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ABSTRACT 

In this Thesis crystallization of a hard-sphere assembly of fermions with densities ranging 

from low to high values has been theoretically investigated, the fermions are very close to 

each other, and the interaction between a pair of fermions is assumed to be a hard-sphere 

one. The hard-sphere system is a useful first approximation of a many-body system 

interacting via a potential containing a short-ranged repulsive part, which happens to be 

even better at very low densities at which the particles experience weakly attractive 

potential tail surrounding the repulsion, or at very high densities where the repulsion is 

predominant. However, at intermediate densities, the attractive potential is assumed to 

play a significant role. Since fermions (degenerate Fermi gas or liquid) such as a gas or 

liquid 𝐻𝑒3  or neutrons satisfy Pauli’s exclusion principle which leads to repulsion 

between two fermions when they try to approach each other to occupy the same quantum 

(energy) state. A hard-sphere assembly of fermions of densities ranging from very low to 

very high values was considered to obtain an expression for the energy per particle, 𝐸 𝑁⁄ . 

For an N-identical fermion hard-sphere system with 𝜈 intrinsic degrees of freedom for 

each fermion, the total energy, E in terms of other parameters, a generalized London 

equation was applied to obtain the total energy of the system, and to obtain the saturation 

density, 𝜌𝑠, leading to crystallization of the system. Particle number densities, 𝜌𝑠, for low 

and high densities were 7.11x1027 particles/𝑐𝑚3 and 1.502x1029 particles/𝑐𝑚3 

respectively, at which the fermions close pack or crystallize. Transition Temperature 𝑇𝑐 at 

crystallization of fermions was calculated whose value was 19.26K. These results are 

consistent with experimental and computer-simulated results whose value is 20.3K. Next, 

similar techniques were applied to neutron stars which were considered as reservoirs of 

high density fermions. The energy per neutron in a neutron star was calculated for low 

and high density neutron stars whose findings demonstrated that the energy per neutron 

for both low and high density of the neutron star increases for a given value of the 

scattering length, in agreement with experimental results, since increasing the density 

leads to strong interactions which in turn increase energy of the assembly. This also 

confirms that under high pressure, the system attains large density and huge amount of 

energy on crystallization. 
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CHAPTER ONE 

INTRODUCTION 

1.1: Background  

1.1.1: Condensed Matter Physics 

The field of Condensed Matter Physics (CMP) explores the macroscopic and microscopic 

properties of Matter. Condensed Matter Physicists study how Matter arises from a large 

number of interacting atoms and electrons, and what physical properties it has as a result 

of these interactions. Traditionally, CMP is split into "hard" CMP, which studies 

quantum properties of Matter, and "soft" CMP which studies those properties of Matter 

for which quantum mechanics plays no role.The Condensed Matter field is considered 

one of the largest and most versatile sub-fields of study in Physics, primarily due to the 

diversity of topics and phenomena that are available to study. Breakthroughs in the field 

of CMP have led to the discovery and use of liquid crystals, modern plastic and 

composite materials and the discovery of the Bose-Einstein Condensate (Taylor, 2002). 

Fig. 1.1 is a plot of variation of temperature with pressure depicting the quantum states of 

CMP system. 

 

Fig. 1.1: Quantum Phase states of Matter (Kapitza, Allen & Miscener, 1937) 

https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-pltaylor-1
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In disordered State, spins of the particles orient in all possible directions, in an ordered 

state spins of the particles have definite orientation. Classical critical refers to the state at 

the temperature when classical statistical mechanics is applicable. Quantum critical state 

is one which is a departure from the classical critical state in which quantum laws are 

applicable.  

Condensed Matter Physics is the branch of Physics that studies the properties of the large 

collections of atoms that compose both ordinary and exotic materials. Because it deals 

with properties of Matter at ordinary chemical and thermal energy scales, CMP is the 

subfield of Physics that has the largest number of direct practical applications, and has a 

large overlap with chemistry, materials science, and electrical engineering. It is also an 

intellectually challenging field that is currently producing many advances in fundamental 

Physics. 

The Condensed Matter Physics is particularly strong in the study of quantum materials, 

which reveals unexpected and exotic behaviour when subjected to extreme conditions 

such as low temperature and/or high pressure. Physical properties of these materials are 

studied using various theoretical methods and experimental techniques, such as Scanning 

Tunneling Microscopy (STM), quantum oscillations, neutron/x-ray scattering.  

CMP is a branch of Physics that deals with the physical properties of 

Condensed phases of Matter (Taylor, 2002). Condensed Matter Physicists seek to 

understand the behavior of these phases by using physical laws. In particular, they 

include the laws of Quantum Mechanics, Electromagnetism and Statistical Mechanics. 

The most familiar Condensed phases are solids and liquids while more exotic Condensed 

phases include the superconducting phase exhibited by certain materials at 

low temperature, the ferromagnetic and anti-ferromagnetic phases of spins on atomic 

lattices, and the Bose–Einstein condensate found in cold atomic systems. The study of 

CMP involves measuring various material properties via experimental probes along with 

https://en.m.wikipedia.org/wiki/Physics
https://en.m.wikipedia.org/wiki/Phase_(matter)
https://en.m.wikipedia.org/wiki/Matter
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-pltaylor-1
https://en.m.wikipedia.org/wiki/Physical_laws
https://en.m.wikipedia.org/wiki/Quantum_mechanics
https://en.m.wikipedia.org/wiki/Electromagnetism
https://en.m.wikipedia.org/wiki/Statistical_mechanics
https://en.m.wikipedia.org/wiki/Solid-state_physics
https://en.m.wikipedia.org/wiki/Liquid
https://en.m.wikipedia.org/wiki/Superconductivity
https://en.m.wikipedia.org/wiki/Temperature
https://en.m.wikipedia.org/wiki/Ferromagnet
https://en.m.wikipedia.org/wiki/Antiferromagnet
https://en.m.wikipedia.org/wiki/Spin_(physics)
https://en.m.wikipedia.org/wiki/Crystal_lattice
https://en.m.wikipedia.org/wiki/Crystal_lattice
https://en.m.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate
https://en.m.wikipedia.org/wiki/Ultracold_atom
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using techniques of Theoretical Physics to develop mathematical models that help in 

understanding physical behavior. 

The diversity of systems and phenomena available for study makes CMP the most active 

field of contemporary Physics: one third of all American Physicists identify themselves 

as Condensed Matter Physicists (Cohen, 2008), and the Division of CMP is the largest 

division at the American Physical Society. The field overlaps with chemistry, materials 

science, and nanotechnology, and relates closely to Atomic Physics and Bio 

Physics. Theoretical CMP shares important concepts and techniques with 

theoretical particle and nuclear Physics (Cohen, 2008). 

A variety of topics in Physics such as crystallography, metallurgy, elasticity, magnetism, 

etc., were treated as distinct areas until the 1940s, when they were grouped together 

as Solid State Physics. Around the 1960s, the study of physical properties of liquids was 

added to this list, forming the basis for the new, related specialty of CMP. According to 

Physicist Philip Warren Anderson, the term was coined by him and Volker Heine, when 

they changed the name of their group at the Cavendish Laboratories, Cambridge from 

"Solid state theory" to "Theory of Condensed Matter" in 1967, as they felt it did not 

exclude their interests in the study of liquids, nuclear Matter and so on. Although 

(Anderson & Heine, 1967) helped popularize the name "Condensed Matter", it had been 

present in Europe for some years, most prominently in the form of a journal published in 

English, French, and German by Springer-Verlag titled Physics of Condensed 

Matter, which was launched in 1963. The funding environment and Cold War politics of 

the 1960s and 1970s were also factors that lead some Physicists to prefer the name 

"CMP", which emphasized the commonality of scientific problems encountered by 

Physicists working on solids, liquids, plasmas, and other complex Matter, over "Solid 

State Physics", which was often associated with the industrial applications of metals and 

semiconductors. The Bell Telephone Laboratories was one of the first institutes to 

conduct a research program in CMP.  

References to "Condensed" state can be traced to earlier sources. For example, in the 

introduction to his 1947 book "Kinetic Theory of Liquids" (Frenkel, 1947).  Yakov 

https://en.m.wikipedia.org/wiki/Theoretical_physics
https://en.m.wikipedia.org/wiki/People_of_the_United_States
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-2
https://en.m.wikipedia.org/wiki/American_Physical_Society
https://en.m.wikipedia.org/wiki/Chemistry
https://en.m.wikipedia.org/wiki/Materials_science
https://en.m.wikipedia.org/wiki/Materials_science
https://en.m.wikipedia.org/wiki/Nanotechnology
https://en.m.wikipedia.org/wiki/Atomic_physics
https://en.m.wikipedia.org/wiki/Biophysics
https://en.m.wikipedia.org/wiki/Biophysics
https://en.m.wikipedia.org/wiki/Theoretical_physics
https://en.m.wikipedia.org/wiki/Particle_physics
https://en.m.wikipedia.org/wiki/Nuclear_physics
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-marvincohen2008-4
https://en.m.wikipedia.org/wiki/Crystallography
https://en.m.wikipedia.org/wiki/Metallurgy
https://en.m.wikipedia.org/wiki/Elasticity_(physics)
https://en.m.wikipedia.org/wiki/Magnetism
https://en.m.wikipedia.org/wiki/Solid_state_physics
https://en.m.wikipedia.org/wiki/Liquid
https://en.m.wikipedia.org/wiki/Philip_Warren_Anderson
https://en.m.wikipedia.org/wiki/Volker_Heine
https://en.m.wikipedia.org/wiki/Cavendish_Laboratories
https://en.m.wikipedia.org/wiki/Cambridge
https://en.m.wikipedia.org/wiki/Nuclear_matter
https://en.m.wikipedia.org/wiki/Bell_Labs
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-Frenkel-10
https://en.m.wikipedia.org/wiki/Yakov_Frenkel
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Frenkel proposed that "The kinetic theory of liquids must accordingly be developed as a 

generalization and extension of the kinetic theory of solid bodies. As a Matter of fact, it 

would be more correct to unify them under the title of 'Condensed bodies'. By 

1908, (Dewar & Kamerlingh, 1908)   were successfully able to liquefy hydrogen and then 

newly discovered helium, respectively. 

One of the first studies of Condensed states of Matter was by English chemist Humphry 

Davy, in the first decades of the nineteenth century. Davy observed that of the forty 

chemical elements known at the time, twenty-six had metallic properties such as lustre, 

ductility and high electrical and thermal conductivity. This indicated that the atoms in 

Dalton's atomic theory were not indivisible as Dalton claimed, but had inner structure. 

Davy further claimed that elements that were then believed to be gases, such 

as nitrogen and hydrogen could be liquefied under the right conditions and would then 

behave as metals (Davy, 1839). 

(Faraday, 1823) then an assistant in Davy's lab, successfully liquefied chlorine and went 

on to liquefy all known gaseous elements, with the exception of nitrogen, 

hydrogen and oxygen. Shortly after, in 1869, Irish chemist Thomas Andrews studied the 

phase transition from a liquid to a gas and coined the term critical point to describe the 

condition where a gas and a liquid were indistinguishable as phases, and Dutch 

Physicist Johannes van der Waals supplied the theoretical framework which allowed the 

prediction of critical behavior based on measurements at much higher temperatures 

(Atkins, 2009). Paul Drude in 1900 proposed the first theoretical model for 

a classical electron moving through a metallic solid (Cohen, 2008). Drude's model 

described properties of metals in terms of a gas of free electrons, and was the first 

microscopic model to explain empirical observations such as the Wiedemann–Franz law 

(Kittel & Hoddeson, 1996). However, despite the success of Drude's free electron model, 

it had one notable problem, in that it was unable to correctly explain the electronic 

contribution to the specific heat and magnetic properties of metals, as well as the 

temperature dependence of resistivity at low temperatures (Kragh, 2002).
 

https://en.m.wikipedia.org/wiki/Yakov_Frenkel
https://en.m.wikipedia.org/wiki/James_Dewar
https://en.m.wikipedia.org/wiki/H._Kamerlingh_Onnes
https://en.m.wikipedia.org/wiki/Helium
https://en.m.wikipedia.org/wiki/People_of_England
https://en.m.wikipedia.org/wiki/Chemist
https://en.m.wikipedia.org/wiki/Humphry_Davy
https://en.m.wikipedia.org/wiki/Humphry_Davy
https://en.m.wikipedia.org/wiki/Chemical_element
https://en.m.wikipedia.org/wiki/Metal
https://en.m.wikipedia.org/wiki/Lustre_(mineralogy)
https://en.m.wikipedia.org/wiki/Ductility
https://en.m.wikipedia.org/wiki/John_Dalton
https://en.m.wikipedia.org/wiki/Atomic_theory
https://en.m.wikipedia.org/wiki/Nitrogen
https://en.m.wikipedia.org/wiki/Hydrogen
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-davy-1839-12
https://en.m.wikipedia.org/wiki/Michael_Faraday
https://en.m.wikipedia.org/wiki/Chlorine
https://en.m.wikipedia.org/wiki/Nitrogen
https://en.m.wikipedia.org/wiki/Hydrogen
https://en.m.wikipedia.org/wiki/Oxygen
https://en.m.wikipedia.org/wiki/People_of_Ireland
https://en.m.wikipedia.org/wiki/Thomas_Andrews_(scientist)
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In 1911, three years after helium was first liquefied, Onnes working at University of 

Leiden discovered superconductivity in mercury, when he observed the electrical 

resistivity of mercury to vanish at temperatures below a certain value 𝑇𝑐. The 

phenomenon completely surprised the best theoretical Physicists of the time, and it 

remained unexplained for several decades (Slichter, 2012). Albert Einstein, in 1922, said 

regarding contemporary theories of superconductivity that “with our far-reaching 

ignorance of the quantum mechanics of composite systems I am very far from being able 

to compose a theory out of these vague ideas”. 

1.1.2: Fermions 

There are two types of particles in nature; one type is known as fermions and the other 

type is called bosons.Bosons give rise to the classical Maxwell- Boltzmann gas of 

distinguishable particles, whereas fermions lead to either Bose-Einstein or Fermi-Dirac 

statistics depending upon the physical properties of the system such as spin.The basic 

building blocks of an atom (electron, neutron, photon) are all fermions. 

The atom as a whole can be either a boson or a fermion, depending on the total number of 

electrons and nucleons. Fermionic superfluidity has been achieved using the attractive 

interaction required for Cooper pairing, and the attractive interaction is provided by direct 

scattering between fermions in different spin states.  

Fermions obey anti-commutation relations and have total spin equal to ½; they obey Pauli 

Exclusion Principle. 

1.1.3: Crystallization of fermions 

Crystallization refers to a fermionic system in which the fermions are close to each other 

and the interaction between a pair of fermions is intense. In general reduction of 

temperature followed by the application of large external pressure can lead to freezing 

and or crystallization of fermions. 
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1.1.4: Modern Many Body Physics 

Today some Physicists are working to understand high-temperature superconductivity 

using the   Anti-desitter Space/ Conformal Field Theory (AdS/ CFT) correspondence 

(Merali, 2011), which has provided a new tool to investigate strongly correlated systems 

in CMP. The Sommerfeld model and spin models for ferromagnetism illustrated the 

successful application of quantum mechanics to Condensed Matter problems in the 

1930s. However, there still were several unsolved problems, most notably the description 

of superconductivity and the Kondo effect (Coleman, 2003). After World War II, several 

ideas from quantum field theory were applied to Condensed Matter problems. These 

included recognition of collective modes of excitation of solids and the important notion 

of a quasiparticle. Russian Physicist Lev Landau used the idea for the Fermi liquid 

theory wherein low energy properties of interacting fermion systems were given in terms 

of what are now known as Landau-quasiparticles (Coleman, 2003). Landau also 

developed a mean field theory for continuous phase transitions, which described ordered 

phases as spontaneous breakdown of symmetry. The theory also introduced the notion of 

an order parameter to distinguish between ordered phases (Kadanoff, 2009). Eventually 

in 1957, John Bardeen, Leon Cooper and John Schrieffer developed the so-called BCS 

theory of superconductivity, based on the discovery that arbitrarily small attraction 

between two electrons of opposite spin and momenta mediated by phonons in the lattice 

can give rise to a bound state called a Cooper pair (Coleman, 2011). The coherence 

length, 𝜉 of the Cooper pair gives the length of the Cooper pair state in space. It refers to 

the physical size of the single Cooper pair. Fig 1.2 shows components of the Hall 

resistivity as a function of the external magnetic field 
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Fig. 1.2: The quantum Hall effect: (Von, 1985). 

The study of phase transition and the critical behavior of observables, known as critical 

phenomena, was a major field of interest in the 1960s (Fisher, 1998). Leo 

Kadanoff, Benjamin Widom and Michael Fisher developed the ideas of critical 

exponents and scaling. These ideas were unified by Kenneth Wilson in 1972, under the 

formalism of the renormalization group in the context of quantum field theory (Fisher, 

1998). 

The quantum Hall Effect was discovered by Klaus von Klitzing in 1980 when he 

observed the Hall conductance to be integer multiples of a fundamental constant. The 

effect was observed to be independent of parameters such as the system size and 

impurities (Von, 1985). In 1981,  (Laughlin proposed a theory explaining the 

unanticipated precision of the integral plateau. It also implied that the Hall conductance 

can be characterized in terms of a topological invariable called Chern number (David, 

1998). Shortly after, in 1982, Horst Störmer and Daniel Tsui observed the fractional 

quantum Hall effect where the conductance was now a rational multiple of a constant. 

Laughlin, in 1983, realized that this was a consequence of quasiparticle interaction in the 
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Hall states and formulated a variational solution, known as the Laughlin wave function 

(Wen, 1992). The study of topological properties of the fractional Hall effect remains an 

active field of research. 

In1986, Karl Müller and Johannes Bednorz discovered the first high temperature 

superconductor, a material which was superconducting at temperatures as high as 

50 Kelvin. It was realized that the high temperature superconductors are examples 

of strongly correlated materials where the electron–electron interactions play an 

important role (Quintanilla, et. al., 2012). A satisfactory theoretical description of high-

temperature superconductors is still not known and the field of strongly correlated 

materials continues to be an active research topic. 

In 2009, David Field and researchers at Aarhus University discovered spontaneous 

electric fields when creating prosaic films of various gases. This has more recently 

expanded to form the research area of spontelectrics (Field, et. al., 2013). 

In 2012 several groups released preprints which suggest that samarium hexaboride has 

the properties of a topological insulator  in accordance with the earlier theoretical 

predictions (Dzero, 2009). Since samarium hexaboride is an established Kondo insulator, 

i.e. a strongly correlated electron material, the existence of a topological surface state in 

this material would lead to a topological insulator with strong electronic correlations. 

1.1.5: Theoretical Condensed Matter Physics 

Theoretical CMP involves the use of theoretical models to understand properties of states 

of Matter. These include models to study the electronic properties of solids, such as 

the Drude model, the Band structure and the density functional theory. Theoretical 

models have also been developed to study the Physics of phase transitions, such as the 

Ginzburg–Landau theory, critical exponents and the use of mathematical techniques 

of quantum field theory and the renormalization group. Modern theoretical studies 

involve the use of numerical computation of electronic structure and mathematical tools 

to understand phenomena such as high-temperature superconductivity, topological 

phases and gauge symmetries. 
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1.1.6: Emergence 

Theoretical understanding of CMP is closely related to the notion of emergence, wherein 

complex assemblies of particles behave in ways dramatically different from their 

individual constituents (Coleman, 2011). For example, a range of phenomena related 

to high temperature superconductivity are not well understood, although the microscopic 

Physics of individual electrons and lattices is well known. Similarly, models of 

Condensed Matter systems have been studied where collective excitations behave 

like photons and electrons, thereby describing electromagnetism as an emergent 

phenomenon. Emergent properties can also occur at the interface between materials: one 

example is the lanthanum-aluminate-strontium-titanate interface, where two non-

magnetic insulators are joined to create conductivity, superconductivity, 

and ferromagnetism. 

1.1.7: Electronic theory of solids 

The metallic state has historically been an important building block for studying 

properties of solids (Neil & Mervin, 1976). The first theoretical description of metals was 

given by Paul Drude in 1900 with the Drude model, which explained electrical and 

thermal properties by describing a metal as an ideal gas of then-newly 

discovered electrons. He was able to derive the empirical Wiedemann-Franz law and get 

results in close agreement with the experiments (Hoddeson, 1992). This classical model 

was then improved by Arnold Sommerfeld who incorporated the Fermi–Dirac 

statistics of electrons and was able to explain the anomalous behavior of the specific 

heat of metals in the Wiedemann–Franz law (Hoddeson, 1992). In 1912, The structure of 

crystalline solids was studied by Max von Laue and Paul Knipping, when they observed 

the X-ray diffraction pattern of crystals, and concluded that crystals get their structure 

from periodic lattices of atoms (Hoddeson, 1992). In 1928, Swiss Physicist Felix 

Bloch provided a wave function solution to the Schrödinger equation with 

a periodic potential, called the Bloch wave (Han, 2010). 

