www.sciencedirect.com/science/article/pii/S1574954115001521#bb0085
https://www.sciencedirect.com/science/article/pii/S1574954115001521#bb0090
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1 output variable in the output layer were employed in building the neural network 

(figure 4.11).  

 

 

Figure 4.11: ANN structure 

 

Model calibration 

The input and output data collected from experiments performed on soil samples were 

first pre-processed by scaling each variable to the range of -1 and +1 (appendix 1) so 

as to be fed in the network for training. The descriptive statistics of the data used in 

the development of the ANN model are shown in table 4.3. 

During ANN model training, experimental values were compared with predicted 

output and a mean square error (MSE) calculated for each dataset. A summary of the 

training and test set is shown in table 4.4 indicating an average mean square error of 

0.0047601 for the training data and 0.0026292 for the test set translating to an overall 

relative error of 4.56 %. From the table 4.4., the coefficient of determination (R2) is 

very close to unity i.e. 0.9940, implying that the ANN model approximated the factor 
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of safety of the slope close to the actual values with minimum average absolute error 

of 0.11 for each row as depicted in figure 4.12. 

 

Table 4.3: Descriptive statistics of the variables used in the development of the 

model 

 α VWP C PWP  FS 

Min 9 12.858 15690 -113300 23.986 0.058 

Max 84 92.475 27690 -2868 45.145 20.751 

Mean 48.84848 59.67507 20385.13 -42856.7 32.073 2.141303 

Sd 21.23913 30.49547 10152.2 43755.45 8.045494 2.961379 

 

 

Table 4.4: Summary of the number of training and test sets as well as error 

estimates from the observed data  

Description Training set Test set 

Number of rows 247 50 

CCR n/a n/a 

Average AE 0.049046 0.0394455 

Average MSE 0.0047601 0.0026292 

Tolerance type Relative Relative 

Tolerance 10% 30% 

Number of Good forecasts 222 (90%) 50 (100%) 

Number of Bad forecasts 25 (10%) 0 (0%) 

R2: 0.9940            Correlation: 0.9970 
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Figure 4.12: Absolute error between the actual and forecasted values for each row 

 

Additionally, the trained ANN network was evaluated for its accuracy by comparing 

the actual observed results to the ANN model results based on the test set using 

correlation coefficients (appendix II). The comparison between the actual and the 

ANN model is shown in Figure 4.13 with correlation coefficient of 0.9941.  It can be 

noted from the figure that both the ANN model and actual experimental values have a 

significantly high correlation coefficient. The data points are aligned closely along the 

regression line depicting the degree of accuracy of the ANN model. 
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Figure 4.13: Comparison between actual and forecasted values for the training session 
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Input importance by percentage to the target 

By employing the commercial software Neuroph© and Microsoft Excel© embedded 

program ForecastXL©, the trained ANN model was able to establish the contribution 

of each input to the target output as shown in figure 4.14. In this figure, soil water 

content has been particularly identified as the most significant contributor to the factor 

of safety at 54.843% followed by slope angle at 27.979% and pore-water pressure 

which is a function of moisture content at 14.561%. Soil internal friction angle and 

cohesive stress (2.264 and 0.353%) are relatively less significant.  

From the ANN model results, VWC was identified as the most significant factor 

influencing FS, in close agreement with other research studies.  For instance, Fawaz et 

al. (2014) carried out numerical simulations and laboratory tests on different soil 

samples with varying hydrological conditions and concluded that changes in VWC is 

a proxy to deterioration of mechanical parameters of soil layers constituting the slope.  