Calculating electronic properties of metals by solving the many-body wave function is 

often computationally hard, and hence, approximation techniques are necessary to obtain 
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meaningful predictions (Perdew, 2010). The Thomas–Fermi theory, developed in the 

1920s, was used to estimate system energy and electronic density by treating the local 

electron density as a variational parameter. Later in the 1930s, Douglas Hartree, Vladimir 

Fock and John Slater developed the so-called Hartree–Fock wave function as an 

improvement over the Thomas–Fermi model. The Hartree–Fock method accounted 

for exchange statistics of single particle electron wave functions. In general, it's very 

difficult to solve the Hartree–Fock equation. Only the free electron gas case can be 

solved exactly (Neil, 1976). Finally in 1964–65, Walter Kohn, Pierre Hohenberg and Lu 

Jeu Sham proposed the density functional theory which gave realistic descriptions for 

bulk and surface properties of metals. The density functional theory (DFT) has been 

widely used since the 1970s for band structure calculations of variety of solids (Perdew, 

2010). 

1.1.8: Phase transition 

Phase transition refers to the change of phase of a system, which is brought about by 

change in an external parameter such as temperature. Classical phase transition occurs at 

finite temperature when the order of the system was destroyed. For example, when ice 

melts and becomes water, the ordered crystal structure is destroyed. In quantum phase 

transitions, the temperature is set to absolute zero, and the non-thermal control parameter, 

such as pressure or magnetic field, causes the phase transitions when order is destroyed 

by quantum fluctuations originating from the Heisenberg uncertainty principle. Here, the 

different quantum phases of the system refer to distinct ground states of the Hamiltonian. 

Understanding the behavior of quantum phase transition is important in the difficult tasks 

of explaining the properties of rare-earth magnetic insulators, high-temperature 

superconductors and other substances. 

There are two classes of phase transitions: first-order transitions and continuous 

transitions. For the continuous transitions, the two phases involved do not co-exist at the 

transition temperature, also called critical point. Near the critical point, systems (undergo) 

display critical behavior, wherein several of their properties such as correlation 

length, specific heat and susceptibility diverge exponentially. These critical phenomena 

pose serious challenges to Physicists because normal macroscopic laws are no longer 
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valid in the region and novel ideas and methods have to be invented to find the new laws 

that can describe the system. 

The simplest theory that can describe continuous phase transitions is the Ginzburg–

Landau theory, which works in the so-called mean field approximation. However, it can 

only roughly explain continuous phase transition for ferroelectrics and type I 

superconductors which involves long range microscopic interactions. For other types of 

systems that involve short range interactions near the critical point, a better theory is 

needed (Malcolm, 2013). 

Near the critical point, the fluctuations happen over broad range of size scales while the 

feature of the whole system is scale invariant. Renormalization group techniques 

successively average out the shortest wavelength fluctuations in stages while retaining 

their effects into the next stage. Thus, the changes of a physical system as viewed at 

different size scales can be investigated systematically. The techniques, together with 

powerful computer simulation, contribute greatly to the explanation of the critical 

phenomena associated with continuous phase transition. 

1.1.9: Experimental Condensed Matter Physics 

Experimental CMP involves the use of experimental probes to try to discover new 

properties of materials. Experimental probes include effects of electric and magnetic 

fields, measurement of response functions, transport properties and thermometry 

(Richardson,1988). Commonly used experimental techniques include spectroscopy, with 

probes such as X-rays, infrared light and inelastic neutron scattering; study of thermal 

response, such as specific heat and measurement of transport via thermal and 

heat conduction. 

1.1.10: Scattering 

Several Condensed Matter experiments involve scattering of an experimental probe, such 

as X-ray, optical photons, neutrons, etc., on constituents of a material. The choice of 

scattering probe depends on the observation energy scale of interest. Visible light has 

energy on the scale of 1 eV and is used as a scattering probe to measure variations in 
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material properties such as dielectric constant and refractive index. X-rays have energies 

of the order of 10 keV and hence are able to probe atomic length scales, and are used to 

measure variations in electron charge density (Chaikin & Lubensky, 1995). 

Neutrons can also probe atomic length scales and are used to study scattering of nuclei 

and electron spins and magnetization (as neutrons themselves have spin but no charge). 

Coulomb and Mott scattering measurements can be made by using electron beams as 

scattering probes (Chaikin & Lubensky, 2012). Similarly, positron annihilation can be 

used as an indirect measurement of local electron density. Laser spectroscopy is an 

excellent tool for studying the microscopic properties of a medium, for example, to 

study forbidden transitions in media with nonlinear optical spectroscopy. 

1.1.11: External magnetic fields 

In experimental CMP, external magnetic fields act as thermodynamic variables that 

control the state, phase transitions and properties of material systems (Committee IUPAP, 

2004). Nuclear magnetic resonance (NMR) is a technique by which external magnetic 

fields can be used to find resonance modes of individual electrons, thus giving 

information about the atomic, molecular and bond structure of their neighborhood. NMR 

experiments can be made in magnetic fields with strengths up to 60Tesla. Higher 

magnetic fields can improve the quality of NMR measurement data (Moulton, 2006). 

Quantum oscillations is another experimental technique where high magnetic fields are 

used to study material properties such as the geometry of the Fermi surface (Doiron, 

2007). High magnetic fields will be useful in experimentally testing of the various 

theoretical predictions such as the quantized magneto-electric effect, image magnetic 

monopole, and the half-integer quantum Hall effect (National Research Council, ME, 

2013). 

1.1.12: Cold Atom Trapping 

Cold atom trapping in optical lattices is an experimental tool commonly used in 

Condensed Matter as well as atomic, molecular, and optical Physics. The technique 

involves using optical lasers to create an interference pattern, which acts as a "lattice", in 

which ions or atoms can be placed at very low temperatures. Cold atoms in optical 
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lattices are used as "quantum simulators", that is, they act as controllable systems that can 

model behavior of more complicated systems, such as frustrated magnets (Buluta & Nori, 

2009). In particular, they are used to engineer one-, two- and three-dimensional lattices 

for a Hubbard model with pre-specified parameters, and to study phase transitions 

for anti-ferromagnetic and spin liquid ordering (Greiner & Jaksch, 2008). 

In 1995, a gas of rubidium atoms cooled down to a temperature of 170 nK was used to 

experimentally realize the Bose–Einstein condensate, a novel state of Matter originally 

predicted by S. N. Bose and Albert Einstein, wherein a large number of atoms occupy a 

single quantum state; or zero-momentum state (ZMS) is macroscopically occupied. 

1.1.13: Solid-state Physics 

Solid-state Physics is the study of rigid Matter, or solids, through methods such 

as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the 

largest branch of CMP. Solid-state Physics studies how the large-scale properties of solid 

materials result from their atomic-scale properties. Thus, solid-state Physics forms a 

theoretical basis of materials science. It also has direct applications, for example in the 

technology of transistors and semiconductors. 

Solid materials are formed from densely packed atoms, which interact intensely. These 

interactions produce the mechanical 

e.g. hardness and elasticity), thermal, electrical, magnetic and optical properties of solids. 

Depending on the material involved and the conditions in which it was formed, the atoms 

may be arranged in a regular, geometric pattern (crystalline solids, which 

include metals and ordinary water ice) or irregularly (an amorphous solid such as 

common window glass). 

The bulk of solid-state Physics, as a general theory, is focused on crystals. Primarily, this 

is because the periodicity of atoms in a crystal — its defining characteristic — facilitates 

mathematical modeling. Likewise, crystalline materials often have electrical, 

magnetic, optical, or mechanical properties that can be exploited 

for engineering purposes. 

https://en.m.wikipedia.org/wiki/Geometrical_frustration
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-buluta-science2009-63
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-buluta-science2009-63
https://en.m.wikipedia.org/wiki/Hubbard_model
https://en.m.wikipedia.org/wiki/Antiferromagnetism
https://en.m.wikipedia.org/wiki/Spin_liquid
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-greiner-nature2008-64
https://en.m.wikipedia.org/wiki/Condensed_matter_physics#cite_note-greiner-nature2008-64
https://en.m.wikipedia.org/wiki/Rubidium
https://en.m.wikipedia.org/wiki/Kelvin
https://en.m.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate
https://en.m.wikipedia.org/wiki/S._N._Bose
https://en.m.wikipedia.org/wiki/Albert_Einstein
https://en.m.wikipedia.org/wiki/Quantum_state
https://en.m.wikipedia.org/wiki/Matter
https://en.m.wikipedia.org/wiki/Solid
https://en.m.wikipedia.org/wiki/Quantum_mechanics
https://en.m.wikipedia.org/wiki/Crystallography
https://en.m.wikipedia.org/wiki/Electromagnetism
https://en.m.wikipedia.org/wiki/Metallurgy
https://en.m.wikipedia.org/wiki/Condensed_matter_physics
https://en.m.wikipedia.org/wiki/Atom
https://en.m.wikipedia.org/wiki/Materials_science
https://en.m.wikipedia.org/wiki/Transistor
https://en.m.wikipedia.org/wiki/Semiconductor
https://en.m.wikipedia.org/wiki/Hardness
https://en.m.wikipedia.org/wiki/Elasticity_(physics)
https://en.m.wikipedia.org/wiki/Heat_conduction
https://en.m.wikipedia.org/wiki/Electrical_conduction
https://en.m.wikipedia.org/wiki/Magnetism
https://en.m.wikipedia.org/wiki/Crystal_optics
https://en.m.wikipedia.org/wiki/Crystal
https://en.m.wikipedia.org/wiki/Metal
https://en.m.wikipedia.org/wiki/Ice
https://en.m.wikipedia.org/wiki/Amorphous_solid
https://en.m.wikipedia.org/wiki/Glass
https://en.m.wikipedia.org/wiki/Crystal
https://en.m.wikipedia.org/wiki/Periodic_table
https://en.m.wikipedia.org/wiki/Atom
https://en.m.wikipedia.org/wiki/Electrical_engineering
https://en.m.wikipedia.org/wiki/Magnetism
https://en.m.wikipedia.org/wiki/Optics
https://en.m.wikipedia.org/wiki/Mechanical_engineering
https://en.m.wikipedia.org/wiki/Engineering
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The forces between the atoms in a crystal can take a variety of forms. For example, in a 

crystal of sodium chloride (common salt), the crystal is made up 

of ionic sodium and chlorine, and held together with ionic bonds. In others, the atoms 

share electrons and form covalent bonds. In metals, electrons are shared amongst the 

whole crystal in metallic bonding. Finally, the noble gases do not undergo any of these 

types of bonding. In solid form, the noble gases are held together with van der Waals 

forces resulting from the polarization of the electronic charge cloud on each atom. The 

differences between the types of solid result from the differences between their bonding. 

The physical properties of solids have been common subjects of scientific inquiry for 

centuries, but a separate field going by the name of solid-state Physics did not emerge 

until the 1940s, in particular with the establishment of the Division of Solid State Physics 

(DSSP) within the American Physical Society. The DSSP catered to industrial Physicists, 

and solid-state Physics became associated with the technological applications made 

possible by research on solids. By the early 1960s, the DSSP was the largest division of 

the American Physical Society (Hoddeson, 1992 ). 

Large communities of solid state Physicists also emerged in Europe after World War II, 

in particular in England, Germany, and the Soviet Union (Hoffman, 2013). In the United 

States and Europe, solid state Physics became a prominent field through its investigations 

into semiconductors, superconductivity, nuclear magnetic resonance, and diverse other 

phenomena. During the early Cold War, research in Solid State Physics was often not 

restricted to solids, which led some Physicists in the 1970s and 1980s to found the field 

of CMP, which organized around common techniques used to investigate solids, liquids, 

plasmas, and other complex Matter. 

 Today, solid-state Physics is broadly considered to be the subfield of CMP that focuses 

on the properties of solids with regular crystal lattices. 
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1.1.14: Crystal structure and properties 

Many properties of materials are affected by their crystal structure. This structure can be 

investigated using a range of crystallographic techniques, including X-ray 

crystallography, neutron diffraction and electron diffraction. 

The sizes of the individual crystals in a crystalline solid material vary depending on the 

material involved and the conditions when it was formed. Most crystalline materials 

encountered in everyday life are polycrystalline, with the individual crystals being 

microscopic in scale, but macroscopic single crystals can be produced either naturally 

(e.g. diamonds) or artificially. 

Real crystals feature defects or irregularities in the ideal arrangements, and it is these 

defects that critically determine many of the electrical and mechanical properties of real 

materials. 

1.1.15: Electronic properties 

Properties of materials such as electrical conduction and heat capacity are investigated by 

Solid State Physics. An early model of electrical conduction was the Drude model, which 

applied kinetic theory to the electrons in a solid. By assuming that the material contains 

immobile positive ions and an "electron gas" of classical, non-interacting electrons that 

are mobile, the Drude model was able to explain electrical and thermal conductivity and 

the Hall effect in metals, although it greatly overestimated the electronic heat capacity. 

Arnold Sommerfeld combined the classical Drude model with quantum mechanics in 

the free electron model (or Drude-Sommerfeld model). Here, the electrons are modelled 

as a Fermi gas, a gas of particles which obey the quantum mechanical Fermi–Dirac 

statistics. The free electron model gave improved predictions for the heat capacity of 

metals, however, it was unable to explain the existence of insulators. 

The nearly free electron model is a modification of the free electron model which 

includes a weak periodic perturbation meant to model the interaction between the 

conduction electrons and the ions in a crystalline solid. By introducing the idea of 
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electronic bands, the theory explains the existence of conductors, semiconductors and 

insulators. 

The nearly free electron model rewrites the Schrödinger equation for the case of a 

periodic potential. The solutions in this case are known as Bloch states. Since Bloch's 

theorem applies only to periodic potentials, and since unceasing random movements of 

atoms in a crystal disrupt periodicity, this use of Bloch's theorem is only an 

approximation, but it has proven to be a tremendously valuable approximation, without 

which most solid-state Physics analysis would be intractable. Deviations from periodicity 

are treated by quantum mechanical perturbation theory. 

1.1.16: Superconductivity 

Superconductivity is the property of complete disappearance of electrical resistance in 

solids when they are cooled below a characteristic temperature. This temperature is called 

transition temperature or critical temperature, 𝑇𝑐, and at this temperature a material 

changes from normal state to the superconducting state when the specific heat and 

entropy also change. 

1.1.17: No scattering, no resistance 

The formation of collective state of Cooper pairs takes place at 𝑇 < 𝑇𝑐. In the collective 

bound state the Cooper pairs do not scatter from the lattice and the conductivity of 

superconductor is infinitely large. Scattering of electrons from the lattice atoms require a 

change of state of electron. In the superconductive state the current carrying species is the 

electron pair. For the Cooper pair to scatter it would have to change its state (like an 

electron in normal metal). However, the Cooper pair is coupled to a large number of 

other Cooper pairs and so the whole collective of Cooper pairs would have to be involved 

in scattering at once. This does not happen, and therefore there is no scattering of Cooper 

pairs, there is no resistance and therefore the conductivity is infinite, fig. 1.3 
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Fig1.3: Graph of conductivity against absolute temperature for a superconductor 

(Subraanyam, & Raja, 1989) 

Superconductive state of mercury (Tc=4.15  K) was discovered by the Dutch physicist 

Heike Kamerlingh Onnes in 1911, several years after the discovery of liquid helium. 

1.1.18: Cooper pairs and BCS theory 

As a prelude to the description of the superfluid phases of 
3
He, I briefly review the theory 

of conventional superconductivity in metals Bardeen, Cooper and Schrieffer (Bardeen, 

et.al., 1957). Cooper showed that a pair of electrons of opposite momenta lying outside 

the Fermi surface in the presence of (even weak) attractive interactions is unstable 

towards the formation of a bound state known as Cooper pairs. In the full BCS theory, 

this idea is exploited to variationally find the ground state of such a system with pairs of 

electrons of opposite spin (spin singlet) and opposite momenta. The attractive interaction 

is provided by coupling between electrons and lattice vibrations (phonons). 
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The ground state of the BCS superconductor is characterized by the formation of an 

energy gap at the Fermi level in the superconducting state which means that quasi-

particle excitations of the ground state have a finite lower bound in energy. The gap is 

thus a measure of the strength of the superconducting pairing. The quasi-particle energy 

spectrum is given by 

 Е(k) = [𝜀2(𝑘) + ∆2]
1

2⁄          (1.1) 

 where ε(k) is the kinetic energy of the electron measured with respect to the Fermi level 

and Δ is the superconducting energy gap. 

1.1.19: Mechanism of superconductivity 

Isotope effect, 𝑇𝑐 depends on the mass of atoms 

𝑇𝑐𝛼
1

√𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒
 

Interaction between electrons and lattice atoms is critical for the existence of 

superconductive state. Good conductors (weak scattering from the lattice) are poor 

superconductors (low 𝑇𝑐). 

Electrons on their flight through the lattice cause lattice deformation (electrons attract the 

positively charged lattice atoms and slightly displace them) which results in a trail of 

positively charged region, as illustrated in fig. 1.4. This positively charged region of 

lattice atoms attracts another electron and provides for electron-electron coupling. 

 

 

 



 

19 
 

 

 

 

 

 

 

Fig. 1.4: Mechanism of superconductivity 

Electron pairs, and not single electrons, are charge carriers in superconductors. As an 

electron moves through the crystal, it affects the positions of the ions producing a 

potential 

which is 

attractive to 

a second 

electron 

moving in 

the opposite 

direction to the first, fig. 1.5 

Fig.1.5: the formation of a Cooper pair. 

The electron-electron coupling is weak and can be destroyed by thermal motion of the 

lattice. For this reason, the BCS type superconductivity exists only at low temperatures. 

The electron-electron coupling results in electron pairing - formation of Cooper pairs. 

The Cooper pairs do not have spin 1/2 and therefore do not follow Pauli’s principle (1 

electron per state). Large number of Cooper pairs can populate one collective state. This 

state is stable and requires some additional energy input (thermal energy) to be destroyed. 
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The binding energy of Cooper pairs in the collective state is several meV. Note that in the 

superconductor, there is a gap between the highest field states and the lowest vacant states, fig. 

1.6b 

 

(a)                                      (b)  

Fig. 1.6: occupation of energy levels at absolute zero in (a) a normal metal and (b) a 

superconductor. 𝑬𝑭 denotes the Fermi energy. 

Formation of Cooper pairs is a spontaneous process resulting in lower energy state of 

electrons in the superconductor. In superconductors, the filled states are occupied by 

Coopers pairs, and the empty band, above Eg, is occupied by “broken” Cooper pairs. 

The band gap Eg is a measure of binding energy of Cooper pairs, the greater binding 

energy, the greater 𝑇𝑐 

𝐸𝑔 = 3.53𝑘𝐵𝑇𝑐                 (1.2) 

Eg is confirmed from absorption spectra. For, hc/λ>Eg, electromagnetic radiation can be 

absorbed. 

1.1.20: Crystallization of Neutron Matter (Neutron Stars) 

A neutron star is the collapsed core of a large (10 – 29 solar masses) stars. Neutron stars 

can be considered as reservoirs of high-density fermions, as these systems can be 

assumed to be the largest of its type in the universe. Neutron stars are the smallest and 

most dense stars of the size of 10Km radius, and their mass is roughly twice or more of 
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the sun. I have calculated the energy per neutron in a neutron star for low and high 

density neutron stars. It is found that the energy per neutron increases as the density of 

the neutron star increases for a given value of the scattering length. 

In the past, calculations (Canuto & Chitre, 1974) showed that the solidification pressure 

of the order of 
27105 atmospheres can lead to the solidification of neutron matter in the 

vicinity of the density of neutron matter, 314105  gcmn . As such, crystallization of 

neutron matter has been studied for high values of n  as compared to density of high 

mass nuclei-assuming different types of inter - particle interactions, and different spin 

states, such as the singlet states,  
1
S0, 

1
P1, 

1
D2 and triplet states 

3
s1, 

3
p0, 

3
p1, 

3
p2, 

3
D1, 

3
D2, 

in which the two interacting particles can exist and also assuming solid ordered 

structures, such as body centred cubic (BCC), face centred cubic (FCC) and values of the 

neutron density in the range  𝜌𝑛 = 1.4𝑋1015𝑔𝑐𝑚−3𝑡𝑜 5.237 𝑋1015𝑔𝑐𝑚−3 . In general, 

the calculations showed that for densities 𝜌𝑛 = 1.5 𝑋 1015𝑔𝑐𝑚−3 or more, solid phase 

for cold matter can exist. The energies per particle (E/N) vary from structure to structure. 

For pure neutron matter for 𝜌𝑛 =  5.237 𝑋1015𝑔𝑐𝑚−3, the E/N for BCC is 1194.0 MeV, 

for HCP, E/N = 884.7 Mev; and E/N =864.6 MeV for FCC. The saturation density of a 

nucleus   ≈ 2.84 x 10
14 

gcm
-3 = 𝜌s. Thus for the crystallization of neutron matter, the 

density should be roughly ten times, i.e, 𝜌𝑛 = 10𝜌𝑠. 

It is by now known that neutron stars can be considered as reservoirs of high-density 

fermions, and these systems are perhaps the largest of its type in the universe. A neutron 

star is the collapsed core of a large (10-29 solar masses) star. Neutron stars are the 

smallest and most dense stars known to exist, typical size of a neutron star is 10km 

radius, but the mass could be twice or more than that of the sun (Wikipedia, 2017). Since 

the volume of the neutron star being small and its mass is very large, the density of such 

neutron stars is almost ten times ( sn  10 ), the saturation density of a heavy nucleus, 

there exist strong nucleon-nucleon interactions between the neutrons, and consequently a 

number of different phases can occur. 
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Temperatures in the interior of the neutron stars fall below a billion degrees Kelvin in 

less than one year after the birth of the star (Gezerlis et.al., 2015). Such temperatures may 

look high, but they are low compared with the characteristic energies such as the Fermi 

energy, which for neutron density are of the order of 10-100 MeV, and this energy 

corresponds to temperatures of the order of 10
11   

̶ 10
12 

K (kT=energy). It is now 

understood that in the inner crust of neutron stars, the neutrons paired in a 
1
S0 state co-

exist with a lattice of a neutron-rich nuclei; in fact superfluid neutrons co-exist with a 

crystal lattice of neutron-rich nuclei and an electron gas. To understand the properties of 

such systems, interaction between individual nucleons must be accurately known. As a 

first step a simple nucleon-nucleon interaction can be chosen to study the state of 

crystallization of neutron stars.  

 

Another important property of matter is the density that determines the state of matter 

from gaseous to crystalline state. In the case of neutron star crust, it is well known that it 

is in a crystal state for a wide range (Rogers, 1964) of mass densities and temperatures. 

1.1.21: Characteristics of neutron stars 

Some of the important physical quantities that are associated with the neutron stars are, 

velocity of sound(𝐶𝑠) in the neutron star, the radius R of the star, maximum spin rate of 

the star which is the number of rotations of the  star around its own axis of rotation per 

second (𝜎), and the surface speed of the star. 

i. Velocity of sound in a Neutron star(𝑪𝒔) 

The velocity of sound in the star is given by: 

𝐶𝑠
2=

𝜕𝑝

𝜕∈
           (1.3) 

Where 𝑝 is the pressure given by  

𝑝 = 𝜌2 (
𝜕𝐸

𝜕𝜌
) = 𝜌2 [

𝜕𝐸(𝜌𝑛)

𝜕𝜌
]       (1.4) 

Knowing the value of E(𝜌𝑛) from the equation of state, I can calculate p from equation 

(1.4),and then equation (1.3) gives 𝐶𝑠
2,where 𝜖=Energy density=𝜌(𝐸+mN),Where mN is 

the neutron mass, here ρ=Particle number density. 
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Another expression for the velocity of sound is, 

𝐶𝑠=√
𝑌

𝜌𝑚
          (1.5)  

Where Y=Young
’
s modulus in the neutron star 

Y=5.3x10
30

 Pa          (1.6) 

𝜌𝑚=Mass density of the neutron star=5.9x10
17

kgm
-3

     (1.7) 

Between equations (1.5),(1.6) and (1.7), gives 

 𝐶𝑠=3.0 x10
6
ms

-1
=

𝐶

100
         (1.8) 

Where c=velocity of light=3.0x10
8
ms

-1
 

ii. The radius R of the neutron star  

The Tolman-Oppenheimer-Volkoff(TOV)equation (arxiv:1307.5815vI, nucl-Th, 

22 July 2013,EPJ manuscript by S. Gandolfi, S. Reddy) gives the value of P(r) in 

terms of ϵ, ρ and the function radius r. The total radius of the neutron star is given 

by the condition that P(r)=0 at r=R, i.e., P(R)=0, 

where P(r) is the pressure at the radius, r. 

iii. Surface speed of the neutron star 

Experimentally it has been observed that a star of radius R=10km rotates 716 

times/sec around an axis passing through it, i.e., the star rotates or spins 716 times 

s
-1

.The surface speed of this star is V, i.e., 

V=2ΠR x 716kms
-1

=44987.28kms
-1

      (1.9) 

and this is a very large speed. 

Surface speed can also be calculated by using the fact that the maximum spin rate of the 

star corresponds to a point on the surface of the star where the surface gravity, g, is equal 

to centrifugal force. Now the surface gravity g is  
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    g=
𝐺𝑀𝑛𝑚

𝑅2           (1.10) 

and the centrifugal force FC is, 

𝐹𝑐=
𝑚𝑉2

𝑅
           (1.11) 

Equating g and Fc  yields, 

𝑉2=
𝐺𝑀𝑛

𝑅
 or V=√

𝐺𝑀𝑛

𝑅
         (1.12) 

Now 𝑀𝑛 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟 = 1.9885 𝑥 1030𝐾𝑔 

𝐺 = 𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

=6.67408 x10
-11

m
3
kg

-1
s

-2
        (1.13) 

R=12km.  

equation(1.12) now gives, 

V=1.5 x 10
8
ms

-1
 = 0.5 c        (1.14) 

Which is a large velocity. 

Hence the velocities involved in Neutron stars are relativistic. 

It should be mentioned that the speed 𝑐𝑠 of acoustic waves in a neutron star is also very 

large. The speed of sound in solids is,  

 𝐶𝑠 = √
𝐸

𝜌
,                                                                                                                      (1.15) 

𝑤ℎ𝑒𝑟𝑒 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑠𝑡𝑎𝑟 = 5.9𝑥1017𝐾𝑔𝑚−3, and its Young’s modulus 

𝐸 = 5.3𝑥1030𝑃𝑎, and thus on calculation, it yields CS=3.0 x10
6
ms

-1
.which is very large. 

It is still not known whether the elastic properties or due to a nuclear interactions n-n and 
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q-q, or it is just due to gravitational force. It is also found that the pressure in the neutron 

star can vary from 3 x10
33 

Pa to 1.6 x 10
35 

Pa from the inner crust to the center. 

Also the equation of state of neutron star at such high densities is not precisely known. 

However, some properties of neutron stars are similar to the properties of atomic nuclei, 

including density and composition. But a nucleus is held together by strong nuclear 

interactions, whereas a neutron star is held together by gravity. It is still not clear whether 

both nuclear interactions and gravity hold the neutron star together, and if that be so, then 

a new equation of state will have to be proposed(Togashi, Hiyama, Yamamoto & Takano 

2016) & (Zdunik, Fortin & Haema, 2017) 

Two systems of fermions chosen for this study are 
3
He and Neutron matter. 

1.2: Justification  

Helium-3 is light, non-radioactive, with two protons and one neutron (unlike common 

Helium Nuclide having two protons and two neutrons), occurs as a primordial nuclide, 

escaping from the Earth’s crust into the atmosphere and into the outer space over millions 

of years, hence, it is readily available in the Earth’s atmosphere. Helium-3 is also thought 

to be a natural nucleogenic and cosmogenic nuclide, which is produced when Lithium is 

bombarded by natural neutrons, which can be released by spontaneous fission and by 

nuclear reactions with cosmic rays. Helium-3 is touted to be a future energy source, since 

the fusion of Helium-3 atoms releases large amount of energy without causing 

surrounding material to become radioactive. Their microscopic physical properties are 

mainly determined by their Zero-point energy which is higher than Helium-4, hence, 

Helium-3 can overcome dipole-dipole interactions with less thermal energy than Helium-

4. 

Neutron Stars (NS) have high density and display strong magnetic fields. They display 

many types of behaviour, including pulsing (in radio, IR, optical, UV, X-ray, gamma-rays 

and gravitational wave emission). In their interior, they are superconducting and 

superfluid, with transition temperatures around a billion degrees kelvin, hence, their study 

enables one to push the envelope of fundamental theories about gravity, magnetic fields 

and high density matter, which is associated with Fermi energy. Crystallization (Hard-
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sphere assembly) creates dense environment of momentum, hence an energy associated 

with the confinement (crystalline phase); hence, squeezing the system increases total 

energy and this Fermi energy acts as degeneracy pressure and degeneracy stars are 

smaller at higher masses. Superconductivity and superfluidity effects observed in neutron 

stars could tell us about the pairing and hence inform us about aspects of nuclear Physics 

that are mighty difficult to obtain from normal laboratories.   

1.3: Statement of the problem 

Quantum correlations in fermionic many-body systems, though central to many of the 

most fascinating effects of CMP, are poorly understood from a theoretical perspective. 

Even the notion of “paired” fermions which is widely used in the theory of 

superconductivity and has a clear physical meaning therein, is not a concept of systematic 

and mathematical theory so far, and more so as applies hard-sphere system of fermions 

that involve pair potential. Applying concepts and tools/techniques from BV 

diagonalization of the particle interaction Hamiltonian, a first approximation to many-

body system pair potential containing a short-ranged repulsive part, which is influenced 

by the density of the hard-sphere system, and which in turn determines the total energy, 

E, of the system. Using Heisenberg’s uncertainty principle to obtain energy per particle, 

E/N, and the saturation density, 𝜌𝑠, which leads to crystallization. Such techniques 

address the question/problem under consideration by closing the identified gap. 

Properties of fermions at ultra-cold temperatures leading to crystallization of fermions as 

well as magnitude of total energy of the assembly addresses the ambiguity that 

characterizes role of fermions in determining some of the properties of superconductors.  

1.4: General objective 

Theoretical investigation of properties of crystallization of a hard-sphere assembly of 

fermions (
3
He and neutron matter). 

1.5: Research questions 

This study has sought to answer the following questions: 
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1) At what transition temperature does crystallization of fermions (Helium-3) take 

place? 

2) How is the variation of energy per particle, E/N with density, ρ, both for low and 

high density for an assembly of fermions (helium-3 and neutrons)? 

3) How is the variation of saturation density with hard-sphere diameter, C, both for 

low and high density fermionic system? 

4) How does the energy per neutron, E/N, vary with low/high density in a neutron 

star? 

1.6: Objectives of the study 

1) To determine the transition Temperature, 𝑇𝑐, at which crystallization of fermions 

takes place.  

2) To investigate the variation of 𝐸 𝑁⁄   with density both for low and high density 

for an assembly of fermions. 

3) To establish the variation of saturation density with hard-sphere diameter, C, both 

for low and high density fermionic system. 

4) To investigate the variation between the energy per neutron, E/N, and low/high 

density in a neutron star. 

1.7: Significance of the study   

It is hoped that the study of Helium-3 will be useful to nuclear energy sector since 

helium-3 can be produced by low temperature fusion of Helium-2 isotope and a proton; 

the reaction produces a high energy alpha particle which captures an electron producing a 

stable light Helium ion which can be utilized directly as source of electricity without 

producing dangerous neutrons. Helium-3 is used in fusion reactions as well as in neutron 

detection. The study is also expected to improve practice in domestic front where 

Helium-3 is used in refrigeration to achieve temperatures of 0.2 to 0.3K. Also, in the 

health sector, since Helium-3 has total spin of ½, effectively aligns the nuclear spins with 

the magnetic field in order to enhance NMR signal. Upon inhalation, gas mixtures 

containing the hyperpolarized Helium-3 gas can be imaged with an MRI scanner to 

produce anatomical  and functional images of lung ventilation, produce images of the 
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airway tree, locate unventilated defects, etc; this technique is critical for the diagnosis and 

treatment management of chronic respiratory ailments such as chronic obstructive 

pulmonary disease (COPD), emphysema cystic fibrosis, and asthma. 

Since fermion anti-commutation behavior allows for carbon-based life forms such as 

mankind to exist and fermions being the building blocks of matter, interacting in a 

multitude of permutations to give rise to the elements of the periodic table, the study 

seeks to propose an elegant method for transmutation, i.e., making bosons act like 

fermions through quasiparticle excitations which is a key component concept in 

Condensed Matter Physics.   

For neutron stars, they are the best clocks in the universe, the most stable since they are 

thousands of times more stable in the short term than the best atomic clocks. Their high 

density is associated with high Fermi energy. 
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CHAPTER TWO 

THEORY AND LITERATURE REVIEW 

2.1: Introduction  

Helium was first liquefied by Kammerlingh Onnes in Leiden in 1908. During the late 

1920s and early1930s it was noticed that the liquid had some strange properties, but it 

was not until 1938 that it was discovered independently by Allen, Misener and Kapitza 

that it exhibited frictionless flow and was what I now call a superfluid. Shortly afterwards 

Fritz London suggested that superfluidity could have some connection with Bose-

Einstein condensation, which was known as a theoretical possibility in an ideal Bose gas. 

London also realized that there might be a strong connection with superconductivity, 

which had been discovered many years before and which could be seen as superfluidity 

in the electron as in a metal. With impressive intuition he also suggested that both 

superfluidity and superconductivity were “quantum mechanisms on a macroscopic scale”, 

although the significance of this idea did not become really clear until the late 1950s or 

early 1960s (Kapitsa, & Misener, 1937) 

Shortly after London produced these seminal ideas he and Tisza(London, & Tisza, 1964) 

suggested that the superfluid phase of the liquid could be described by a two-fluid model, 

the Condensed and non-Condensed atoms being identified respectively with the 

superfluid and normal components. In 1941 Landau wrote a remarkable paper in which 

he suggested that superfluidity can be understood in terms of the special nature of the 

thermally excited states of the liquid: the well-known phonons and rotons. This idea led 

Landau also to the idea of a two-fluid model, but with a microscopic interpretation that 

was different from that of London and Tisza. Indeed, Landau expressed the view that 

superfluidity has no obvious connection with Bose condensation, although, as I shall see, 

this view was certainly proved wrong. Nevertheless, the basic ideas in Landau’s paper 

were correct, and his interpretation of the two-fluid model showed brilliant intuition. 
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After the Second World War the two-fluid model was placed on a firm experimental 

basis, especially with the experiment of Andronikashvili and the discovery of second 

sound. At the same time the properties of the normal fluid (the gas of phonons and 

rotons) were explored in great theoretical detail by Khalatnikov, with parallel 

confirmatory experiments (Andronikashvin, 1946). 

 A theoretical proof that Bose condensation does occur in a liquid such as superfluid 

helium was provided by Onsager and Penrose. Feynman wrote a number of important 

papers in the 1950s, exploring how the properties of liquid helium were strongly related 

to the fact that the atoms obey Bose statistics (Feynman, 1972) 

The quantization of superfluid circulation and the existence of free quantized vortices 

were proposed theoretically and independently by Onsager and Feynman, and the first 

experimental confirmation came from the work of Hall and Vinen with the discovery of 

mutual friction in rotating helium and with the direct observation in a macroscopic 

experiment of the quantization of circulation. These works led to an appreciation for the 

first time of the full significance of London’s “quantum mechanism on a macroscopic 

scale”, and of the underlying importance of Bose condensation in superfluidity (Vinen, 

1957). 

In 1957 Bardeen, Cooper and Schrieffer wrote their famous paper on the theory of 

superconductivity (Bardeen, Cooper, & Shrieffer, 1957). In due course this led to a better 

appreciation of the connection between superfluidity and superconductivity, and the 

discovery of the quantization of flux and of free flux lines in type II superconductors 

demonstrated clearly the analogies between the two systems. As far as I know all 

superfluids and superconductors have one basic feature in common: their properties 

derive from the existence within them of some type of Bose condensation, involving 

atoms or pairs of atoms or pairs of electrons. 

Liquid 
3
He exhibits no superfluid behaviour at the relatively high temperatures involved 

in superfluid 
4
He, thus confirming the importance of particle statistics in this behaviour. 

The discovery of superfluidity in liquid 
3
He by Osheroff, Richardson and Lee in 1973 at a 

temperature of about 2mK completed the story, showing that BCS pairing can occur in an 
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uncharged Fermi liquid; the pairs are now pairs of atoms, but the pairing is 

unconventional in that it involves relative p-states rather than the s-states of the 

conventional BCS theory. Unconventional pairing is now known to occur in exotic 

superconductors, such as the heavy-fermion metals and the high-temperature materials. 

What follows is the focus on superfluidity in liquid 
4
He, emphasizing the underlying 

physical principles, including those associated with macroscopic quantum phenomena 

(Henshaw and Woods, 1961). 

2.2: Excitation   

Fig. 2.1 shows a plot of excitation energy as a function of wave function in a superfluid. 

It is evident from this graph that there are two types of excitations in the superfluid, 

which are associated to phonons and rotons.  

 

Fig 2.1: Dispersion curve of excitations in helium-II, as deduced from neutron 

scattering experiments (Henshaw and Woods, 1961). 

The dispersion relationships for these excitations are given as: 

PCE ph 1          (2.1) 

and 



 

32 
 

 

 

2

)( 2

o
rot

pp
E


         (2.2) 

Where C1 = 23.9 m/s = speed of sound, /𝑘𝐵 = 8.65  = energy gap,  = 0.16m4= effective 

mass, and nmpo /1.19/  = wave number.  

2.3: The Phase Diagram of 
4
He   

Fig. 2.2 presents a phase diagram for 
3
He, where one observes two anomalous features. 

The liquid phase exists over a range of pressure up to about 25 atm even at the absolute 

zero temperature; and there are two liquid phases, helium I, which is conventional in its 

properties, and helium II, which is superfluid. 

 

Fig. 2.2: The phase diagram of 
4
He (London, 1954). 

The existence of a liquid over a range of pressures at T = 0 must be a quantum effect. It 

arises from quantum mechanical zero-point energy: the fact that a confined particle must 

have kinetic energy, this energy increasing as the particle is more strongly confined. In 

the absence of a high pressure, the atoms cannot become sufficiently closely spaced to 

allow the formation of an ordered crystal, without the penalty of too large zero-point 
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energy. The Third Law of Thermodynamics requires that the entropy of a system in 

equilibrium should vanish at T = 0. Therefore, the liquid must be in some sense 

completely ordered at T = 0. This ordering must be quantum mechanical in origin, as in 

the ordering of particles among quantum mechanical energy levels rather than in position. 

It seems reasonable to suppose that superfluidity is a consequence of this ordering. 

Helium is the only substance that does not liquefy at zero temperature. The Helium atom 

is confined by its neighboring atoms in a volume V, with the radius R~V
1/3

. From 

Heisenberg’s uncertainty principle in momentum, the uncertainty is given by: 

∆𝑝~
ℏ

𝑅
,  

𝐸0~
∆𝑝2

2𝑚4
≈

ℏ2

2𝑚4𝑉
2
3

                                                                                                           (2.3)  

The potential energy is attractive due to van der Waal`s forces, and repulsive due to “hard 

core”, and Lenard Jones potential 

  𝐸𝐿𝐽~ [(
𝜎

𝑅
)

6

− (
𝜎

𝑅
)

12

] ~ [
1

𝑉2 −
1

𝑉4]                                                                               (2.4) 

The thermal fluctuations have to be reduced substantially to make Helium-4 liquefy at 4.2 

K, and even at zero temperature. The zero point fluctuations keep Helium-4 from 

solidifying. By applying pressure to the liquids, the atoms can be brought close enough to 

form a solid, and this happens at P≈25 bar for 
4
He (Hall, & Vinen, 1956) The total 

energy is the sum of potential energy and zero-point energy as shown in Fig. 2.3. 
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Fig 2.3 Energy of liquid Helium(Hall, & Vinen, 1956) 

Helium-3 has even lower mass increasing the zero-point fluctuations even more. The 

Helium-3 liquefies at somewhat lower temperature 3.4 K, and solidifies at somewhat 

higher pressure ~32 bar (Hall, & Vinen, 1956). Whereas He-3 solidifies at higher 

pressure, hydrogen solidifies due to stronger van der Waal forces.  

2.4: The Heat Capacity   

The variation of heat capacity, C, with temperature is shown in Fig. 2.4, for the case 

when the helium is under its own vapor pressure. It is seen that the transition to 

superfluidity is accompanied by a large peak in the heat capacity. There is no latent heat, 

but the heat capacity tends to infinity at the transition, so that the transition can be 

classified as strictly second-order. The shape of the variation heat capacity near the 

transition is like a Greek letter lambda (λ), hence the term λ-point to describe the 

transition. The type of anomaly depicted in Fig. 2.4 is quite common in nature, and it is 

characteristic of a system that exhibits an order-disorder transition; an example is the 

ferromagnetic transition. Hence, a clear confirmation that superfluidity must be 

associated with a (quantum mechanical) ordering in the liquid. A similar anomaly in the 

heat capacity appears at the transition temperature of a superconductor, although in this 

case it has more nearly the character of a strictly second order transition. Notice that, 

Zero- point 

energy 
Atomic 

Volume 

Total energy 

of liquid 

Potential energy of 

liquid 
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although the heat capacity becomes rather small at low temperatures, it is quite large just 

below the λ-point; for example, at 1.8 K. This feature can be useful in applications; He at 

𝑇 < 𝑇𝜆 can be used for the study of superconducting transition temperatures of 

conducting materials, alloys and heavy fermion superconductors. 

 

Fig. 2.4: The heat capacity of liquid 
4
He, 𝑻𝝀=2.176K (Atkins, 1959). 