This change in VWC has consequences including outward seepage, development of 

tension cracks, and eventual slope failure (Jia et al., 2009). Indeed, many other 

geotechnical investigations based on experimental field tests and numerical models 

had established the influence of water content variations on the soil shear strength and 

slope stability (Groh et al., 2020; Bogaard and Greco, 2018; Chueasamat et al., 2018; 

Brocca et al., 2017), but the percentage of influence was blatantly ignored. Clearly, 

the degree of significance in terms of a percentage is a vital idea geared towards 

identifying the triggering factors in terms of their impacts on a given slope, a key step 

in the development of an early warning system. 
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Figure 4.14: Input importance by percentage to the target 

 

The second most important factor is PWP. As indicated in earlier sections, increase in 

pore-water pressure as a result of increased moisture content lowers the magnitude of 

the effective stress, consequently reducing the available shear strength within the soil 

mass thereby decreasing slope stability (Zhang et al., 2015). More precisely, for any 

soil volume that is continuously affected by hydrological conditions, PWP is either 

influencing or completely governing the actual soil properties (Johansson and 

Edeskär, 2014). Pore-water pressure variation depends on a number of factors such as 

the rate of rainfall, the nature of the ground surface, the catchment area, and the soil 

permeability (Guo, 2020; Wicki et al., 2020). Therefore, by identifying the degree of 

significance as a percentage to FS by PWP allows researchers and policy makers to 

ascertain the nature and mechanism of slope failure as well as mitigation measures 

related to slope instabilities. 

The third significant factor is slope angle which obviously causes instability is the 

slope steepness. The gravitational component of downward force increases 

proportionately with increase in slope angle even when other factors are held constant 
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(Chatterjee and Krishna, 2019; Price, 2009), because of self-weight. Additionally, as 

confirmed by Daer (2001), the inclination angle determines the mode of slope failure, 

either downslope avalanche or retrogressive type. As such higher inclination angles 

pose a greater danger to the stability of a slope as witnessed in the reduction of the FS 

values (Russell et al., 2019; Savage and Hutter, 1991). 

Finally, both internal friction angle and soil cohesion are less significant factors in 

terms of contribution to the FS. This is attributed to the fact that cohesive strength is 

only effective at low water contents but with higher VWC, PWP dominates. On the 

other hand, since internal friction angle is a function of the lithological structure of the 

soil in consideration, its effect will also be minimal and effective only at low VWC 

(Han et al., 2020; Alonso et al., 2010). 

 

Model verification and validation 

Verification and validation are essential processes aimed at assuring that ANN models 

produced are accurate and produce reliable predictions. The verification stage is 

aimed at probing if the ANN model was built rightly i.e. if the model was built 

following the correct procedures, learned the correct data, the type of networks and 

learning algorithms were appropriate to meet the goals or requirements, etc. On the 

other hand, validation is concerned with proving if the ANN model built is the right 

one for the specific purpose i.e. if the ANN model converged to the global minimum 

or a local minimum, if the model can handle data outside of the training set, and if it 

can produce acceptable prediction regions (Liu and Yang, 2005; Papadopoulos et al., 

2000).  

In this study, the last step undertaken was verification and validation of the trained 

and tested ANN model with a set of geotechnical as well as geophysical input 
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parameters to evaluate its versatility to physical applications. This was done by using 

a set of 59 data points (not used both in training and testing) for cross validation with 

a set of known values of factor of safety. A coefficient of determination was 

computed and compared with conventionally accepted thresholds.  This approach 

ensures that that results are free of any sample bias and checks for the robustness of the 

model (https://medium.com/@salsabilabasalamah/cross-validation-of-an-artificial-

neural-network-f72a879ea6d5, accessed 11/05/2020).  