2.5: Mixtures of Helium-4 and Helium-3 

Increasing the concentration of He-3 decreases the transition temperatures. Below 0.8 K, 

the liquid can separate into two phases; one Helium-4 rich and one Helium-3 rich as 

depicted in Fig. 2.5. The 
3
He rich phase will float on top of the He-4 rich phase. At zero 

temperature the He-3 rich phase becomes “pure” i.e 100% He-3, whereas the He-4 rich 

phase always contains some He-3 (6.4% or more). 
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Fig 2.5: The schematic phase diagram of liquid helium mixtures (Kapitza, 1938). 

2.6: The Two-Fluid Model of Superfluid 𝑯𝒆𝟒  

At first sight these properties present a confusing picture, but they make sense in terms of 

the two-fluid model, regarded as a purely phenomenological description. The essential 

features of this model have been described, and examples given of properties that can be 

described in terms of it. The superfluid phase can be regarded as a mixture of two fluids, 

which can support different velocity fields. The normal fluid, with density n, flow 

velocity field 𝑣𝑛, and conventional viscosity 𝜂, carries all the thermal energy and entropy 

in the system. The superfluid component, with density ns and flow velocity field 𝑣𝑠, ns, 

can flow without friction and carries no thermal energy. The densities, n and ns vary with 

temperature in the way shown in Fig. 2.6. 

A pressure gradient will tend to drive both fluids in the same direction. An increase in 

temperature increases 𝜂 but decreases ns, so a temperature gradient tends to drive the 
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superfluid component in one direction (towards high temperature) and the normal fluid in 

the opposite direction. 

 

Fig. 2.6: The observed dependence of n and 𝒏𝒔 on temperature (Atkins, 1959).  

The superfluid component can flow without friction through even very narrow channels, 

so narrow that the normal fluid is rendered completely immobile by its viscosity. A 

striking example is provided by “film flow”. Any solid surface in contact with the liquid 

is covered by a film of liquid, about 30 nm in thickness, as a result of van der Waals 

attraction between the helium atoms and the substrate. This is true in principle for any 

liquid, but in helium flow of the superfluid component through the very thin film 

becomes possible, with the result illustrated in Fig. 2.7. 

If an empty beaker is immersed halfway into superfluid He, a thin film of helium 

condenses on the walls of the beaker (Fig 2.7a). This film can fill the beaker even if it is 

immersed halfway into the superfluid. The thin helium film is about 30nm thick and it 

actually flows upwards and fills the beaker until the levels are equal inside and outside 

the beaker (Fig 2.7b). The film acts as a siphon. This can be explained by the fact that it 

would cost energy to break the film and it costs less energy for the film to flow upwards.  

If the beaker is then lifted out of the superfluid the reverse process occurs, and small 

n
 



 

38 
 

 

 

droplets can be seen from the bottom of the beaker as it empties (Fig 2.7c). The flow 

velocity of the film is about 0.2 m/s. 

 

Fig. 2.7: Film flow of He II over the walls of a beaker (Viviani, 1957). 

A famous experiment was performed by (Andronikashvin, 1946).. He constructed a pile 

of discs, which he suspended in helium by a torsion fiber, as shown in Fig. 2.8. He 

measured the period of torsional oscillation as a function of temperature. The spacing 

between the discs was such that at the period of oscillation the normal fluid was 

completely coupled to the disc system. However, the superfluid component was not 

coupled, so that only the normal fluid contributed to the moment of inertia of the disc 

system. These measurements provided the first evidence for the dependence of normal 

fluid density on temperature shown in Fig. 2.6. 

 

Fig. 2.8: The Andronikashvili experiment (Andronikashvili, 1946). 
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Heat transport in superfluid helium takes place by counter flow of the two fluids, the 

superfluid component moving towards the source of heat and the normal fluid away from 

it, as shown in Fig. 2.9. Only the normal fluid carries thermal energy, at a rate per unit 

area, 

𝑄 = 𝜌𝑆𝑇𝑣𝑛                                                                                                                  (2.5) 

 where S is the entropy of the helium per unit mass. This leads to very effective thermal 

transport, at a rate limited only by the small viscosity of the normal fluid. In practice the 

thermal transport is not quite as effective as is suggested by this idea, as will be explained 

later. 

 

Fig. 2.9: Illustrating thermal transport by counterflow (Zhang & Van Sciver, 2005). 

The existence of two fluids allows two modes of longitudinal wave propagation. The two 

fluids can oscillate in phase, giving rise to first sound, or they can oscillate in anti-phase, 

giving rise to second sound. The first sound is an isentropic pressure or density wave, 

analogous to ordinary sound in a fluid; it propagates at a speed of  

𝑐1 = (
𝜕𝑝

𝜕𝜌
)

𝑠

1
2⁄

≃

240𝑚/𝑠                                                                                                                      (2.6)  

The second sound involves to a good approximation no change in density, but only a 

change in the proportions of the two fluids; it is therefore a temperature wave, but one 

that obeys the wave equation rather than the diffusion equation. The speed of second 

sound is given by:  
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𝐶2
2 =

𝑇𝑆2𝜌𝑠

𝐶𝜌𝑛
                                                                                                                          (2.7) 

The value of C2 is roughly 20 ms
-1 

over the temperature range from 1 K to 2 K (Zhang & 

Van Sciver, 2005). Transient thermal effects in superfluid helium can therefore be very 

different from those in a conventional fluid, and discussion of them must allow for the 

existence of second sound. The examples of two-fluid behavior that I have described 

apply in their simplest form only if the flow velocities do not exceed certain critical 

values, which are often quite small (~few mm s
-1

). The two-fluid model applies also to 

superconductors. The resistive loss that occurs in a rapidly oscillating electric field is due 

to motion of the normal fluid.
 

Suppose these excitations are set into motion with a drift velocity v, leaving the fluid 

otherwise at rest. Given the properties of the excitations (in particular their energy-

momentum relationship, which can be determined experimentally by neutron scattering) 

Landau calculated the momentum density 𝑱𝑒, associated with the drifting excitations. He 

found that  

𝐽𝑒 = 𝜌𝑒𝑣 < 𝜌𝑣,                                                                                                                   (2.8) 

where the inequality holds at sufficiently low temperatures, which turn out to be 

temperatures below the λ-point. Thus, the drifting excitations do not cause the whole 

fluid to drift, in the sense that they carry an effective density that is less than the total 

density of the helium. Identifying the gas of excitations with the normal fluid, then  

𝜌𝑒 = 𝜌𝑛                                                                                                                              (2.9) 

Where e is effective density and n is density of the normal component, and can be 

calculated, and it can be shown to be equal to the observed normal-fluid density. 

The superfluid component in Landau’s picture is what is left over after the thermal 

excitations have been taken into account. Landau also considered what would happen if 

this background were to move. He showed that it could not slow up by creating or 
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scattering excitations if its velocity were less than a critical value, which is about 60 ms
-1

. 

This picture of the superfluid component is not wholly satisfying, and it is certainly not 

the whole story, not least because observed critical velocities are typically very much less 

than 60 ms
-1

. The nature of the superfluid component shall now be examined in more 

detail to demonstrate its connection with Bose condensation. 

To understand the real nature of the superfluid component I must start by looking at the 

phenomenon of Bose-Einstein condensation. Bose condensation plays a crucial role in 

superfluidity, contrary to Landau’s original opinion. Consider an ideal gas formed from 

Bose particles: i.e. particles such as 
4
He atoms that are quantum-mechanically 

indistinguishable, but are not subject to the exclusion principle (i.e. there can be any 

number of particles in one quantum state). Calculation of the way in which the particles 

of the gas are distributed over the quantum states determined by the shape and size of the 

containing vessel, has yielded an interesting result: below a critical temperature, T0, a 

finite fraction of the particles is “Condensed” into the lowest quantum state. The way in 

which this fraction varies with temperature is shown in Fig. 2.10(a), and the calculated 

heat capacity is shown in Fig. 2.10(b). The heat capacity reflects the ordering of the 

particles into a single quantum state below the temperature To. Very recently, such Bose 

condensation has been observed directly in weakly-interacting gases formed from alkali-

metal atoms levitated magnetically and trapped in a vacuum, the gas being cooled below 

the temperature T0 (typically in the range 0.1-1 K) by a combination of laser and 

evaporative cooling (Enrico, et.al., 1999). 
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Fig. 2.10: The predicted behavior of an ideal Bose gas, (a) The temperature 

dependence of the Condensed fraction of particles; (b) the predicted heat capacity 

(Penrose & Onsager, 1947) 

For an ideal hypothetical gas of non-interacting helium atoms with the same density as 

liquid helium the condensation temperature, 𝑇0 is, 

𝑇0~3.14𝐾                                                                                                                           (2.10) 

An obvious question is whether a similar type of ordering occurs in real liquid helium, 

albeit modified in some way by the strong interactions between the helium atoms. The 

answer is that it does, as shown first by Penrose and Onsager. The fraction of Condensed 

particles is smaller than in the ideal gas; even at T = 0 it is only about 10%.  

But it remains the case that a macroscopic fraction, and a very large absolute number, of 

the atoms does condense into what is effectively a single quantum state, and it turns out 

that at T = 0 the non-Condensed atoms are effectively locked to the Condensed atoms. It 

is now understood that this is indeed the ordering process taking place below the λ-point, 

and that ultimately it is this ordering that is responsible for superfluidity. It is a 

remarkable process, because it is closely analogous to the formation of a coherent 

electromagnetic wave in a laser, which can be viewed as a condensation of photons into a 

single quantum state. In helium there is a coherent Matter wave. A similar process occurs 

in a superconductor, except that the coherent wave is formed from Cooper pairs. 
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A coherent Matter wave lies at the heart of both superfluidity and superconductivity. The 

assembly of Condensed atoms is called the condensate, and the associated wave function 

is called the condensate wave function (CWF). If the Condensed atoms are at rest then 

CWF is just a constant 𝜓0, where 𝜓0
2 is a measure of the number of Condensed atoms. If 

they are moving, each with momentum 𝑚4𝑣𝑠 along the x-axis, the CWF becomes 

𝜓 = 𝜓0𝑒𝑥𝑝 (
𝑖𝑚4𝑣𝑥

ℏ
)                                                                                                    (2.11) 

For a more general motion of the condensate, it can be written as 

𝜓 = 𝜓0 exp(𝑖𝑆(𝒓)),                                                                                                         (2.12) 

where the local velocity of the Condensed atoms is equal to (ℏ/𝑚4)∇𝑆. This velocity is 

identified with the velocity of the superfluid component 

𝑣𝑠 = (
ℏ

𝑚4
) ∇𝑆                                                                                                                (2.13) 

One can ask how this view of superfluidity relates to that proposed by Landau, which was 

very successful in accounting for two-fluid behaviour. It is known that the two 

approaches are intimately connected, in the sense that the form of the spectrum of the 

thermal excitations, which underlies Landau’s calculation showing that 𝜌𝑛/𝜌 < 1 below 

the λ-point, is intimately connected with the existence of the condensate. Without the 

condensate the spectrum would have the wrong form. Note especially that I now have a 

clear view of the meaning of the velocity of the superfluid component, which was not 

provided by Landau. A condensate exists also in a superconductor, formed from the 

Cooper pairs. In a superconductor, due to Cooper pairs of electrons, the mass 𝑚4 is 

replaced by 2m, where m is the electron mass. 

2.7: Quantum Restrictions on Superfluid Flow 

The macroscopic occupation of a single quantum state in the Bose Condensed helium 

gives rise to macroscopic quantum effects (London, 1954), as London had foreseen. 
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Taking the curl of equation (2.13), it follows that the superfluid velocity is: 

𝑐𝑢𝑟𝑙𝒗𝑠 = 0                                                                                                                  (2.14) 

This means that there can be no local rotational motion of the superfluid component. This 

is really a consequence of the quantization of angular momentum, as it is seen more 

clearly in a moment. But there can be a finite hydrodynamic circulation, defined as 

𝜅 = ∮ 𝑣𝑠. 𝑑𝑟                                                                                                   (2.15)
𝐶

 

This equation shows that the closed circuit cannot vanish while remaining in the fluid. 

For example, a closed circuit around a solid cylinder passing through the fluid as shown 

in Fig. 2.11. However, the circulation cannot take any value.  

 

Fig. 2.11: Illustration of a circuit round which there can be a finite superfluid 

circulation (London, 1954). 

To understand superfluid circulation, substitute for 𝑣𝑠 from equation (2.13) into equation 

(2.15) to get  

𝜅 =
ℏ

𝑚4
∮ 𝛁𝑺. 𝑑𝒓

𝐶

= 𝑛
2𝜋ℏ

𝑚4
,                                                                    (2.16) 
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where n must be an integer in order to satisfy the condition that the CWF be single-

valued. This means that the superfluid circulation must be quantized in units of 2𝜋ℏ/𝑚4. 

This circulation is macroscopically large (it can be measured in a macroscopic 

mechanical experiment), and this fact provides the clearest evidence that superfluidity is 

indeed a “quantum mechanism on a macroscopic scale”. It arises from the quantization of 

angular momentum, combined with the fact that all the particles in the condensate must 

have the same angular momentum. In the absence of any quantized circulation there can 

be no local angular momentum, as it can be noted in connection with equation (2.14). The 

quantization of circulation has its analogue in superconductivity, where it is observed as 

the quantization of trapped flux. 

As has been mentioned, Landau showed that the flowing superfluid component cannot 

decay into excitations unless the velocity is very large. With the idea of the condensate, 

greater insight into this frictionless flow can be gained. Suppose that there is a persistent 

superflow round a torus as shown in Fig. 2.12. 

 

Fig. 2.12: Persistent superflow round a torus (Landau, 1999). 

This flow can be only metastable, because a state with no flow has a smaller (free) 

energy. Why is it metastable? The condensate contains a macroscopic number of atoms. 

Interaction of these atoms with the walls of the torus will cause scattering, and some 

atoms may as a result be knocked out of the condensate. This will reduce the amplitude 

of the CWF, but it will not alter its coherent phase. Therefore, the superfluid velocity 
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does not change, although the superfluid density may decay a little, which would 

correspond to the creation of more normal fluid in the form of excitations. Putting it in 

another way, it can be observed that the destruction of superflow would require a 

transition that takes a macroscopic number of atoms from one state to another 

simultaneously, and such a process has very low probability. But superflow can decay 

through a mechanism that is yet to be considered: the creation of free vortex lines, to 

which the attention is now focused. 

2.8: Quantized Vortex Lines on Superfluid Helium 

It is seen that a quantized superfluid circulation can exist round a solid cylinder running 

through the helium. A free quantized vortex line in the superfluid component is a 

quantum of circulation round a tiny cylindrical hole in the helium. Such a line always has 

one quantum of circulation, and the hole then has a natural size, determined by a balance 

between the kinetic energy of flow and the surface energy of the hole, that is less than an 

inter-atomic spacing. 

Such vortex lines can exist in superfluid helium, and they play an important role in its 

behavior. Most obviously, perhaps, they allow the superfluid component to rotate if the 

helium is placed in a rotating vessel; otherwise such rotation would be forbidden by 

equation (2.14). A parallel array of lines, as shown in Fig. 2.13, gives rise to a flow field 

that minimizes uniform rotation on length scales larger than the line spacing, which is 

about 0.2 mm at Ω = 1𝑠−1. 
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Fig. 2.13: Vortex lines in the uniformly rotating superfluid component (Hall, & 

Vinen, 1956). 

This array is analogous to the array of fluxlines in the mixed state of a type II 

superconductor. Vortex lines scatter the excitations that constitute the normal fluid, and 

therefore they give rise to a frictional force between the two fluids, called mutual friction. 

This is observed as an attenuation of second sound when it propagates in the uniformly 

rotating helium. The observation of this attenuation provided the first experimental 

evidence for the existence of vortex lines. Vortex lines provide a new mechanism by 

which a persistent superflow can decay as shown in Fig. 2.14. 
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Fig. 2.14: Decay of a persistent current by vortex motion (Hall, & Vinen, 1956). 

Consider again a persistent superflow in a torus. Let the persistent current consist of n 

quanta of circulation. If a free vortex, with the appropriate sign, crosses the channel, this 

value of n falls to n- 1. Does this mean that the current simply decays? It does not, 

because the movement of the free vortex across the channel is opposed by a potential 

barrier. This barrier arises because a vortex is attracted to a solid boundary by its image. 

The barrier is quite large in cases of practical interest, and it can be overcome only at 

high velocities (>~1-10 ms
-1

) either thermally or by quantum tunneling. Without this 

barrier there would be no superflow. The barrier exists only because a vortex has a finite 

quantized circulation, so it is quantum in origin. The barrier exists also in a 

superconductor, where it is usually called the Bean-Livingston barrier. In practice 

frictionless superflow usually breaks down at velocities much less than 1 ms
-1 

This is due 

to a few remnant vortices, which can expand and multiply, and then cross the channel (cf 

remnant dislocations in a solid allowing the solid to deform much more easily than might 

have been expected). Remnant vortices seem always to be created when the helium is 

cooled through the λ-point. This expansion and multiplication leads to a type of 

turbulence in the superfluid component: a kind of tangle of vortex lines (Fig. 2.15). 
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Fig. 2.15: A turbulent tangle of vortex lines (Kapitza, 1938). 

Superfluid turbulence is very common. It seems always to be generated when the flow 

velocity exceeds a critical value that depends on channel size and is often as small as 1 

mm s
-1 

2.9: Practical Consequences of Superfluid Turbulence 

Superfluid turbulence plays an important role in limiting heat transport in superfluid 

helium by counterflow. The counterflowing fluids cause remnant vortices to multiply 

(through the action of mutual friction), and this leads to a self-sustaining regime of 

homogeneous turbulence. The vortices thus generated lead to a steady average force of 

mutual friction per unit volume between the two fluids, given by 

𝐹𝑠𝑛 = 𝐴𝜌𝑠𝜌𝑛|𝑣𝑠 − 𝑣𝑛|3,                                                                                           (2.17) 

which limits the heat transport rate, Q per unit area, in a way that is generally much more 

important than normal-fluid viscosity. The parameter A is about 800 m s kg
-1 

at 1.8K. Q 

becomes a non- linear function of the temperature gradient, which is given by 

∇𝑇 =
𝐴𝜌𝑛

𝜌𝑠
3𝑆4𝑇3

𝑄3,                                                                                                 (2.18) 
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where S is again the entropy per unit mass of the helium. Although mutual friction 

becomes the dominant dissipative process limiting the heat flow, the effective thermal 

conductivity remains generally very high. Superfluid helium can be forced to flow down 

a tube or past an obstacle, just as can any conventional fluid. Except at very small 

velocities or in very narrow channels both the superfluid component and the normal 

component become turbulent. It turns out that this turbulence is surprisingly similar to 

that in a conventional fluid at high Reynolds number. The reasons are complicated, but 

they seem to be connected with two facts: on a scale large compared with the spacing 

between the vortex lines even the superfluid component looks like a classical fluid 

flowing at high Reynolds number; and the mutual friction associated with the vortex lines 

serves to lock the two velocity fields together. Thus the flow of the superfluid phase of 

liquid helium at high velocities in situations having a classical analogue is described quite 

well by classical formulae describing the flow of a conventional fluid, with density 

equalto the total helium density and viscosity similar to that of the normal fluid (Vinen & 

Niemela, 1999). 

2.10: The Kapitza Thermal Boundary Resistance 

As it can be seen, the effective thermal conductivity of superfluid helium is very high, but 

often it is necessary to transfer heat out of a solid body into the helium, or vice versa. 

Then taking into account of a high thermal boundary resistance between the solid and the 

helium (the Kapitza resistance), this resistance arises from the fact that it is generally 

difficult for a thermal excitation in the solid to convert to one in the helium. This can be 

seen most easily when both the excitations are quantized sound waves or phonons. When 

a sound wave approaches a change of medium, some is transmitted and some is reflected, 

the relative amounts being determined by the characteristic impedances (Z =𝜌c) of the 

two media. For liquid helium Z has a value that is much smaller than for any solid, and 

the resulting serious acoustic mismatch at the boundary leads to the high thermal 

boundary resistance. Its value is typically of order 2x10
-4

 KW
-1

 m
2
. 

The superfluid phase of liquid 
4
He behaves in strange ways, which can be summarized as 

follows. It shows “two-fluid” behavior; a normal fluid coexisting with a superfluid 

component. The superfluid component can exhibit frictionless flow at low velocities and 
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in narrow channels. Rotational motion in the superfluid component is severely restricted 

by quantum effects, associated with the quantization of circulation (essentially the 

quantization of angular momentum). This unconventional behavior has its origin in 

quantum effects and especially in the formation of a coherent Matter field within the 

liquid, associated with the phenomenon of Bose-Einstein condensation. At high flow 

velocities, ideal superfluid behavior, involving frictionless flow, breaks down through the 

generation of a form of quantum turbulence, which leads to a frictional interaction 

between the superfluid and normal components. Quantum turbulence is likely to be 

important in many situations of practical importance. 

2.11: The superfluid phases of ³He 

Helium being a principal constituent of stellar Matter is the second most abundant 

element in the universe after hydrogen. It has dominated the scene in cryogenics as the 

most important refrigerant for attaining very low temperatures ever since it was liquefied 

for the first time in 1908 by Kamerlingh Onnes when at 0.9 K he was also able to attain 

the lowest temperature ever reached before that time. It exists in two isotopic forms 

namely 
3
He and 

4
He. 

The small mass of the He atom is primarily responsible for many of its very interesting 

and unusual physical properties. It is extremely difficult to solidify Helium due to the fact 

that it has significant zero-point motion even at absolute zero since it is extremely light. 

This makes it possible to have He in the liquid phase up to very low temperatures. Hence 

the liquid state of He is a very good example of a quantum liquid whose phase diagrams 

demonstrate richness in their variety of physical properties, as shown in fig. 2.16. 

Out of the two isotopes of He, only the heavier isotope 
4
He had been in the focus of 

attention of Physicists for a long time. The reason for this is that 
4
He shows a transition to 

the superfluid phase on cooling below 2.17 K which is known as the lambda transition 

one of whose signatures is a characteristic peak in the specific heat. The superfluid phase, 

along with other strikingly unusual properties has the ability to flow without friction.
3
He 

on the other hand shows no such interesting property even at temperatures close to 1K. It 
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is only at much lower temperatures (of the order of a few mK) that liquid 
3
He undergoes 

transition to the superfluid state 

 

Fig. 2.16: Phase diagram of 
4
He (Shiladitya, 2010) 

That the two isotopes of He are strikingly different in their properties has to do with the 

fact that 
4
He is a boson since it has an even number of spin ½ particles (electrons and 

nucleons) while 
3
He being deficient of one neutron has an odd number of nucleons in its 

nucleus and hence behaves like a fermion. While in 
4
He superfluidity is associated with 

Bose – Einstein Condensation (BEC) of the bosonic atoms, in 
3
He the fermionic atoms 

form Cooper pairs very similar to how electrons pair up in a conventional BCS 

superconductor (Bardeen, et.al., 1957). 

2.11.1: Normal state behaviour of liquid 
3
He 

The physical properties of the normal’ phase of liquid 
3
He have been considered in detail. 

Experiments reveal that between 100mK and 3mK the liquid behaves like a weakly 

interacting degenerate Fermi gas. Two of the notable features in the experimental data 

are: 1) specific heat being linear in temperature, and 2) spin susceptibility being 

independent of temperature as pointed out by (Leggett, 1975). Given that the hard core 

radius is about 70% of the inter-atomic spacing, it is expected that the liquid be strongly 

interacting. 
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Landau’s Fermi liquid theory seems to provide a good description of the normal phase of 

liquid 
3
He. Although the theoretical details of Landau’s theory shall not be explored here, 

the essential physical idea is the following: as a result of the inter –particle interaction, 

each atom is ‘dressed’ by a screening cloud around it. Such dressed states called 

quasiparticles take over the role of the bare particles. The effect of interactions appears as 

a renormalization of the effective mass of the particles. Thus the ground state of such a 

gas is a filled Fermi sea of quasiparticles of effective mass m* which differs from m, the 

mass of the bare particle. An important point to note here is that apart from the change in 

effective mass, the interactions are also responsible for introducing an effective 

interaction between quasiparticles themselves via a parameter f(p,F,;p`,F`) which is a 

measure of the interaction energy between quasiparticles of momenta p, p`and spins F 

and F`, respectively. 

2.11.2:Inter-atomic interaction potential in liquid 
3
He 

The inter-atomic interaction potential in liquid 
3
He is characterized by a strongly 

repulsive hard core at small distances (less than 2 Å) and an attractive Van der Waals 

interaction at larger distances as shown in the Fig. 2.17. 

 

Fig. 2.17: The inter-atomic potential in liquid 3He (Vollhardt & Wolfle, 1990). 
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Shortly after BCS theory was developed (Bardeen, et. al., 1957), and applied successfully 

to the metallic superconductors, attempts towards applying the theory to other fermionic 

systems were initiated. The first thing that was noticed about 
3
He was that the atoms 

could not possibly pair up in the s-wave state (zero angular momentum) since the hard 

core repulsion ensures that the wave function vanishes for small inter-atomic distances. 

One of the earliest works was done by (Brueckner et. al., 1960), who stated that the l = 2 

state in 
3
He can form a condensate at a temperature less than 0.07 K. Later, the work of 

(Anderson et. al., 1961), predicted an even lower upper bound of 0.02K. It was clear that 

ultra-low temperatures were needed to be attained in order to observe condensation in 

3
He. 

At this point it would be worthwhile to mention few of the advances made in the 

experimental scene as well. In the late sixties and early seventies active experimental 

research was conducted on 
3
He and its mixture with 

4
He, along with important advances 

in refrigeration techniques, as (Wheatley, 1975) points out. Dilution refrigeration was 

perhaps the most significant development. This technique enabled providing temperatures 

of as low as 10mK with further reduction possible by using other techniques. The other 

refrigeration techniques that were developed included nuclear refrigeration and adiabatic 

compressional cooling. It did not take too long for successful observation of superfluid 

condensation in 
3
He to happen. 

2.11.3: Experimental observation of superfluid condensation in 
3
He 

In 1972, (Osheroff, et. al., 1972) reported some interesting observations regarding liquid 

3
He at temperatures below 3 mK. In their first experiment, they had Helium in a 

Pomeranchuk cell which is essentially a compressional cooling cell. Inside the cell they 

cooled 
3
He under pressure so that they had the solid phase coexisting with the liquid 

phase. They observed two distinctive features on the pressure Vs time curve (also known 

as the pressurization curve) tunneling below 3mK. They called these features A and B. At 

point A the rate of change of pressure with time (dp/dt)) fell discontinuously by a factor 

of 1.8 at a temperature of about 2.65 mK. At point B another singularity was observed at 

a temperature of less than 2mK. This was initially attributed to nuclear spin effects in the 

solid phase until subsequent NMR experiments showed that the A and B features had to 
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do with dynamic magnetic effects in the liquid phase. In Fig. 2.18, the zero field phase 

diagram of 
3
He is shown. 

The new phases A and B are the superfluid phases that are achieved at very low 

temperatures under pressure. In this phase diagram there are two transition lines that are 

of concern in the light of the present discussion. The first is the 𝑇𝑐 that separates the 

normal and superfluid phases. As pointed out by (Wheatley, 1975), the transition is 

second order. The other transition is the A to B transition which is first order. 

  

Fig 2.18: Phase diagram of 
3
He drawn in logarithmic temperature scale and zero 

magnetic field (Vollhardt & Wolfle, 1990). 

2.11.4: Fermions 

Figure 2.19 shows the electron–electron pair-correlation function computed for 36 

electrons with angular momentum L = 708. It should be emphasized that the angular 

momentum L = 708, although a large number, is relatively small. In fact, it corresponds 

to L = 24 for seven particles, where according to figure 2.24 no localization of particles is 

expected. 

 

http://iopscience.iop.org/article/10.1088/1367-2630/8/4/059/meta#nj218737fig4
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Figure 2.19: Pair correlation function of 36 electrons in a harmonic trap with 

angular momentum L = 708 showing the exchange-correlation hole and four 

vortices (left) and the vortex–vortex correlation function showing that the vortices 

are well localized(right) 

Finally, it is noted that localization by rotation can also happen in the case of quasi-

particles, even when they are collective excitations. An example here are the vortex 

patterns emerging in rotating clouds of bosons or fermions at smaller angular 

momenta (Saarikoski, et.al., 2004). For clear vortex states, naturally, the number of 

particles should be much larger than that of the vortex quasi-particles. It is thus limited to 

study polarized fermions (or spinless bosons).  

In addition to the exchange-correlation hole around the reference electron, four minima in 

the otherwise smooth density distribution are observed. 

It is shown that quantum mechanical particles, when set rotating in a two-dimensional 

harmonic trap, tend to localize to Wigner molecules. The localization is seen clearly in 

the periodic oscillations in energy spectrum as a function of the angular momentum. The 

many-particle spectrum can be explained in detail by rigid rotation and vibrational modes 

calculated using classical mechanics. These results seem universal. They are independent 

of the shape or range of the inter-particle interaction, and fermions and bosons show 

similar localization. Considering also that the spin degree of freedom does not change the 
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tendency for localization. With spin, the many-body states form a very narrow band, 

clearly separated from high-lying collective excitations. When the particle number is 

sufficiently large, the rotational spectrum shows localization of quasi-particles which can 

be identified as vortices. 

2.12: Exchange-induced crystallization of soft-core bosons 

The phase diagram of a two-dimensional assembly of bosons interacting via a soft-core 

repulsive pair potential of varying strength can be studied, and compare it to that of the 

equivalent system in which particles are regarded as distinguishable. In this quantum-

mechanical exchanges stabilize a ‘cluster crystal’ phase in a wider region of parameter 

space than predicted by calculations in which exchanges are neglected. This physical 

effect is diametrically opposite to that which takes place in hard-core Bose systems such 

as 
4
He, wherein exchanges strengthen the fluid phase. This is underlined in the cluster 

crystal phase of soft-core bosons by the free energy gain associated with the formation of 

local Bose–Einstein condensates. 

The role played by quantum-mechanical exchanges of indistinguishable particles in 

determining the fluid–solid phase boundary is a subject of fundamental interest in 

Condensed Matter and quantum many-body Physics. It has long been the conventional 

wisdom that exchanges should have little or no influence over the freezing–melting phase 

transition. On its face, this assumption would seem reasonable; after all, in naturally 

occurring crystals quantum exchanges are strongly suppressed, both by particle 

localization at lattice sites as well as by the strongly repulsive core at the short distance of 

any known inter-atomic or intermolecular potential. Furthermore, the melting of most 

solids occurs at temperatures at which the average rms excursion of particles away from 

their lattice sites is dominated by thermal effects, with quantum-mechanical corrections 

being generally negligible (Boninsegui, et. al., 2012). For this reason, it has been 

customary to neglect quantum statistics altogether in theoretical studies of quantum 

crystals also near the melting line. 

Recent work (Boninsegui, et.al., 2012) has challenged this assumption, however, by 

showing that in Bose systems with hard-core type interactions (such as Condensed He), 
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quantum exchanges have the effect of greatly expanding the region of stability of the 

fluid phase, with respect to what it would be if exchanges were not present, i.e. if 

particles were distinguishable (henceforth distinguishable quantum particles shall be 

referred to as ‘boltzmannons’). To phrase this more quantitatively, the free energy gain 

associated with the occurrence of long cycles of permutation of identical particles has the 

effect of moving the freezing line to a considerably higher density than one would predict 

based on calculations only including the zero-point motion. For this reason, theoretical 

studies of the phase diagram of a Bose system neglecting exchanges are likely to incur 

significant quantitative error in the determination of the solid–fluid phase boundaries, and 

predict unphysical thermo crystallization (i.e. re-entrance of the solid phase) at finite 

temperatures (Boninsegui, et.al., 2012). Furthermore, long bosonic exchanges (i.e. 

comprising a macroscopic fraction of all particles in the system) can underlie and impart 

significant resilience (i.e. long lifetime) to metastable, glassy superfluid phases. 

Microscopically, this can be phrased in the language of path integrals, in terms of 

‘frozen’ exchange cycles, in which the paths of many particles become entangled. 

Because a macroscopic number of single-particle (or, rare multi-particle) tunneling 

events are required, in order to disentangle all particles, the system may remain ‘stuck’ in 

a metastable disordered, glassy superfluid phase. 

It can be understood that the findings of crucially rely on the presence of a ‘hard’ 

repulsive core at short distances in the pair-wise interaction 𝑣(𝑟). Indeed, if 𝑣(𝑟)instead 

features a ‘soft’ core (i.e. ,𝑣(𝑟 → 0)~ℏ2/2𝑚𝑑2 where m is the particle mass and d the 

mean inter-particle distance), the effect of the Bose statistics is in fact the opposite. 

Specifically, a high-density ‘droplet’ (or ‘cluster’) crystal phase, featuring a multiply 

occupied unit cell (Cinti, et.al., 2010), is strengthened over the fluid one, again with 

respect to the Physics of a system of boltzmannons (or classical systems featuring the 

same kind of interaction, e.g. macromolecules (Lenz, et.al., 2012). Phrased differently, 

since the energy cost associated with particles laying at a close distance is relatively 

small, a phase in which each unit cell acts in a sense as a mesoscopic Bose condensate 

has a lower free energy than the uniform fluid phase 6 . This conclusion can be reached 

by studying a two-dimensional system of soft-core bosons by means of quantum Monte 

http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033038#njp486293fn2
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Carlo simulations. Although the results presented here are for a specific kind of soft-core 

interaction (Henkel, et.al., 2010), experimentally realizable in an assembly of cold atoms, 

the Physics described here are independent of the detailed form of the potential utilized in 

our study, but only with the presence of a soft core at short inter-particle separation. 

2.12.1: Model for crystallization  

Consider an ensemble of N spin-zero Bose particles of mass m, whose motion is confined 

to two physical dimensions (a choice made for convenience only, the main physical 

conclusions being independent of the dimensionality). The system is enclosed in a square 

cell of area A, with periodic boundary conditions, and is described by the following 

many-body Hamiltonian: 

�̂� = −
ℏ2

2𝑚
∑ ∇𝑖

2 + ∑ 𝑣(|𝑟𝑖 − 𝑟𝑗|)

𝑖<𝑗𝑖

                                                                    (2.19) 

The specific form of the potential could be 

𝑣(𝑟) =
𝑣0

𝑟𝑐
6 + 𝑟6

                                                                                                            (2.20) 

with 𝑣0 > 0 Such a potential describes the interaction between two Rydberg atoms 

(Gallagher, 1994) in the so-called Rydberg blockaded regime (Henkel,et.al., 2010). The 

above choice of interaction is motivated by the fact that a quasi-2D Bose assembly with 

such pair-wise potential can be experimentally realized in an assembly of cold Rydberg 

atoms (Schausz, et.al., 2012), which feature strong van der Waals interactions (Beguin, 

et.al., 2013). These are currently utilized in numerous experiments to study long-range 

interacting effective spin systems (Schausz, et.al., 2012), as well as for applications in 

quantum optics (Dudin, et.al., 2012) and quantum information science. 

The most important feature of the potential (2.20) is the soft repulsive core of radius 𝑟𝑐, 

which is the main consequence of the ‘Rydberg blockade’ mechanism, causing a 

flattening off of the repulsive part at short inter-particle separation . The rapidly decaying 

tail, also repulsive, does not play an important role in the context of this work; indeed, as 

mentioned in the introduction, the same qualitative behavior shown here can be observed 

http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033038#njp486293eqn2
http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033038#njp486293fn3
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with a broad class of physical potentials displaying a repulsive soft core at a short 

distance, with the only requirement being the presence of a negative Fourier component 

(Modugno,et.al., 2002). Another important feature is that the strength of the repulsive 

core of the pair-wise interaction can be ‘tuned’, allowing one to go from the soft to the 

hard core regime, in which qualitatively different Physics arise.  

The equation 

   є0 = ℏ2/𝑚𝑟𝑐
2         (2.21) 

could be taken as the unit of energy (and temperature, i.e. the Boltzmann constant 𝑘𝐵 is 

set to one), and  𝑟𝑐that of the length. Thus, the density of particles  is expressed 

in units of 𝑟𝑐
−2. The dimensionless parameter 

  𝑣0 = 𝑚𝑣0/ℏ𝑟𝑐
4        (2.22) 

measures the relative strength of the interaction compared with the characteristic kinetic 

energy є0. 

The phase diagram of this system is similar to that of other soft-core Bose systems. 

If 𝑉0 → ∞, the Physics approaches that of an ensemble of hard disks, whose phase 

diagram features a low-density fluid (gas), turning superfluid at low temperature, and 

transitioning at sufficiently high density into a crystalline phase with one particle per unit 

cell (the presence of a weak repulsive tail stabilizes such a crystalline phase at t = 0, even 

at low density). Multiple occupation crystals occur at density 𝜌 ≳ 1; in this regime, in 

which no supersolid phase is observed, the Physics of the system in the solid phase mimic 

those of the Bose Hubbard model. On the other hand, in a range of values 

of  𝑉0(roughly)1 ≲ 𝑉0 ≲ 20, at low temperature the system transitions from the fluid 

phase directly into a crystalline one featuring multiply occupied sites (unit cells) (Macri, 

et.al., 2013). This is the physical regime of interest here. 

The low-temperature phase diagram of the system was studied by the Hamiltonian in 

eq.(2.19) by means of first-principle computer simulations based on the worm algorithm 

in the continuous-space path integral representation. This is a fairly well-established 
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computational methodology, allowing one to essentially obtain the exact thermodynamics 

properties of Bose systems at finite temperature, using only the microscopic Hamiltonian 

as the input. Because the continuous-space worm algorithm is thoroughly illustrated 

elsewhere, its implementation here has not been reviewed. It suffices to mention that the 

details of the calculations are standard, as the use of the potential in eq.(2.20) entails no 

particular difficulty. The usual fourth-order approximation is utilized for the high-

temperature density matrix. All of the results reported here can be extrapolated to the 

limit of the zero time step. 

The main quantity of interest here is the superfluid density, which is computed by means 

of the well-known ‘winding number’ estimator. Most of the calculations were carried out 

with a number of particles, of the order of a few hundred, with N = 800 being the largest 

system size considered. Parallel simulations can be carried out, at the same 

thermodynamic conditions, of a system of boltzmannons described by the same 

Hamiltonian, in order to assess the effect of Bose statistics on the phase diagram. It is 

worth remembering that the two systems have the same ground state; this is a 

straightforward consequence of the fact that the ground state wave function of a many-

boson system is nodeless (Feynman, 1972). 

As mentioned above, the regime of interest here is to understand that the repulsive core of 

potential in eq.(2.20) is soft, i.e. 𝑉0 ≲ 20. In this range of repulsive interaction, at a 

density 𝜌 ≲ 1, the system transitions from a fluid to a droplet crystal phase with a site 

occupation of the order of a few. In particular, considering a density  𝜌 ≈ 1 and with an 

incommensurate occupation number per site, it was recently shown that zero-point 

vacancies cause a superfluid flow of particles through the crystal (Cinti,et.al., 2014), 

accordingly with the seminal works of Andreev–Lifshitz–Chester on supersolidity. 

However, in this study number of particles considered was 10 or above. 

The occurrence of a specific phase, and in particular one that has crystalline long-range 

order, can be established in a computer simulation by calculating structural quantities like 

the pair correlation function, which displays marked oscillations in the crystalline phase. 

Equivalently, its Fourier transform, related to an experimentally measurable quantity 

http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033038#njp486293eqn2
http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033038#njp486293eqn2
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known as the static structure factor, features a peak in the correspondence of the wave 

vector 𝑘 = 2𝜋/𝑎, with a being the lattice constant (typically 𝑎~𝑟𝑐). However, the 

presence of crystalline order can also easily be assessed by visual inspection of particle 

world lines, an example of which is offered in figure 2.20, which clearly shows the 

formation of a droplet crystal for a system of Bose particles. 

 

Figure 2.20: Configuration snapshots (particle world lines) for a system with N = 

600 particles and α=30 at a temperature of t=T⁄ρ=0.3. The left panel refers to a 

system of distinguishable particles (boltzmannons), and the right to one of Bose 

particles. 

A mean-field treatment (Macri, et.al., 2013) shows that the Physics of the system in the 

ground state are governed by the single dimensionless parameter 𝛼 ≡ 𝑉0. This can be 

verified, by direct numerical simulation, that this assertion holds quantitatively for both 

Bose and Boltzmann statistics at low temperature. To illustrate this point, in figure 2.21, 

the result is shown for the superfluid fraction  𝑓𝑠 computed for the Bose system in the 

ground state limit (i.e. temperature𝑇 → 0 ) for three different densities, namely 4.53, 6.78 

and 11.33 (roughly corresponding to 10, 15 and 25 particles per unit cell, respectively). 

The results are shown as a function of the renormalized interaction parameter α, in a 

http://iopscience.iop.org/article/10.1088/1367-2630/16/3/033038#njp486293f2
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range corresponding to the values of the interaction strength 3 ≲ 𝑉0 ≲ 8. Within the 

statistical errors of the calculations, the values of the superfluid density all fall on the 

same curve, with three different regimes clearly identifiable. Specifically, at low α the 

superfluid fraction is ∼ 1, as the system is in the fluid phase; as α is increased to a value 

close to 28, 𝑓𝑠 abruptly drops to a lower (but finite) value, as expected for a superfluid 

system breaking transational invarianc. Finally, as α is increased even further (close to 

37), the system transitions into an insulating droplet crystal phase, with negligible particle 

tunneling across adjacent unit cells. 

 

 Figure 2.21: A superfluid fraction in the limit of T→0 , computed by simulation as 

a function of the renormalized interaction parameter ∝=ρV_0  (see text) for the 

three densities ρ=4.53 (triangles), 6.78 (diamonds) and 11.33 (squares).  