Results of model predictions during validation were plotted against the actual vales of 

the target (FS) (figure 4.15), gave a positive correlation with the least error. More 

precisely, the coefficient of correlation obtained between the predicted and validation 

data set was 0.9933, implying that the ANN model successfully predicted the data.  
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Figure 4.15: Comparison of actual and predicted factor of safety for validation dataset 

 

4.2.4.3 Summary, Conclusion and Recommendations  

The major objective of study in this section was to develop an intelligent ANN to 

predict the likelihood of occurrence of slope failure given a set of input parameters. 

https://medium.com/@salsabilabasalamah/cross-validation-of-an-artificial-neural-network-f72a879ea6d5
https://medium.com/@salsabilabasalamah/cross-validation-of-an-artificial-neural-network-f72a879ea6d5
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From descriptive statistics outlined both in text and table 4.4 and figure 4.15, it’s clear 

that the developed ANN was able to predict the state of a given slope by way of a 

numerical value of the safety factor. As mentioned earlier, a safety factor of greater 

than unity implies stability of the slope and vice versa. Secondly, from the results 

especially in figure 4.14, the most significant parameters that contribute to the 

variations of the safety factor are identified: water content, pore-water pressure, slope 

angle, internal friction angle and cohesion; arranged in order of decreasing 

significance. 

 

 

 

 



114 

 

CHAPTER FIVE  

CONCLUSIONS AND RECOMMENDATIONS  

5.1 Introduction 

In this chapter, a highlight of the conclusions drawn from the research outcomes, 

recommendations and avenues for further research are presented. The first segment 

provides an exposition of the key findings, conclusions inferred and by extension the 

contributions to the body of knowledge as well as recommendations. The second 

section outlines a highlight on the avenues for further research while a brief 

discussion of the limitations of the proposed scientific methodologies is outlined in 

the final part.  

 

5.2 Contributions of the study 

This study was aimed at undertaking a computational and experimental 

characterization of convex configuration slopes under varying hydrological 

conditions. More precisely, it was targeted at deriving physically-based numerical 

models based on spherical-cap-shaped slope morphology, formulation of a 

hydromechanical landslide model, design of a versatile real-time monitoring system 

and development of an adaptive and intelligent ANN model to predict slope instability 

both in space and time.  

As a consequence, a number of physically based numerical models were successfully 

derived considering spherical-cap shaped slip zones as well as a global 

hydromechanical landslide equation for analysing soil slopes. Computational results 

from the models were calibrated against experimental findings based on a Solar 

Powered Monitoring (SPM) system which comprised of a laboratory flume, sensor 

array and data broadcasting scheme. Finally, a BP-ANN model was developed and 
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trained from the experimental data that was utilized for prediction of slope stability 

status by way of numerical values of the factor of safety. In conclusion, all the 

proposed objectives of study were fulfilled. 

As a result of the findings realized from the study, a number of concluding inferences 

were drawn which demonstrate originality and advancement of knowledge in soil 

mechanics as outlined below. 

 

5.2.1 Objective 1: Formulation of physically-based numerical and constitutive 

models to simulate the characteristics of spherical-cap-shaped slip zones 

(i) Slip zone 

The novel formulations presented in this study are based on the consideration of a 

finite spherical-cap shaped slip zone whose physical dimensions and parameters can 

be determined experimentally with minimal theoretical assumptions. These models 

offer a more realistic computational consideration as opposed to existing constitutive 

models which were based on the assumption that the land mass under failure takes the 

shape of an ideal cuboid, wedge (in the case of finite and infinite slope) or semi-

circular configuration of unit width.  

Specifically, it is concluded from the quantitative results that for convex slopes in 

which the failure surface is planar, the slip zone is approximately equivalent to a 

spherical cap whose base lies along the incline plane. While, for cohesive soils, the 

failure surface is curvilinear leading to the more apt and novel concept that the slip 

zone resembles two spherical caps sharing the base (double spherical caps). 

Therefore, the overriding conclusion is that the mode of failure and configuration of 

the slip zone is a function of the volumetric water content, location of the apparent 
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phreatic surface, magnitude of cohesive strength, orientation of weak planes and 

existence of discontinuities.  

Undoubtedly, it is evident that most voids left after soil mass failures are dome-

shaped resembling spherical caps. Therefore, it is recommended that computational 

constitutive models should incorporate this new consideration of spherical-cap-shaped 

slip zones as they represent a closer approximation of the natural scenarios as opposed 

to conventional methods. 

 

(ii) Failure plane 

An emergent theme arising from analysis of soil slopes pinpointed the fact that the 

configuration of the potential failure plane (planar or curved) is dependent on the 

location of the phreatic surface and discontinuities especially at the interface of 

stratigraphic layers. Additionally, it can be concluded based on experimental results 

that for ‘young’ slope profiles arising from past landslide events or weathering 

processes, for which the interface between the weathered fragments and underlying 

bedrock do not have a very strong bond, the failure surface is located at the 

stratigraphic interface and is nearly a straight plane along the slope. While for highly 

cohesive soils, the failure surface is concave-shaped commencing from locations of 

discontinuities such as cracks and follows non-linear water flow paths or phreatic 

surfaces. 

These findings are contrary to the conventional assumption that the failure plane 

always occurs at the soil-bedrock interface. It is recommended that during slope 

stability analysis, the location and anatomy of the perched or underground water table 

as well as the cohesive strength, presence of discontinuities and amount of VWC, 

should be considered before choosing the profile and location of the failure surface. 

 



117 

 

5.2.2 Objective 2: Hydromechanical Landslide Model 

Amongst the original contributions advanced in this study lies in the fact that 

geotechnical, geophysical and hydrological parameters are defined as empirical 

functions of the volumetric water content. The unique computational descriptions 

include expression of the cohesive stress, pore-water pressure and factor of safety as 

empirical functions of volumetric water content as well as representation of pulsed 

rainfall event as a Fourier transform.  

A novel hydromechanical landslide model for the factor of safety of a soil mass on a 

slope was derived incorporating the volumetric water content as the most significant 

variable in its formulation. The more expedient hydromechanical model for the FS 

conceives a remedy to many geotechnical scientists because of its simplicity in terms 

of computation and application as it is dependent on only two variables i.e. volumetric 

water content and slope angle to establish the stability status of a given slope.  

More pertinently the soil cohesive stress is defined as an empirical function of the 

volumetric water content, as such expensive and complex triaxial tests are excluded. 

In principle, the number of transducers and sensors are greatly reduced without 

compromising the integrity of computation and system instrumentation. Moreover, an 

improved effective wetness index has been derived taking into consideration the moist 

soil unit weight, as opposed to earlier models which were based on purely dry soil or 

saturated conditions. 

Finally, since the threshold VWC for slope failure can be extracted directly from the 

equation of the FS, it is concluded that an early warning system can be developed 

based on this data for purposes of prediction and disaster preparedness. Essentially, it 

is noteworthy to conclude that since the FS in this model is principally a function of 

the VWC, it is recommended that an early warning system based purely on VWC 
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would be a remedy to many geophysical and geotechnical professionals in design and 

implementation. 

Based on comparison between the experimental results and the computational data, it 

can be concluded that there was close concurrence between the models and 

experiments with r2>0.9 in all trials. It is therefore recommended that, since the 

models advanced in this study are physics-based, they can be applied on a variety of 

rainfall induced shallow landslides on relatively steep slopes. In other words, the field 

data can be readily incorporated into the hydromechanical slope stability model as 

well as the BP-ANN model to predict the stability status of a given slope. 

 

5.2.3 Objective 3: SPM system architecture 

A hybrid SPM system comprising of both optical and electronic sensors for collection 

and transmission of data to a dedicated server for processing was developed and 

implemented. The SPM system architecture offers a significant advancement to the 

existing data acquisition designs because of minimal power consumption (and also 

powered by solar electric energy) and versatility, as well as relatively smaller number 

of transducers and sensors. Since this system can transmit processed data wirelessly, it 

can be integrated into an early warning system for disaster mitigation. 