Figure 2.22 shows the superfluid fraction 𝑓𝑠 for the Bose system at finite temperature, 

computed for 𝛼 = 28, at which value the system displays a supersolid phase at low 

temperature. Here two values of the density are considered, namely 𝜌 = 9.02  and 

11.33;the simulated system comprises N = 800 particles. The values of 𝑓𝑠 as a function of 

the reduced temperature 𝑡 ≡ 𝑇/𝜌 are plotted, and observe the collapse of the data. As one 

can see, 𝑓𝑠 starts off at a value slightly less than 0.6 at t = 0, as the system is in the 

supersolid phase, and jumps up to a higher value at 𝑡 ≈ 0, in correspondence with the 
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melting of the crystal into a uniform superfluid. The numerical data for 𝑓𝑠 in the 

superfluid regime are fitted in the usual way, based on Berezinskii–Kosterlitz–Thouless 

theory, to obtain an estimate of the superfluid transition temperature. 

 

Figure 2.22: Superfluid fraction versus reduced temperature t≡T/ρ  for a system 

with α=28, ρ=11.33 (boxes) and ρ=9.02 (triangles). The simulated system comprises 

N = 800 particles. The line through the data point is a fit based on the Berezinskii–

Kosterlitz–Thouless theory, whereas the line falling steeply to zero at 𝑡~0.68 is the 

prediction for the thermodynamic limit. 

A schematic phase diagram is obtained of both the Bose and the distinguishable particle 

systems in the (𝑎, 𝑡)  plane through a number of vertical ‘cuts’ at different values of α. 

The resulting phase diagrams are shown in figure 2.23. The first obvious observation, 

aside from the fact that no superfluid phase can exist in a system of boltzmannons at any 

finite temperature, and that at exactly t = 0 the phase diagram is of course the same, is the 

much greater region of stability of the droplet crystal phase in the Bose system. This is 

the most remarkable outcome of this study, as it runs counter to the notion that quantum-

mechanical exchanges should in principle favor a uniform phase in Bose systems. This is 

indeed what is observed in numerical studies of hard-core Bose systems 

(Boninsegui,et.al., 2012), and it is what takes place in the system studied here as well, in 

the 𝑉0 ≫ 1  (hard core) limit. However, if the repulsive core of the interaction is soft 



 

65 
 

 

 

enough that a droplet crystal is present in the phase diagram, then quantum-mechanical 

exchanges of Bose particles actually strengthen the crystalline phase. Thus, Bose 

statistics stabilize the crystal phase at a higher temperature than in the system of 

distinguishable particles. 

 

 

Figure 2.23: Phase diagrams in the∝-t  (see text) plane. (a) Bose statistics with 

normal fluid (NF), a superfluid (SF), a superfluid droplet crystal (SDC), and an 

insulating droplet crystal (IDC). (b) A system of distinguishable particles with NF 

and IDC phases. The symbols represent the numerical determination of the 

appropriate transition temperatures.    

Thus the greater stability of the crystal in the Bose system can be understood in entropic 

terms. In a system of distinguishable particles, the crystal melts into a fluid due to the 

greater entropy of the phase with higher symmetry. On the other hand, in the Bose system 

at low temperature, the entropy of a normal fluid phase in which exchanges are only local 

in character is comparable to that of a crystal in which exchanges occur among particles 

confined to within the same unit cell (droplet). Thus, the thermodynamically preferred 

phase is that of lower energy, i.e. the crystal. As the strength of the repulsion increases, 



 

66 
 

 

 

the number of particles in a droplet decreases and the crystalline phase becomes 

entropically less competitive with the fluid. 

Thus one can say that in a Bose system characterized by pair-wise interactions with a 

repulsive core at short distances, quantum-mechanical exchanges can act to stabilize 

either the fluid or solid phase, depending on the strength of the repulsive interaction. 

While in the hard-core limit, exchanges strengthen the fluid phase, the opposite is true in 

a system in which the core is soft enough to allow the formation of a cluster (droplet) 

crystal phase at low temperature. It is shown that this effect is true for a two-dimensional 

system of Rydberg atoms, but the result is quite general, and in particular is independent 

of the long-range part of the potential. 

 In these cases, the occurrence of cluster crystal phases can be understood in terms of 

potential energy alone.   

Quantum-mechanical exchanges may be restricted to particles in the same cell, in which 

case the crystal is insulating, or particles may hop to adjacent cells and a supersolid phase 

may ensue, but this aspect is not crucial to the Physics of interest here. 

Obviously, at a sufficiently short distance the repulsion will start increasing rapidly again 

as the Pauli exclusion-principle prevents electronic clouds of different atoms or 

molecules from spatially overlapping. The assumption made here is that 𝑟𝑐 is much 

greater than the radius of such an inner hard core. 

2.13: Crystallization of Fully-Polarized Dipolar Fermions 

 Consider a two dimensional model of non-interacting chains of spinless fermions weakly 

coupled via a small inter-chain hopping and a repulsive inter-chain interaction. The phase 

diagram of this model has a surprising feature: an abrupt change in the Fermi surface as 

the interaction is increased. The study of this meta-nematic transition, shows the well-

known 2 1 2−order Lifshitz transition is the critical endpoint of this first order quantum 

phase transition. Furthermore, in the vicinity of the endpoint, the order parameter has a 

non-perturbative BCS-like form. The competing crystallization transition in this model 

was studied, and the full phase diagram was derived. This Physics can be demonstrated 
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experimentally in dipolar ultra-cold atomic or molecular gases. In the presence of a 

harmonic trap, it manifests itself as a sharp jump in the density profile. 

The study of phenomena which deform the Fermi surface in both electron and cold atom 

systems has gained much popularity recently. For example, it has been suggested that the 

Fermi surface shape-changing Pomeranchuk instability (Pomeranchuk,et.al., 1958) may 

describe experiments in heavy fermions, quantum hall devices, and ruthenates, (Grigera, 

et.al., 2009) leading to a plethora of theoretical papers on the subject. The Pomeranchuk 

instability, which breaks rotational symmetry but no translational symmetries, is 

essentially a transition to an electronic nematic phase. An analogue in spin systems has 

also been studied. Incorporating other electronic analogues of liquid crystal phases into 

this picture has been put forward as a general picture of strong correlations (Kivelson & 

Fradkin, 2007) with evidence for smectic phases being observed experimentally in 

manganites and cuprates. These electronic liquid crystal phases also have a strong 

relation to dimensional crossover phenomena, where one can ask the question whether an 

array of one-dimensional chains (Luttinger liquids) coupled by a weak inter-chain 

hopping 𝑡⊥ remains strictly one dimensional (confinement), or becomes a quasi-one 

dimensional Fermi liquid (deconfinement). Indeed, calculation methods such as self-

consistent perturbation theory and functional renormalization (Ledowski, 2007) support 

the idea that the warped Fermi-surface is unstable for sufficiently small 𝑡⊥, in principle 

therefore leading to a Fermisurface modifying transition at some finite value of interchain 

hopping. 

 While the issue of the Luttinger liquid to Fermi liquid crossover/transition is not yet fully 

resolved, it is possible to ask a much simpler question: what happens if an array of one-

dimensional Fermi liquids are coupled together? A rather specific example in this 

direction was the study of coupled edge states (chiral one-dimensional Fermi liquids) in 

superlattices which exhibit integer quantum Hall effect (Betouras & Chalker, 2000). 

While such a toy model may not be realistic for any real materials, advances in laser 

trapping and cooling technology have led to the rapidly expanding field of trapped ultra-

cold atoms, which in the context of Condensed Matter Physics can be thought of as a sort 

of quantum analogue simulation of a bulk system, (Campo & Ho, 2010) with 
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unprecedented control over disorder and interactions. It was suggested a few years ago 

(Baranov, et.al., 2004) that exploiting the dipole interaction between cold polar 

molecules or highly dipolar atoms allows further control over effective interactions, in 

order to build exotic strongly correlated phases. Of particular interest in the present 

context is the case when the atoms or molecules are fermions. On the experimental front, 

there has been much recent experimental progress towards this goal using highly polar 

40
K and 

87
Rb molecules (Ni, 2008) and a fermionic isotope of the highly magnetic atom 

𝐷𝑦163  (Lu, 2010). On the theoretical front there has been a flurry of activity 

(Miyakawa,et.al., 2008). Unlike the long-wavelength scattering induced by Feshbach 

resonances, dipolar interactions have a power-law dependence on the distance between 

the interacting particles and a non-trivial dependence on the relative position of the two 

particles and orientation of the magnetic dipoles. In the presence of a strong polarization 

field the latter translates into a strongly anisotropic interaction which leads to a 

spontaneous (though not symmetry breaking) deformation of the Fermi surface 

(Miyakawa, 2008) Indeed depending on the strength of the dipolar interaction additional, 

symmetry-breaking (Pomeranchuk) Fermi surface deformations may also occur (Carr, 

et.al., 2009). Even more interestingly, such polarization dipolar gases can in theory be 

combined with optical lattices to generate non-trivial tailor-made effective Hamiltonians. 

It was shown that (Quintanilla, et.al., 2009) a quasi-one dimensional (quasi-1D) optical 

lattice could be used to create a system whose phase diagram features Fermi liquid, stripe 

and checkerboard ground states, as well as a meta-nematic quantum phase transition into 

a state with distorted Fermi surface.  

The model (Quintanilla, et. al., 2009), features chains within which there are no 

interactions, achieved by the alignment of the polarization field at the ‘magic angle’ to 

the tube direction. For this particular orientation of the field, the interactions between 

particles on different chains are purely repulsive. An experimental polarization of this 

model would thus furnish an example of the coupled one-dimensional Fermi liquids 

mentioned above. Interestingly, the spontaneous Fermi surface distortion encountered in 

this model corresponds also to an interaction-induced change of dimensionality, from 

quasi- 1D (open Fermi surface) to fully 2D (closed Fermi surface) behavior. An 
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important property of this model is that these various transitions can all happen in 

different, well separated, regions of phase space. Thus, each of the phase transitions can 

be studied independently without its properties being masked by the other ones. More 

recently other scientists have studied a closely related model, featuring continuum tubes 

rather than discrete chains (Huang & Wang, 2009). In this case only the strictly 1D limit 

was considered but on the other hand the polarization field was allowed to point in any 

direction. This leads to a rich variety of effective interactions and a correspondingly rich 

phase diagram: in addition to density wave and meta-nematic phases, different superfluid 

ground states are expected. The present work extends the theories (Quintanilla & Carr, 

2009) by considering finite temperature phase transitions in addition to the quantum 

phase transitions discussed to date. A fully analytic theory of the metanematic transition 

in the neighborhood of its critical end point was developed. The Hamiltonian of the 

model that was analyzed in detail consists of spinless fermions hopping along parallel 

chains (labelled by n), with a weak hopping and an interaction between nearest neighbor 

chains: 

𝐻 = ∑ {−𝑡||(𝑐𝑖,𝑛
† 𝑐𝑖+1,𝑛 + 𝑐𝑖+1,𝑛

† 𝑐𝑖,𝑛 − 𝑡⊥)(𝑐𝑖,𝑛
† 𝑐𝑖,𝑛+1 + 𝑐𝑖,𝑛+1

† 𝑐𝑖,𝑛) + 𝑉𝜌𝑖,𝑛𝜌𝑖,𝑛+1}𝑖,𝑛  (2.23) 

Where the density 

𝜌𝑖,𝑛 = 𝑐𝑖,𝑛
† 𝑐𝑖,𝑛          (2.24) 

The calculation was done as follows: The meta-nematic transition was studied in full 

detail, explaining its origins and its link to the Lifshitz transition and the other competing 

instability of the model to a crystalline phase.  It also considered both the specific 

properties of this model, and how these may be generalized to a more realistic 

microscopic model in Condensed Matter systems.  

2.14: Physics of Neutron Rich Nuclei, Neutron Matter and Neutron Stars 

The Physics of neutron rich nuclei requires accurate treatment of many-body correlations, 

proper inclusion of coupling with continuum degrees of freedom and open channels 

(Gaute & Elena, 2016), and even many-body interactions. The first basic approach is to 



 

70 
 

 

 

study the elementary particles, their properties and mutual interaction. Thus one hopes to 

obtain the knowledge of the nuclear forces. If the forces are known, one should, in 

principle, be able to calculate deductively the properties of individual nuclei. Upon 

accomplishing this, one completely understands nuclear structure. The other approach is 

that of the experimentalist and consists in obtaining by direct experimentation as many 

data as possible for individual nuclei. One hopes in this way to find regularities and 

correlations which give a clue to the structure of nuclei. The shell model, although 

proposed by theoreticians, really corresponds to experimentalist’s approach (Goeppert & 

Mayer, 1963). Now to study the properties of neutron rich nuclei (heavy nuclei), neutron 

matter and neutron stars, it is necessary to have as accurate a knowledge of nucleon-

nucleon interaction, and /or the nuclear forces. It should be understood that the nucleons 

in the interior of a nuclear medium do not encounter the same bare force, say V. They 

experience an effective force, say G, which is calculated from V in abinitio methods. 

Since the nucleons are fermions, the Pauli principle prohibits the scattering into states, 

which are already occupied in the medium. Therefore the effective force is density 

dependent, and is written as G(ρ). The force G is much weaker than the bare force V. 

Nucleons move nearly freely in the medium and feel only a strong attraction at the 

surface (shell model). The nucleon-nucleon interaction is shown in Fig. 2.24.  

 

Fig. 2.24: Nucleon-nucleon interaction 
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In heavy nuclei the number of neutrons (N) is quite large compared to the number of 

protons (Z), the surface region of heavy nuclei is said to be neutron skin where the excess 

neutron may exist resulting in strong attractions at the surface since the neutron-neutron 

interaction is attractive. Now the simplest method to study the nuclear many-body 

problem is to know the bare NN force, the effective interaction, self-consistence via 

Hartree-Fock and Hartree-Fock-Bogoliubov (HF and HFB) theory. Assuming two-body 

interaction, the Hamiltonian H is written as,    

H=∑ 𝑡
𝑖𝑗𝑐𝑖

+𝑐𝑗
++

1

4
∑ 𝜈𝑖𝑗𝑘𝑙𝑖𝑗𝑘𝑙 𝑐𝑖

+𝑐𝑗
+𝑐𝑙𝑐𝑘

𝑖𝑗        (2.25) 

This Hamiltonian is diagonalized by using the Bogoliubov canonical transformation to 

obtain the quasi-particle energy dispersion relation. This method has been extended by 

several authors to study the problem of infinite nuclear and neutron matter. 

2.15:  Neutron matter 

It has been understood that the properties of neutron matter are very critical to the 

understanding of the properties of neutron-rich nuclei and neutron stars. Low-density 

neutron matter has direct impact on our understanding of neutron-rich nuclei. 

Correspondingly the equation of state of high-density low-temperature neutron matter is 

important in understanding the properties of neutron stars, particularly the mass-radius 

relation of the neutron star and also the mass of the neutron star. 

Due to various reasons, in the past few years interest in the properties of neutron matter 

has acquired great importance. At very low densities, the neutron matter is quiet similar 

to the cold atoms, rather Fermi atoms, near unitarity (when the scattering length, a, is 

infinite), since two free neutrons are very nearly bound. This allows stringent tests of 

theories of fermions in this strongly interacting regime (Giorgin, Pitaevskii & Stringari, 

2008). The equation of state (Ku, et. al., 2012) and pairing gap of unitary fermions 

(Schirotzek, et. al., 2008) have been calculated precisely. Accurate experimental 

measurements have provided severe tests of the theories, of course, some of the 

calculations gave excellent predictions, while others were less successful. 
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2.15.1: Neutron Star 

Neutron stars, discovered in 1967, are created when giant stars die in supernovas and 

their cores collapse, with the protons and electrons essentially melting into each other to 

form neutrons. Neutron stars are city size stellar objects with a mass of about 1.4 times 

that of the sun. A neutron star is the densest object astronomers can observe directly. 

Neutron stars comprise one of the possible evolutionary end-points of high mass stars. 

Neutron star material is some of the most dense matter in the universe. 

(Stuart, 2016) stated that for a start, a neutron star could never hit the Earth, the Earth 

would be drawn to it before it got anywhere near. For a finish, the nearest neutron star is 

between 250 and 1000 light years away in the direction of ursa minor star (ursa minor 

also known as little bear, is a constellation in the Northern sky.) So it won’t be anywhere 

close to Earth in 75 years or 75 thousand, or 75 million years.  

The equation of state for cold neutron matter at high density can be studied in the t-matrix 

formalism, and it can be shown that energetically it is convenient to have neutrons in a 

crystalline configuration rather than in a liquid state for values of the density exceeding 

1600Tg/𝑐𝑚3. Using t-matrix formalism means all the many-body interactions are taken 

into account to obtain the energy and the equation of state of the assembly. The other 

method is to use the hard-sphere interaction between the neutrons, and obtain the energy 

and the equation of state. 

However, in this thesis, I have studied the properties of crystalline neutron matter, a state 

that exists in neutron stars. It should be understood that neutron stars are very high 

density systems with density 𝜌𝑛≅10𝜌𝑠
 (𝜌𝑠 is the saturation density of heavy nuclei).The 

properties of neutron stars are studied using the theory of crystallization of fermions. 

The mass number (A) of the nuclei is equal to the number of protons (Z) and the number 

of neutrons (N) in a nucleus. In low mass nuclei Z=N, and as I progress towards medium 

and heavy nuclei, the neutron number (N) increases faster than the proton number (Z). 

For a nucleus to remain a bound system, attractive force must be greater than the 

repulsive force, and as the proton number (Z) increases, Coulomb repulsion increases, 
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and to balance this the neutron number (N) must increase faster than the proton number 

since the nuclear force between the neutrons is attractive. In very heavy nuclei when 

Z≥90, natural disintegration takes place by the emission of alpha (𝛼), beta (𝛽) and 

gamma (𝛾) radiations. Some of these nuclei have been found to have a surface region of  

the nucleus composed of neutrons only. This is called the neutron skin of the nucleus. 

These days both low mass and heavy mass designer nuclei have been produced 

experimentally. In such nuclei, the number of neutrons (N) is abnormally large compared 

to the number of protons (Z). The well-known such a nucleus is 𝐿𝑖3
11 . When compared 

with the real nuclei 𝐿𝑖3
6  or 𝐿𝑖3

7 , the number of neutrons is quite large. For such nuclei, the 

neutrons excess parameter 𝜂 =
𝑁−𝑍

𝐴
 or the asymmetry coefficient becomes very large. In 

such nuclei, the excess neutrons are supposed to be in the surface region of the nucleus 

forming what is called the neutron skin of the nucleus. 

From time to time, many nuclear models have been proposed (Kate, Jones & Witold, 

2010), but no model is able to explain the properties of a given nucleus. Recently 

properties of medium-heavy and heavy nuclei with many active valence nucleons have 

been described in the framework of self-consistent mean-field methods. The self-

consistent mean-field approach enables a description of the nuclear many-body problem 

in terms of a universal energy density functional. The exact energy functional which 

includes all kinds of correlations is approximated with powers and gradient of ground-

state nucleon densities. Although it models the effective interaction between nucleons, a 

general density functional is not necessarily related to any given nucleon-nucleon (NN) 

potential. By using global effective interactions, adjusted to empirical properties of 

symmetric and asymmetric nuclear matter, and to bulk properties of few spherical nuclei, 

self-consistent mean-field models have achieved a high degree of accuracy in the 

description of ground states and properties of excited states in arbitrary heavy nuclei. One 

of the major aims of modern nuclear theory is to build a universal energy-density 

functional theory. The theory has to be universal in the sense that the same functional is 

used for all the nuclei with the same set of parameters. Such a frame work could provide 

a basis for a consistent microscopic treatment of the nuclear many-body problem, 

including infinite nuclear matter and neutron matter, ground state properties of all bound 
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nuclei, low-energy excited states, small-amplitude vibrations, large-amplitude adiabatic 

properties, and reliable extrapolations towards the drip line.  

Using density-dependent effective interactions, nuclear matter properties at saturation 

have been calculated, and the values are (Lalazissis, Niksik, Vretener & Ring,2005), 

density at the saturation 𝜌𝑠(𝑓𝑚−3) = 0.152,
𝐸

𝐴
(𝑀𝑒𝑣) = −16.14, compressibility 

𝐾𝑜(𝑀𝑒𝑣) = 250.89 and the effective mass 𝑚∗ = 0.572. Same interactions have been 

used to obtain equations of state for symmetric nuclear matter and neutron matter 

(Niksik, Vretenar, Finelli & Ring, 2002). These calculations refer to nuclear systems 

which are, of course, degenerate, and superfluid, and whose densities are at best the 

saturation density of say heavy nuclei. A quantum solid is intrinsically restless, that the 

atoms continuously vibrate around their position and exchange places even at obsolete 

zero of temperature. Hence, quantum solid is different from classical solid. The 

properties of quantum solid are dominated by the zero-point motion, and this means 

Heisenberg’s uncertainty principle. Part of the energy of the neutron stars has been 

calculated using the uncertainty principle. Since in the crystalline state, the constituents 

are closest to each other, and they cannot approach closer than that distance (the distance 

of the nearest approach), there could exist strong repulsive force between the particles, 

and I have assumed this force to be hard-sphere repulsion of infinitely repulsive force. In 

the crystalline state, the kinetic energy can be neglected, and hence the total energy or 

equation of state will be the sum of the energy due to zero-point motion and the hard-

sphere interaction. This could be an oversimplification of the actual system, but to obtain 

some acceptable results, Physics eliminates complexity to expose the underlying 

simplicity. After all, it is not possible to conduct actual observations on neutron stars; 

their properties can be calculated by assuming some sort of possible interactions; and this 

is what poses the gap!  