 

5.2.4 Objective 4: ANN model  

In this study, a unique BP-FF ANN model embedded in MS Excel™ was developed to 

predict numerical values of the factor of safety of a slope when fed with both 

geophysical and geotechnical as well as hydrological parameters. Statistical 

comparison of the ANN model results and experimental data indicated an overall 

relative error of less than 5%, leading to the conclusion that ANN models can provide 
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an effective solution to the evaluation of slope stability and by extension development 

of early warning systems.  

Furthermore, the contribution to new knowledge that this study makes is the 

identification of the parametric input importance to the FS. For instance, results from 

ANN rubrics pinpointed VWC as the most significant factor modulating the FS 

followed by PWP, slope angle, internal friction angle and cohesion respectively. Since 

VWC is identified as the most significant proxy to deformation-softening process in 

slopes, and recognizing that most geophysical and geotechnical parameters are 

empirical functions of VWC, it is recommended that efficient drainage mechanisms 

and continuous monitoring of VWC in sloping regions will provide appropriate 

mitigation interventions to slope instability cases. 

 

5.3 Recommendations for Further Research 

In this study, a number of numerical models were proposed and tested against 

experimental data using an SPM system based on a laboratory flume, yielding a 

number of research outputs. However, a number of recommendations for further 

research work are proposed, namely: 

i) Slope stability analysis using a combination of ANN and fuzzy logic models; 

ii)  Explore other methodologies of analyzing complex configuration slip zones, and 

iii) Apply rheological and smoothed particle models to convex configuration slopes  

 

5.4 Limitations of the study 

Characterization of soil slopes is a key initiative aimed at expanding the knowledge 

base with regard to disasters arising from mass wasting events. However, the 

experimental scope of study is too wide. For this reason, only representative samples 
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were considered and therefore the analysis could not be exclusively generalized 

without statistical assumptions. Additionally, because of the limitation to field-based 

equipment as a result of budgetary constraints, experimental trials were undertaken in 

a laboratory setting using a flume. 

Furthermore, the physically based models derived in this study are a result of 

laboratory simulation processes which mimic in situ field conditions, although 

limitations cannot be ignored especially with regard to basal friction, soil-bedrock 

interface conditions and pore-water fluctuations at different locations. Moreover, the 

simulation efforts pursued in this study were able to yield the global factor of safety 

(i.e. for the whole soil mass in question), but local FS values could not be determined 

because of limitation in the number of transducers. 

 

5.5 Concluding remarks 

The significance of the results of this study especially from the proposed numerical 

models and ANN formulation cannot be underestimated as they are of great utility to 

geophysical and geotechnical scientists, physical planners and the community at large. 

In essence, the models and experimental results as well as the deductions derived 

from this study will aid in providing baseline geophysical and geotechnical 

information as well as hydrological considerations to the public, government agencies 

and non-governmental organizations, on the stability of soil slopes.  Secondly, the 

derived models based on spherical-cap shaped slip zones as well as the 

hydromechanical slope stability model will form the basis for more precise 

constitutive computations with regard to soil slopes. Lastly, prediction of slope 

stability status by way of a BP-FF ANN model will provide an excellent approach of 
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developing an early warning system for disaster preparedness. Therefore, all the four 

objectives of study were addressed. 
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APPENDICES 

Appendix I: Table showing a section of the normalized data in the range -1 to +1 to be 

fed in the ANN for analysis (Pre-processing of data) 

Target
slope angle Water content Cohesion Pore pressure int friction angle FS 30

[n] [n] [n] [n] [n] [n]