It should be mentioned that calculations have been assuming phenomenological density 

dependence of nucleon-meson couplings to reproduce the properties of finite nuclei, 

symmetric and asymmetric nuclear matter, and such calculations can be used for neutron 
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matter also (Antoniadis, et.al., 2013), but I have not tried to attempt such calculations as 

of today.              

The study of neutron stars has become very important in recent years. The discovery of 

the first two-solar-mass neutron stars (Demorest, & Antoniadis, 2013) has provided 

critical constraints on the dense matter equation of state. These observations have 

eliminated whole classes of models that predicted that the critical mass of a neutron star 

is ≃ 1.4𝑀⨁, where 𝑀⨁ is the mass of the sun, combined with the recent observation of 

massive neutron stars, the attractive nature of neutron-neutron interaction at low 

momentum means the equation of state must be soft at low density with a rapid transition 

to high-pressure when the higher-momentum neutron-neutron and many-body 

interactions may become important, particularly three-neutron and higher interactions. It 

is important to know that the inner crust of neutron star is inhomogeneous neutron matter, 

and may be composed of lattice of heavy neutron-rich matter. Understanding the 

properties of neutron-rich matter could assist in obtaining heavy-element synthesis.  

Some of the high-lights of the neutron-star masses, radii, and the EOS (Equation of State) 

are given below (Gandolfi, Giezerlis & Carlson, 2012). However, it should be mentioned 

that the most modern EOS for neutron matter implies that the maximum neutron star is of 

the order of 13.5 Km, whereas earlier value was 10.0 Km. 

The Tolman-Openheimer-Volkov (TOV) equations are  

𝑑𝑝

𝑑𝑟
= −

𝐺[𝑚(𝑟)+
4𝜋𝑟3𝑝

𝑐2 ][𝜀+
𝑝

𝑐2]

𝑟[𝑟−
2𝐺𝑚(𝑟)

𝑐2 ]
                                                                                         (2.26) 

𝑑𝑚(𝑟)

𝑑𝑟
= 4𝜋𝜀𝑟2                                                                                                          (2.27) 

where 𝑝 = 𝜌2 (
𝜕𝐸

𝜕𝜌
) =Pressure in the star                                                                (2.28) 

𝜀 = 𝜌(𝜀 + 𝑚𝑁) =    energy density                                                                          (2.29) 

𝑚𝑁 = Mass of the neutron 
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m(r) = Gravitational mass enclosed within radii r 

G = Gravitational constant 

E = Energy per neutron 

The solution of the TOV equations for a given central density gives the profiles of ρ.ϵ and 

P as functions of radius r, and also the total radius R and mass M=m(R). The total radius 

R is given by the condition P(R)=0, i.e., The pressure P is zero at the edge of r. The speed 

of sound in the interior of the star is given by 𝐶𝑠
2 =

𝑑𝑝

𝑑𝜀
, and this should be less than the 

speed of light. These are some of the equations which are used to study the properties of 

neutron stars and neutron matter. 

Another important physical quantity which is critical in the study of the properties of 

neutron matter and neutron stars is, E (𝜌𝑛), which is the energy per neutron as a function 

of the neutron density 𝜌𝑛. For this purpose the equation of state (EOS) given by E(𝜌𝑛) 

was parameterized. However, our approach described in chapter four studies the variation 

of E(𝜌𝑛) with 𝜌𝑛 only.   
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CHAPTER THREE 

METHODOLOGY 

3.1: Introduction 

There are two types of particles in nature. One type is known as fermions and the other 

type is called bosons. The concept of bosons was put forward first. In 1924, the Indian 

physicist Satyendra Nath Bose working on the question of distinguishability of particles 

started a revolution in statistical mechanics (Bose, et.al., 1924). At that time Bose was 

working on a derivation of Planck`s formula for black-body radiation by treating the 

photons as a gas. Bose`s approach to the problem meant asking a question as to how 

many particles/ photons occupy a certain energy state of the system, instead of which 

particle occupies which energy level. The latter concept gives rise to the classical 

Maxwell- Boltzmann gas of distinguishable particles, whereas the former leads to either 

Bose-Einstein or Fermi-Dirac statistics depending upon the physical properties of the 

system such as spin. 

In Bose-Einstein statistics, each single particle state can be occupied by an arbitrary 

number of particles. But in Fermi-Dirac statistics, due to Pauli Exclusion Principle, a 

single particle state can be occupied by only a single particle. Particles obeying Fermi-

Dirac statistics are called fermions. However, it was in 1939 that the connection between 

the spin of a particle and its quantum statistics was fully discovered. Particles with half-

integer spin such as the electron obey Fermi-Dirac statistics. Composite particles also fall 

into one of these categories, depending on the total spin. As such, the basic building 

blocks of an atom (electron, neutron, proton) are all fermions. Thus, the atom as a whole 

can be either a boson or a fermion, depending on the total number of electrons and 

nucleons.  
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Although the concept of Bose-Einstein Condensation (BEC) was introduced theoretically 

by Einstein in 1925, it was experimentally realized for 
87

Rb and 
23

Na in 1995 only 

(Anderson, et.al., 1995). Since then the field of atomic BEC has exploded, and to-day 

many groups worldwide study the properties of these BEC`s. 

Parallel to the work of bosonic atoms, there was great interest in fermionic gaseous 

ensembles encouraged by the perspective of observing Cooper pairing between atoms in 

the system. Compared to bosonic systems, fermionic experiments were subject to delays. 

Partly, this was due to technical difficulty in applying techniques of evaporative cooling 

to fermionic systems, and partly due to the popular misconception that fermions do not 

interact. There is some truth to the above statement since s-wave scattering between 

identical fermions is forbidden due to the Pauli Exclusion Principle, and at very low 

temperatures, higher order scattering processes are generally energetically forbidden. The 

final experimental steps that are very successful in producing atomic BEC become highly 

inefficient when applied to a spin-polarized Fermi gas. However, fermions in different 

spin states (distinguishable fermions) do interact, and a quantum Fermi gas of atoms 

(generally called degenerate Fermi gas) can be observed as a result of evaporative 

cooling of an interacting spin mixture (Demarco & Jin, 1999). A large number of 

experimental observations (Modugno, et.al., 2002) confirmed that fermions do interact, 

even strongly.  

Thus, fermionic superfluidity has been realized using the attractive interaction required 

for Cooper pairing, and the attractive interaction is provided by direct scattering between 

fermions in different spin states. This is similar to the attractive interaction between 

electrons in superconductivity and this interaction is provided by phonons in the BCS 

(Bardeen, Cooper, Shrieffer) theory. Thus, a Fermi gas is a spin mixture of ultracold 

fermionic atoms in different spin states and can interact via S-wave scattering. Spin 

mixtures are usually composed of two clouds in different magnetic hyper fine states with 

equal atomic number. Generally, interactive fermions in the normal state are described by 

Landau’s Theory of Fermi liquids (Landau & Lifshitz, 1980). According to this, when the 

interaction is turned on, a fermion disturbs the surrounding ones locally, forming together 

with disturbance a quasi-particle. The (interacting) quasi-particles have the same spin and 
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momentum as the initially non-interacting fermions, and their number is equal. They 

therefore behave similarly to non-interacting fermions, and their number is equal. Thus, 

like the superfluidity of bosons, superfluidity of fermion atoms as well as weakly bound 

diatomic molecules can be studied. This has been done experimentally in potassium. 

Once the superfluid state was experimentally observed for bosons (liquid 
4
He) and 

fermions (liquid 
3
He), the next step was to study the conditions that can lead to the 

solidification or crystallization of the system involved. The first to be studied was the 

solidification of 
4
He. It becomes solid at very low temperature close to zero Kelvin, and 

under an external pressure of 25 Atm. (25 bar) or more. In the solid state, 
4
He has 

Hexagonal Crystal Structure, and it is highly compressible. 

For any physical system, whether a boson system or a fermion system, the most 

important physical parameters that will be required to realize that crystalline state of the 

system are, temperature, the density and the inter-particle interaction. In general 

reduction of temperature followed by the application of large external pressure can lead 

to freezing and or crystallization. 

However, recently, scientists led by Professor Raymond Ashoori (Raymond & Ashoori, 

2016) at MIT-USA, believed that they had finally captured the process of quantum 

melting; a phase transition in quantum mechanics in which electrons that have formed a 

crystal structure purely through their quantum interactions melt into a more disordered 

fluid, in response to quantum fluctuations to their density. Thus, for the first time, MIT 

Physicists have observed a highly ordered crystal of electrons in a semiconducting 

material and documented its melting, much like ice thawing into water. Electrons in a 

(semiconductor) semiconducting material were cooled to extremely low temperature, just 

above absolute zero (Scientists Detect a Quantum Crystal of electrons at MIT, USA, 20
th

 

December, 2016). Thus, crystallization of fermions is a realistic physical phenomenon, 

and this is what has been focused on in this thesis.   
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3.1.1: Hamiltonian for interacting particles and Bogoliubov-Valatin transformation 

In 1947, (Bogoliubov, 1947) introduced a novel linear transformation to diagonalize the 

quantum quadratic Hamiltonian present in superfluidity. This method was later extended 

by Bogoliuv himself (Bogoliubov, et.al., 1958) and also by (Valatin & Nuovo, 1958) to 

the Fermi case in the theory of superconductivity. It has ever since got widely used in 

different fields, and known as Bogoliubov-Valatin (BV) transformation, including both 

the bosonic and fermionic versions. 

To show the underlying idea of the method due to Bogoliubov and Valatin, consider the 

quadratic Hamiltonian H, 

𝐻 = ∑ (𝛼𝑖𝑗𝑐𝑖
ϯ
𝑐𝑗 +

1

2
𝛾𝑗𝑖𝑐𝑖

ϯ
𝑐𝑗

ϯ
+

1

2
𝛾𝑗𝑖

∗ 𝐶𝑖𝐶𝑗

𝑛

𝑖,𝑗=1

                                                              (3.1) 

where n≥1 is a natural number, and  𝑐𝑖   and  𝑐𝑖
ϯ
   are, respectively, the annihilation and 

creation operators for bosons or fermions. They satisfy the standard commutation 

relations 

[𝑐𝑖, 𝑐𝑗
ϯ
] = 𝑐𝑖𝑐𝑗

ϯ
± 𝑐𝑗

ϯ
𝑐𝑖 = 𝛿𝑖𝑗 ,                                                                                 (3.2) 

[𝑐𝑖, 𝑐𝑗] = 𝑐𝑖𝑐𝑗 ± 𝑐𝑗𝑐𝑖 = 0,                                                                                     (3.3) 

[𝑐𝑖
ϯ
, 𝑐𝑗

ϯ
] = 𝑐𝑖

ϯ
𝑐𝑗

ϯ
± 𝑐𝑗

ϯ
𝑐𝑖

ϯ
= 0,                                                                             (3.4) 

where 𝛿𝑖𝑗is the Kronecker delta function, and +ve sign denotes fermions while –ve 

denotes bosons. The coefficients  𝛼𝑖𝑗 ∈ ℂ  and 𝛾𝑖𝑗 ∈ ℂ             have the following 

symmetries, 

𝛼𝑖𝑗 = 𝛼𝑗𝑖
∗  ,   𝛾𝑖𝑗 = ∓𝑌𝑖𝑗                                                                                     (3.5) 

Where 𝛼∗denotes the complex conjugate of 𝛼. Throughout this thesis, the complex field   

ℂ  will be used as the base field of the Hamiltonian H. 
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Using the form of matrix, Eq.(3.1) can be written as 

𝐻 =
1

2
𝜓ϯ𝑀𝜓 ±

1

2
𝑡𝑟(𝛼),                                                                                            (3.6) 

Where tr(𝛼) denotes the trace of the matrix A. The  𝜓  is a column vector and  𝜓ϯ  its 

Hermitian conjugate, M is coefficient matrix, 

 

𝜓 = [
𝑐

𝑐ϯ̃] , 𝜓ϯ = [𝑐ϯ, �̌�],                                                                                          (3.7) 

where   c and  𝑐ϯ  are the subvectors of size n, 

𝑐 = [

𝑐1

𝑐2

⋮
𝑐𝑛

] , 𝑐ϯ = (𝑐1
ϯ
, 𝑐2

ϯ
, … … . , 𝑐𝑛

ϯ
.                                                                             (3.8)  

Here  �̃� denotes the transpose of the matrix A. The coefficient matrix M has the form 

  𝑀 = [
𝛼 𝛾

𝛾ϯ ∓�̌�
]                                                         (3.9) 

here ∝ and  γ are the submatrices with ∝𝑖𝑗  and 𝛾𝑖𝑗   as their entries, respectively, 

 ∝ϯ=∝, 𝛾 = ∓𝛾, 𝑀ϯ = 𝑀                                                                            (3.10) 

That is to say, ∝ and M   are both Hermitian matrices whereas γ   is a symmetric matrix, 

which is determined by whether the system is bosonic or fermionic. Besides, the matrices  

∝  and  γ  will not vanish simultaneously; otherwise, the Hamiltonian H is zero. 

Defining a new product between the two operators    𝑐𝑖(𝑜𝑟 𝑐𝑖
ϯ
) and  𝑐𝑗(𝑜𝑟 𝑐𝑗

ϯ
)      as 

 𝑐𝑖. 𝑐𝑗 = [𝑐𝑖, 𝑐𝑗],                                                                                              (3.11) 

then Eqs. (3.2) - (3.4) can be expressed compactly as 
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 𝜓. 𝜓ϯ = 𝐼 ±,                                                                                                 (3.12) 

where 

𝐼±= [
𝐼 0
0 ±𝐼

]                                                                                                   

(3.13)                                                                                            

With I being the identity matrix of size n. 

To diagonalize the Hamiltonian of Eqn.(3.6), Bogoliubov and Valatin introduced a linear 

transformation, 

 𝑐 = 𝐴𝑑 + 𝐵𝑑ϯ̌, (3.14) 

where A and B are two square matrices of size n, and d and 𝑑ϯ  are the vector as follows, 

𝑑 = [

𝑑1

𝑑2

⋮
𝑑𝑛

] , 𝑑ϯ = [𝑑1
ϯ
, 𝑑2

ϯ
, … … … 𝑑𝑛

ϯ
].      (3.15) 

Here di and 𝑑𝑗
ϯ
are the new annihilation and creation operators respectively, they satisfy 

the standard commutation or anti-commutation relations as in Eqs. (3.2) - (3.4), which 

means, 

 𝜑. 𝜑ϯ = 𝐼 ± (3.16) 

where 

 𝜑 = [
𝑑

𝑑ϯ̃
] , 𝜑ϯ = (𝑑ϯ, �̃�)                                                                                     

(3.17) 

From Eqs. (3.7), (3.16) and (3.17), it follows that 

 𝜓=T𝜑                                                                                                             

(3.18) 
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where 

 𝑇 = [
𝐴 𝐵
𝐵∗ 𝐴∗].                                                                                              (3.19) 

Here A*denotes the complex conjugate of the matrix A. By the way, it is noted that such a 

form of T originates from the requirement that  c  and 𝑐ϯ   must be Hermitian conjugates 

of each other. For convenience, the operator vector such as  𝜓  and φ shall be called the 

field operator.  

Using the transformation of Eqs. (3.18), the Hamiltonian of Eq.(3.6) becomes 

 𝐻 =
1

2
𝜑ϯ𝑇ϯ𝑀𝑇𝜑 ±

1

2
𝑡𝑟(𝛼)                                                                        (3.20) 

where 𝑇ϯ𝑀𝑇    is the new coefficient matrix. Meanwhile, Eq.(3.12) turns into 

 𝑇𝐼 ± 𝑇ϯ = 𝐼 ±            (3.21) 

where Eqn.(3.16) has been used. Obviously, this is a condition for the transformation of 

Eqn.(3.18). 

For the Hamiltonian H to be diagonalized with respect to the new annihilation and 

creation operators, it is necessary that the new coefficient matrix     𝑇+𝑀𝑇     is diagonal, 

i.e., 

 𝑇ϯ𝑀𝑇 = [
𝜔1 0
0 ⋱ 𝜔2𝑛

]                                                                                     (3.22) 

Where 𝜔𝑖 for i = 1, 2, ……….2n  are the diagonal entries, they are real:  𝜔𝑖 ∈ 𝑅             

Equation (3.22) means that all the off-diagonal entries of the matrix 𝑇ϯ𝑀𝑇  must vanish 

identically. Under this condition, Hamiltonian H becomes 

𝐻 =
1

2
∑(𝜔𝑖 ∓ 𝜔𝑛+1)𝑑𝑖

ϯ
𝑑𝑖 +

1

2
∑ 𝜔𝑛+𝑖 ±

1

2
𝑡𝑟(𝛼)

𝑛

𝑖=1

.

𝑛

𝑖=1

                          (3.23) 

This is the so-called diagonalized form for the Hamiltonian H. 
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To sum up, Eqs. (3.21) and (3.22) are two conditions that must be fulfilled by the 

transformation matrix T. The former ensures the statistics of the system, i.e, the system 

will remain bosonic or fermionic after the transformation if it is bosonic or fermionic 

before the transformation, that is a physical requirement. The latter ensures the 

diagonalization of the Hamiltonian, it is just a mathematical requirement. According to 

Bogoliubov and Valatin, the transformation matrix T can be determined from Eqs. (3.21) 

and (3.22). After the determination of T, the diagonal entries 𝜔𝑖for    𝑖 = 1,2, … … 2𝑛 will 

be obtained, which accomplishes the diagonalization procedure. That is the main idea of 

the Bogoliubov-Valatin transformation. 

As indicated by Eqn.(3.10), the matrix M is Hamiltonian. So it can always be 

diagonalized by a unitary transformation. At first glance, it seems as if the Hamiltonian of 

Eqn.(3.20) could be brought into diagonalization by the same unitary transformation. 

However, a close observation shows that such a unitary transformation can, in general, 

neither take the form of Eqn.(3.19) nor meet the requirement of Eqn.(3.21) although it 

always satisfies the condition of Eqn.(3.22). Therefore the unitary transformation for the 

diagonalization of the coefficient matrix M cannot generally diagonalize the Hamiltonian 

of Eqn.(3.20). That is because both field   𝜓  and the field     φ   are now the vectors of 

operators (quantum numbers) rather than the usual simple vectors of complex variables 

(classic numbers). For the latter, it is well known that a Hermitian quadratic form can 

always be diagonalized by the unitary transformation for the diagonalization of its 

coefficient matrix. In short, the BV diagonalization for a quantum quadratic Hamiltonian 

is much more complicated than the unitary diagonalization for the usual Hermitian 

quadratic form of complex variables. 

Finally analyzing the BV method in more detail, it can easily be seen from Eqn.(3.19) 

that the transformation matrix T has 4𝑛2   independent unknown entries. However, Eqs. 

(3.21) and (3.22) contain 4𝑛2and 4𝑛2 − 2 constraints only T, respectively. That is to say, 

the constraints are much more than the total number of the free unknown entries of T. 

Therefore, there are two possibilities: (1) Those constraints are consistent with the 

requirement of T, and thus T has solutions. (2) The constraints are inconsistent with the 

requirement of T has no solution. Theoretically, it is very difficult to judge which case 
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will happen because, as indicated by Eqs. (3.21) and (3.22), the constraints constitute  

8𝑛2 − 2 coupled quadratic equations for  4𝑛2   free unknowns. Furthermore, it will still 

be hard to solve for the multiple unknowns from the multiple equations of second degree 

even if there exist solutions for the matrix T. Mathematically, these difficulties arise from 

the well-known fact that there is no much knowledge about the multiple equations of 

second degree with multiple unknowns at present. In practice, one often has to rely on 

experience and tricks when one uses the BV method to resolve practical problems.  

To overcome those difficulties, developing a new theory for BV transformation. It is 

expected that this theory can not only judge straightforwardly whether a quantum 

quadratic Hamiltonian is BV diagonalizable but also yield the required transformation by 

a simple procedure if the  Hamiltonian is BV diagonalizable. 

3.1.2: Equation of motion 

As shown in the preceding subsection, the diagonalization scheme adopted by 

Bogoliubov and Valatin is merely algebraic. That is to say, the scheme treats the 

diagonalization just as a pure algebraic problem, it does not consider the physics in 

diagonalization at all. It could be complemented with physical contents so as to find the 

necessary and sufficient conditions for the diagonalization of a quantum quadratic 

Hamiltonian. Simply speaking, it is taken into account the equation of motion of the 

system. i.e., the Heisenberg equation. 