min: 30 min: 0.001315 min: 3066 min: -26730 min: 9.463 min: 0.374

max: 60 max: 0.497 max: 22180 max: -0.691 max: 59.107 max: 3.815

-0.4 -0.398447401 -0.10601653 -0.4 0.4 0.388375472

-0.4 0.396772144 -0.16628649 0.12855837 -0.374184191 -0.24934612

0.13333333 -0.366615895 -0.04742074 -0.21982325 0.390427846 -0.02429526

-0.1333333 0.212784329 -0.35333264 0.312625979 -0.397341068 -0.37070619

-0.4 0.316075734 -0.39673538 0.382437885 -0.39476271 -0.35977913

-0.4 0.240221108 0.11497332 -0.06628393 -0.307469181 -0.08962511

0.4 -0.232659855 0.37153919 -0.11177706 0.100604303 -0.18541122

-0.1333333 0.246676821 -0.02816784 0.024702337 -0.350930626 -0.25632084

-0.4 0.38224679 -0.24606048 0.18889663 -0.379937153 -0.2867771

0.13333333 0.169208267 -0.31076698 0.133915785 -0.384497623 -0.37396106

0.13333333 -0.198767362 0.35354191 -0.18929496 0.131560712 -0.07707062

-0.1333333 0.245062893 -0.39882808 0.279823036 -0.392796713 -0.38302819

0.13333333 0.125632206 -0.38920163 0.214636166 -0.395600677 -0.39302528

-0.1333333 -0.229431998 0.23509469 -0.29135522 0.251905568 0.106364429

-0.1333333 0.204714688 -0.32164905 0.31062069 -0.398179035 -0.36140657

-0.4 0.333828944 -0.39677723 0.350427181 -0.392281041 -0.35861668

-0.1333333 -0.398871864 -0.10601653 -0.31320389 0.4 0.133100843

0.4 -0.019621332 -0.21144711 0.119699181 -0.399887197 -0.37349608

-0.4 0.341898585 -0.38878309 0.333397186 -0.391056321 -0.35466434

-0.1333333 0.035252227 0.31796589 -0.16026316 -0.183401821 -0.08776518

-0.1333333 0.291866811 -0.24606048 0.147503866 -0.379937153 -0.33281023

-0.1333333 0.264430031 -0.36789788 0.237292943 -0.388929176 -0.37233362

0.13333333 -0.061583465 0.35312337 -0.12823839 -0.142776569 -0.16704446

0.13333333 0.164366483 -0.07504447 0.035177729 -0.360986222 -0.31793083

0.13333333 -0.127754522 0.4 -0.16205894 -0.018177423 -0.11984888

0.4 -0.156805229 0.38032855 -0.08663612 -0.09678511 -0.22911944

0.4 -0.04867204 0.16268704 -0.03336127 -0.287051809 -0.29793665

-0.1333333 0.153068985 0.13883018 -0.06478744 -0.297687535 -0.18564371

-0.4 0.4 -0.14422936 0.112875211 -0.372379341 -0.23865155

0.4 -0.277849844 0.27067071 -0.12255175 0.223027959 -0.16495205

0.13333333 -0.350476613 -0.01142618 -0.21892536 0.379904923 -0.02406277

-0.4 0.30155038 0.01954588 -0.0007379 -0.339021835 -0.14867771

-0.4 0.370949292 -0.29590876 0.230858059 -0.383369591 -0.31025865

Input
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Appendix II: A section of the Input, Target, Forecast, Relative Error and Performance 

Estimate data table during training of the ANN 

Target
slope angle wc C Pu int ang FS Forecast Abs. Error Rel. Error Estimate

30 0 10090 -26730 59.107 3.765 3.850365945 0.085365945 2.27% Good

30 99 8650 -9070 11.065 1.022 1.03631573 0.01431573 1.40% Good

50 4 11490 -20710 58.513 1.99 1.917670324 -0.07232968 3.63% Good

40 76 4181 -2920 9.628 0.5 0.492296128 -0.00770387 1.54% Good

30 89 3144 -587.47 9.788 0.547 0.571297218 0.024297218 4.44% Good

30 80 15370 -15580 15.205 1.709 1.770131473 0.061131473 3.58% Good

60 21 21500 -17100 40.528 1.297 1.337146823 0.040146823 3.10% Good

40 80 11950 -12540 12.508 0.992 1.06181084 0.06981084 7.04% Good

30 97 6744 -7054 10.708 0.861 0.890811254 0.029811254 3.46% Good

50 71 5198 -8891 10.425 0.486 0.463576257 -0.02242374 4.61% Good

50 25 21070 -19690 42.449 1.763 1.691352009 -0.07164799 4.06% Good

40 80 3094 -4016 9.91 0.447 0.472963346 0.025963346 5.81% Good

50 65 3324 -6194 9.736 0.404 0.417721236 0.013721236 3.40% Good

40 21 18240 -23100 49.917 2.552 2.552395464 0.000395464 0.02% Good

40 75 4938 -2987 9.576 0.54 0.521856348 -0.01814365 3.36% Good

30 91 3143 -1657 9.942 0.552 0.592208453 0.040208453 7.28% Good

40 0 10090 -23830 59.107 2.667 2.993867808 0.326867808 12.26% Bad

60 47 7571 -9366 9.47 0.488 0.557357104 0.069357104 14.21% Bad

30 92 3334 -2226 10.018 0.569 0.609301639 0.040301639 7.08% Good

40 54 20220 -18720 22.904 1.717 1.701672141 -0.01532786 0.89% Good

40 86 6744 -8437 10.708 0.663 0.654394978 -0.00860502 1.30% Good

40 83 3833 -5437 10.15 0.493 0.504290458 0.011290458 2.29% Good

50 42 21060 -17650 25.425 1.376 1.346064695 -0.0299353 2.18% Good

50 70 10830 -12190 11.884 0.727 0.752759234 0.025759234 3.54% Good

50 34 22180 -18780 33.157 1.579 1.611198 0.032198 2.04% Good

60 30 21710 -16260 28.279 1.109 1.082346566 -0.02665343 2.40% Good

60 44 16510 -14480 16.472 0.813 0.768631759 -0.04436824 5.46% Good

40 69 15940 -15530 15.812 1.296 1.414544533 0.118544533 9.15% Good

30 99 9177 -9594 11.177 1.068 1.090508378 0.022508378 2.11% Good

60 15 19090 -17460 48.125 1.385 1.43221226 0.04721226 3.41% Good

50 6 12350 -20680 57.86 1.991 1.898148321 -0.09285168 4.66% Good

30 87 13090 -13390 13.247 1.455 1.336973454 -0.11802655 8.11% Good

30 96 5553 -5652 10.495 0.76 0.788816658 0.028816658 3.79% Good

40 77 3599 -3012 9.689 0.47 0.474445893 0.004445893 0.95% Good

60 51 3450 -9005 9.712 0.382 0.373524609 -0.00847539 2.22% Good

50 45 20220 -17140 22.904 1.295 1.374563738 0.079563738 6.14% Good

50 67 3066 -6548 9.846 0.396 0.39947255 0.00347255 0.88% Good

60 11 16340 -17650 53.188 1.439 1.461054296 0.022054296 1.53% Good

60 49 4668 -8950 9.593 0.413 0.436924708 0.023924708 5.79% Good

30 87 3221 -437.195 9.761 0.552 0.602246298 0.050246298 9.10% Good

40 81 3143 -4215 9.942 0.451 0.467625091 0.016625091 3.69% Good

60 28 22100 -16530 31.454 1.165 1.148158259 -0.01684174 1.45% Good

40 78 3324 -3161 9.736 0.456 0.463410316 0.007410316 1.63% Good

40 78 3221 -3262 9.761 0.451 0.467520896 0.016520896 3.66% Good

30 90 3067 -1167 9.877 0.544 0.582352958 0.038352958 7.05% Good

40 73 6518 -3447 9.509 0.625 0.606169524 -0.01883048 3.01% Good

60 51 3221 -9084 9.761 0.377 0.372955758 -0.00404424 1.07% Good

40 78 3450 -3078 9.712 0.462 0.460487319 -0.00151268 0.33% Good

30 41 22050 -23890 36.749 3.13 3.130103569 0.000103569 0.00% Good

40 58 19250 -17960 20.707 1.605 1.533726763 -0.07127324 4.44% Good

50 62 14230 -14000 14.14 0.9 0.793185438 -0.10681456 11.87% Bad

50 49 19250 -16610 20.707 1.215 1.348938355 0.133938355 11.02% Good

Input Output
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Appendix III: Budget Estimates 

    Year1 Year 2 

  Equipment  COST (KSHS) COST (KSHS) 

1 Type K thermocouples 3,000  

2 TC-08 thermocouple data logger 1,500  

3 PCI-3140R Time-domain reflectometer 

(TDR) 

12,000  

4 5" GPS NAV+Bluetooth+FM 

Transmitter+GPRS+4G Card 09 map 

82,000  

5 Geophone 68,000  

6 Druck PDCR-81 miniature pore pressure 

transducers 

8,000  

7 Digital camera 15,000  

8 Micro-computer 15,000  

9 Branded computers (server) 50,000  

10 Analogue-to-digiatal (ADC) converter 6,000  

11 Data logger 3,000  

12 10x10 cm solar cell module 2,000  

13 Soldering gun 2,000  

14 Rain gauge 1,000  

15 Laptop 50,000  

16 ESRI ArcView v. 3.1, ArcScene v. 8.1, 

ArcGIS 

 24,000 

17 Ilwis 3.0  22,000 

18 Matlab v.8.0  18,000 

19 GeoModelling software  20,000 

Sub-total 318,500 84,000 

  

  Expendable supplies COST (KSHS) COST (KSHS) 

1 Soldering wires 200 200 

2 PCB boards 1,000 1,000 

3 Connecting wires 500 500 

      

      

Sub-total 1,700 1,700 

    

  Literature, documentation, information COST (KSHS) COST (KSHS) 

1 Printing 6,000 10,000 

2 Publication 2,000 4,000 
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3 Internet services 10,000 15,000 

4 Photocopying 4,000 4,000 

5 Progress reports and thesis and drafts binding  8,000 

      

Sub-total 22,000 35,000 

    

10 Local travel COST (KSHS) COST (KSHS) 

1 Subsistence 50,000 100,000 

2 Transport (student and supervisors)  120,000 

3 Support staff (wages) in the field  50,000 

Sub-total 50,000 270,000 

    

11 Other costs  COST (KSHS) COST (KSHS) 

1 Ruled paper (1 ream) 300 300 

2 Pens (1pack of 20 pens) 200 200 

3 Flash disk (4GB) 2,500  

4 Compact disks (1 pack of 10 CDs) 150 150 

Sub-total 3,150 650 

    

 GRAND TOTALS (Kshs.) 396,350 397,350 

    

 
OVERAL TOTAL FOR TWO YEARS 

(Kshs.) 793,700 
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Appendix IV: Time schedule of events 

  Year1 (2018) Year2 (2019) Year3 

(2020) 

Task Q1                Q2                Q3                       Q4 Q1 Q2 Q3 Q4 Q1 Q2 

  Jan-

Mar 

Apr-

May 

Jun-

Aug 

Sep-

Dec 

Jan-

Mar 

Apr-

May 

Jun-

Aug 

Sep-

Dec 

Jan-

Mar 

Apr-

May 

Design, fabrication and 

testing of the micro-seismic 

monitoring system  

                

    

Collection of baseline 

historical data from 

meteorological centres 

nearby the study area  

                

    

Development of the 

mathematical simulation 

programs 

                

    

Field visit by the student and 

supervisors to Kamelil and 

Taptengelei 

                

    

Installation of the 

monitoring system in the 

study area 

                     

Data collection 

 

                     

Data analysis 

 

                     

Thesis draft write up 

 

                     

Thesis draft correction and 

submission for marking 

                     

Thesis oral defense 
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Appendix V: Similarity Report 