To make the idea more explicit, consider the classical system of harmonic oscillators-the 

counterpart of the Bose system with quadratic Hamiltonian (Goldstein, 1980), 

𝐻 =
1

2
∑ 𝐾𝑖𝑗𝑝𝑖𝑝𝑗 +

1

2
∑ 𝑉𝑖𝑗𝑞𝑖𝑞𝑗

𝑛

𝑖,𝑗=1

, =
1

2
𝑝𝐾𝑝 +

1

2
�̃�𝑉𝑞                                (3.24)

𝑛

𝑖,𝑗=1

 

Where 𝑞𝑖    and  𝑝𝑖(𝑖 = 1, 2, … … … … , 𝑛))    are, respectively, the generalized coordinates 

and conjugate momenta, with q and p being the corresponding column vectors, 
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𝑞 = [

𝑞1
𝑞2

⋮
𝑞𝑛

] , 𝑝 = [

𝑝1
𝑝2

⋮
𝑝𝑛

].                                                                                           (3.25) 

The K and V are the kinetic and potential energy matrices with Kij and Vij as their entries, 

respectively. They are both real and symmetric, 

 �̃� = 𝐾 > 0,                                                                                                 (3.26) 

 �̃� = 𝑉 ≥ 0.                                                                                                   (3.27) 

It is worthy to emphasize that K is a positive definite matrix, that is because the kinetic 

energy is always positive definite. In addition the matrix V is only positive semi definite, 

the bottom of potential being chosen as zero. 

As is well known, qi and pi (i=1,2,…,n) satisfy the following canonical relations, 

{𝑞𝑖, 𝑞𝑗} = 0,                                                                                                   (3.28) 

{𝑝𝑖, 𝑝𝑗} = 0                                                                                                   (3.29) 

{𝑞𝑖, 𝑝𝑗} = 𝛿𝑖𝑗 ,                                                                                                (3.30) 

Or equivalently, 

𝑞. �̃� = 0,                                                                                                         (3.31) 

𝑝. 𝑝 = 0,                                                                                                         (3.32) 

 𝑞. 𝑝 = 𝐼                                                                                                          (3.33) 

Where {a,b} denotes the Poisson bracket of a and b, and a.b={a,b}. 

Of course, the Bogoliubov-Valatin scheme can be transplanted directly to diagonalize the 

classical quadratic Hamiltonian of Eqn.(3.24) with respect to the new generalized 



 

87 
 

 

 

coordinates and momentum .However, it would be more convenient here to turn to 

another way-the canonical equation of motion. 

The canonical equation of motion can be deduced from the Hamiltonian of Eq.(3.24) and 

the Poisson brackets of Eqs.(3.28)-(3.30) as follows, 

𝑑

𝑑𝑡
𝑞 = {𝑞, 𝐻} = 𝐾𝑝,                                                                                          

(3.34) 

𝑑

𝑑𝑡
𝑞 = {𝑝, 𝐻} = −𝑉𝑝.                                                                                     (3.35) 

Where t  denotes the time. As a result,  

𝑑2

𝑑𝑡2q = -KVq                                                                                                   (3.36) 

That is a homogeneous system of linear ordinary differential equations with constant 

coefficients. 

From the theory of ordinary differential equations (Walter, 1998), it is known that the 

solution of homogeneous linear system depends on the eigen value problem, 

𝜔2q = KVq.                  (3.37) 

This eigen value problem can be solved rigorously with the help of the Cholesky 

decomposition of K, 

K = 𝑄�̃�               (3.38) 

Where Q is an invertible matrix. The existence of such a decomposition stems 

mathematically from the positivity of K (Strang, 2005). By introducing a temporal 

variable ξ, 

𝜉 = 𝑄−1𝑞                                                                                                                 (3.39) 

Eqn.(3.37) can be transformed into  
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𝜔2𝜉 =∧ 𝜉,                                                                                                            (3.40)    

 where  

∧= �̃�𝑉𝑄 =∧̃≥ 0.                                                                                                            

(3.41) 

Just as V, the matrix   ∧   is still real, symmetric, and non –negative definite. So it can be 

orthogonally diagonalized,  

�̃� ∧ 𝑆 = Г,                                                                                                                   (3.42) 

where  

�̃�𝑆 = 𝑆�̃� = 𝐼                                                                                                               (3.43) 

Г = [
𝜔1 0

0 ⋱ 𝜔𝑛
2]                                                                                                         (3.44) 

Here 𝜔𝑖
2≥0 (i=1, 2 . . . n) are the eigen values of  Λ, and S the orthogonal matrix with the 

eigenvectors of Λ as its column vectors. 

From Eqs. (3.38), (3.41), (3.42), and (3.43), it follows that 

𝑇−1𝐾𝑉𝑇 = Г,                                                                                                            (3.45) 

where 

T=QS.                                                                                                                     (3.46) 

If I put 

𝑇 = [𝑣1, 𝑣2, ….  , 𝑣𝑛],                                                                                               (3.47) 

where   𝑣𝑖  (i= 1, 2,. . . ,n ) denotes the column vectors of T. Equation (3.45) shows that 𝑣𝑖   

are the eigenvectors of the matrix KV , 
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𝜔𝑖
2𝑣𝑖 = 𝐾𝑉𝑣𝑖,                                                                                                                  

(3.48) 

belonging to the eigen values   𝜔𝑖
2,  respectively. In other words, they are the solutions of 

the eigen value problem of Eqn.(3.37). Evidently, they are orthonormal and complete, 

�̃�𝐺𝑇 = 𝐼,                                                                                                                                     (3.49) 

𝑇�̃�𝐺 = 𝐼,                                                                                                                      (3.50) 

where G = K
-1

. Namely, they constitute a n-dimensional Hilbert space with G as its 

metric tensor.  

Just as usual, the general solution of Eqn.(3.36) can be expanded in this Hilbert space as 

𝑞(𝑡) = ∑ 𝜓𝑖(𝑡)𝑣𝑖

𝑛

𝑖=1

                                                                                                 (3.51) 

where 𝜓𝑖(t) (i= 1, 2, ….,n) are the expanding coefficients. But, not as usual, it does not 

matter here how to determine those coefficients from the initial conditions. Instead, it is 

preferable to view this expansion as a linear transformation,  

q(t)=T 𝜓(𝑡)                                                                                                           (3.52) 

where 𝜓(t) is the column vector, 

 𝜓(𝑡)=[

𝜓1(𝑡)

𝜓2(𝑡)
⋮

𝜓𝑛(𝑡)

].                                                                      (3.53) 

As will be seen later, this view is crucial for the diagonalization of the Hamiltonian. 

Since T has full rank, the transformation is inevitable. The inverse is 

 𝜓(𝑡) = T-1
q(t).                                                                  

(3.54) 
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Physically, 𝜓(𝑡) represents the new generalized coordinates, and q(t) the old ones. 

The corresponding transformation for the generalized momenta can be deduced from 

Eqn.(3.33). As is well known, a Poisson bracket is a bilinear function of its two 

arguments. This together with Eqn.(3.33) indicates that there exists a duality relationship 

between p(t) and q(t) (Roman, 1998). This duality implies that p(t) will transform 

contravariantly with q(t), i.e., 

 𝜋(𝑡)=�̃�p(t)                                                                          (3.55) 

where 𝜋(t) represents the new generalized momenta. 

Under the transformation of Eqs. (3.54) and (3.55), the Hamiltonian of the system 

becomes as follows, 

H=
1

2
�̃�π + 

1

2
�̃�Г𝜓 =

1

2
∑ (𝜋𝑖

2 + 𝜔𝑖
2𝜓𝑖

2),                                                                              (3.56)𝑛
𝑖=1  

where  

 𝜓. �̃� = 0,         (3.57) 

 𝜋. �̃� = 0,            (3.58) 

 𝜓. �̃� = 𝐼.          (3.59) 

They are identical to the system of Eqn.(3.24) and Eqs. (3.31)-(3.33), with the 

Hamiltonian being diagonalized with respect to the new generalized coordinates and 

momenta 

3.1.3: Bogoliubov-Valatin Transformations 

After Schrieffer conceived of the BCS wave function on a New York subway, upon 

getting back to the University of Illinois at Urban-Champaign (where he was a graduate 

student with John Bardeen), the three BCS principals –Schrieffer, Cooper, and Bardeen –

worked out the thermodynamic properties of their model shortly (11 days!) and saw that 

their theory agreed reasonable well with experiments (Dirac, 1958). It turns out however 

that the variational treatment that was introduced in (the approach used by BCS 
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(Bogoliubov, 1947)) is not very convenient for doing calculations. A much powerful 

technique, readily extensible to nonzero temperature for instance, was developed 

independently by (Bogoliubov  & Valatin, 1958). Central to this scheme are the 

Bogoliubov-valatin transformations that is discussed below.  

The essential idea underlying the Bogoliubov-Valatin approach is to approximate the 

BCS Hamiltonian 

𝜅 = 𝐻 − 𝜇𝑁 = ∑ 𝜉𝑘�̂�𝑘𝜎
† �̂�𝑘𝜎 + ∑ 𝑉𝑘,𝑘′�̂�𝑘↑

† �̂�−𝑘↓
†

𝑘,𝑘′

�̂�−𝑘↓�̂�𝑘′↑

𝑘𝜎

                            (3.60) 

discussed by some quadratic form (the above Hamiltonian is quadratic in Fermi 

operators) and diagonalize the resulting expression. This of course is a very standard 

scheme in modern CMP. The usefulness of this approach is that a quadratic Hamiltonian 

can always be solved exactly, describing a non interacting gas of quasiparticles. The 

quasiparticles are the particles which arise after the Bogoliubov-Valatin transformation is 

applied to the approximate quadratic Hamiltonian. 

In general it’s not possible to approximate a Hamiltonian with interactions (quadratic in 

Fermi operators) by some quadratic expression. Fortunately, one time when it is usually 

possible to make such an approximation is when the system under consideration is in an 

ordered phase such as a superconductor. In this case, the expectation value of some 

combination of operators represents the order parameter. Assuming that there is a 

significant occupation of the ordered state (of the order of the total particle number), one 

can replace some of the operators appearing in the Hamiltonian by their expectation value 

(i.e., the order parameter).  

To see how this works, recall that the operator(u(k)/v(k)�̂�𝑘↑
† �̂�−𝑘↓

†
creates a Cooper pair. 

Since there are a macroscopic number of Cooper pairs, the expectation value 𝑏𝑘 (it is 

assumed  for simplicity that the order parameter is real) 

〈�̂�𝑘↑
† �̂�−𝑘↓

† 〉 = 〈�̂�−𝑘↓�̂�𝑘↑〉 ≡ 𝑏𝑘                                                                                                  (3.61) 
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  is nonzero. You can check this by evaluating this expectation value using the BCS wave 

function; you will find    𝑏𝑘 = 𝑢𝑘𝑣𝑘  .  Making a mean-field approximation by assuming 

that the fluctuations past this value are small, which is done by substituting  

�̂�−𝑘↓�̂�𝑘↑ = 𝑏𝑘 + 𝛿�̂�𝑘; 𝑤ℎ𝑒𝑟𝑒 𝛿�̂�𝑘 ≡ �̂�−𝑘↓�̂�𝑘↑ − 𝑏𝑘                                                        

(3.62) 

into the Hamiltonian (3.60) and retain only terms linear in the fluctuation   𝛿�̂�   . This 

gives 

𝜅 = ∑ 𝜉𝑘�̂�𝑘𝜎
† �̂�𝑘𝜎 + ∑ 𝑉𝑘,𝑘′

𝑘,𝑘′

[𝑏𝑘�̂�−𝑘′↓�̂�𝑘′↑ + 𝑏𝑘′�̂�𝑘↑
† �̂�−𝑘↓

† − 𝑏𝑘𝑏𝑘′] + ℴ(𝛿𝑏2)

𝑘𝜎

       (3.63) 

Equation (3.63) confirms that neglecting fluctuation contributions past first order, yields 

a Hamiltonian which is quadratic in Fermi operators and hence which can be 

diagonalized by some judicious choice of transformation. This is not just a mathematical 

trick however! The transformation will reveal the physical excitation of a superconductor 

and allow me to calculate thermodynamic properties in terms of this excitation. First, 

“defining” the quantity  

∆𝑘≡ − ∑ 𝑉𝑘,𝑘′𝑏𝑘′

𝑘′

                                                                                               (3.64) 

Indeed, using 𝑏𝑘 = 𝑢𝑘𝑣𝑘   these equations are in fact the same. Using eq.(3.64) in 

eq.(3.63), the latter becomes  

𝜅 = ∑ 𝜉𝑘�̂�𝑘𝜎
† �̂�𝑘𝜎 − ∑[∆𝑘�̂�−𝑘′↓�̂�𝑘′↑ + ∆𝑘�̂�𝑘↑

† �̂�−𝑘↓
† − ∆𝑘𝑏𝑘′]                           (3.65)

𝑘𝑘𝜎

 

Equation (3.65) is diagonalized by  

�̂�𝑘↑ = 𝑢𝑘𝛾𝑘0 + 𝑣𝑘𝛾𝑘1
†

  

�̂�−𝑘↓
† = −𝑣𝑘𝛾𝑘0 + 𝑢𝑘𝛾𝑘1

†                                                                                                     (3.66) 
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Here,  𝑢𝑘  and  𝑣𝑘  are the same Bogoliubov-coherence factors that arose in the 

minimization of the BCS free energy, although for the moment, assuming that it is not 

known and instead derive their form by the requirement that they diagonalize eq.(3.65). 

To show this, one first derives the appropriate anti-commutation relations for the new 

operators   𝛾0  and 𝛾1. Assuming the normalization condition 𝑢𝑘
2 + 𝑣𝑘

2 = 1, the 

Bogoliubov-Valatin transformation eq.(3.66) can be inverted: 

𝛾𝑘0 = 𝑢𝑘�̂�𝑘↑ − 𝑣𝑘�̂�−𝑘↓
†

  

𝛾𝑘′
† = +𝑣𝑘�̂�𝑘↑ + 𝑢𝑘�̂�−𝑘↓

†                                                                                                (3.67)  

Using this in conjunction with the usual Fermi anti-commutation relations {�̂�𝑘𝜎,
† �̂�𝑘′𝜎′

† } =

𝛿𝑘,𝑘′𝛿𝜎,𝜎′   and {�̂�𝑘𝜎
† , �̂�𝑘′𝜎′

† } = {�̂�𝑘𝜎, �̂�𝑘′𝜎′} = 0, one finds that the  𝛾0  and 𝛾1 operators 

also obey Fermi anti-communication relations  

{𝛾𝑘𝑖, 𝛾𝑘′𝑗
† } = 𝛿𝑘,𝑘′𝛿𝑖,𝑗;  {𝛾𝑘𝑖

† , 𝛾𝑘′𝑗
† } = 0  (3.68) 

Inserting eq.(3.66) into eq.(3.65) and making use of the commutation relations eq.(3.68), 

the BCS Hamiltonian becomes  

K = ∑ 𝜉𝑘[(𝑢𝑘
2 − 𝑣𝑘

2)(�̂�𝑘0
† 𝛾𝑘0 + 𝛾𝑘0

† 𝛾𝑘1) + 2𝑣𝑘
2 + 2𝑢𝑘𝑣𝑘(𝛾𝑘1�̂�𝑘0 + 𝛾𝑘0

† 𝛾𝑘1
† ]𝑘  

+ ∑ [2∆𝑘𝑢𝑘𝑣𝑘(𝛾𝑘0
† 𝛾𝑘0 + 𝛾𝑘1

† 𝛾𝑘1 − 1) + ∆𝑘((𝑣𝑘
2 − 𝑢𝑘

2)(𝛾𝑘1�̂�𝑘0 + 𝛾𝑘0
† 𝛾𝑘1

† ) + ∆𝑘𝑏𝑘]𝑘  (3.69) 

To be useful, the Bogoliubov-Valatin transformation has to diagonalize this expression, 

by which it is meant that there are no cross terms of the form e.g.𝛾𝑘1�̂�𝑘0. By inspection, 

one sees that such terms will vanish from eq.(3.69) if  

2𝜉𝑘𝑢𝑘𝑣𝑘 + Δ𝑘((𝑣𝑘
2 − 𝑢𝑘

2) = 0                                                                                         (3.70) 

This expression is indeed solved if 𝑢𝑘 and 𝑣𝑘 are the Bogoliubov coherence factors: 

𝑢𝑘
2 =

1

2
(1 +

𝜉𝑘

𝐸𝑘
) , 𝑣𝑘

2 =
1

2
(1 −

𝜉𝑘

𝐸𝑘
)                                                                                (3.71) 

The remaining diagonal terms in the BCS Hamiltonian become 
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K = ∑ Ε𝑘(�̂�𝑘0
† �̂�𝑘0 + 𝛾𝑘1

† 𝛾𝑘1) + ∑(𝜉𝑘 − Ε𝑘 + Δ𝑘𝑏𝑘)

𝑘𝑘

                                              (3.72) 

Now, there is a very transparent expression with which to understand things! First off, 𝛾0
†
 

and    𝛾1
†
 create excitations with energy  

𝐸𝑘 = √𝜉𝑘
2 + Δ𝑘

2                                                                                                                    (3.73) 

i.e., the excitation spectrum is at least partially gapped as it was known to be the case 

from specific heat measurements. At the Fermi surface,𝜉𝑘 = 0, and the dispersion 

𝐸𝑘=𝑘𝐹
= |Δ𝑘=𝑘𝐹

| no longer vanishes. The value of the gap can be determined self-

consistently from eq.(3.61), (3.64), and (.372). Using the Bogoliubov-Valatin 

transformations eqn.(3.66), 𝑏𝑘  can be written (as defined in eqn. (3.61) in terms of the 

new quasiparticle operators as (remember that off-diagonal terms such as 〈𝛾0𝛾1〉 are 

exactly zero) 

𝑏𝑘 = 〈�̂�−𝑘↓�̂�𝑘↑〉 = −𝑢𝑘𝑣𝑘[〈𝛾𝑘0
† 𝛾𝑘0〉 − 〈𝛾𝑘1

† 𝛾𝑘1〉] = −𝑢𝑘𝑣𝑘[〈𝛾𝑘0
† �̂�𝑘0〉 + 〈𝛾𝑘1

† 𝛾𝑘1〉 −

1]                                                                                                                                                    (3.74) 

Substituting this into (3.64), the “gap equation” (which is now finally understood as an 

equation for the gap) becomes  

∆𝑘≡ − ∑ 𝑉𝑘,𝑘′𝑢𝑘′

𝑘

𝑣𝑘[1 − 𝑓𝑘′0 − 𝑓𝑘′1].                                                                        (3.75) 

Here, denoting the expectation values 〈𝛾𝑘𝑖
† 𝛾𝑘𝑖〉 by 𝑓𝑘𝑖. Since both types of quasiparticle 

operators generate excitation of energy 𝐸𝑘 and since the Hamiltonian eq.(3.72) describes 

an ideal gas of such quasiparticles, these expectation values will just be equal to the 

Fermi function  

𝑓𝑘0 = 𝑓𝑘1 = 𝑓(𝐸𝑘) = (𝑒𝛽𝐸𝑘 + 1)
−1

                                                                                   (3.76) 



 

95 
 

 

 

Using this in eq.(3.75) as well as the identity 𝑢𝑘𝑣𝑘 = ∆𝑘 2𝐸𝑘,⁄   the gap equation reduces 

to 

∆𝑘≡ − ∑ 𝑉𝑘,𝑘′

𝑘′

∆𝑘′

2𝐸𝑘′
[1 − 2𝑓(𝐸𝑘′)]                                                                     (3.77) 

In principle, this equation can be solved for all types of interaction  𝑉𝑘,𝑘′     and at all 

temperatures below   Tc   yielding temperature-dependent gaps ∆𝑘(𝑇) with e.g.,    s- and 

d-         wave symmetries (p-wave symmetry is disallowed for spin-singlet pairing which 

has been only considered so far). For our purposes and following BCS, it suffices to use 

the simple attractive interaction that is considered in the solution of the Cooper pairing 

problem: 

𝑉𝑘,𝑘′ = −𝑉; for |𝜉𝑘| < ℏ𝜔𝐷 𝑎𝑛𝑑|𝜉𝑘′| < ℏ𝜔𝐷                                                         (3.78) 

This is an isotropic interaction, independent of momentum, and hence the gap ∆𝑘= ∆ 

is  well known. Using these in eq.(3.77) and making the approximations, the gap equation 

reduces at T= 0 to 

 

1

𝑁(0)𝑉
= ∫ 𝑑𝜉

ℏ𝜔𝐷

0

1

√𝜉2 + Δ2
= 𝑠𝑖𝑛ℎ−1 (

ℏ𝜔𝐷

Δ
)                                                          (3.79) 

Thus, 

Δ(𝑇 = 0) =
ℏ𝜔𝐷

sinh (1/𝑁(0)𝑉)
≃ 2ℏ𝜔𝐷𝑒

−
1

𝑁(0)𝑉                                                             (3.80) 

where in the final quasi-equality, it is again assumed weak-coupling :𝑁(0)𝑉 ≪ 1. 

Comparing with the binding energy found by Cooper, it is seen that the two quantities 

−∆ 𝑎𝑛𝑑 𝐸 − are essentially equivalent, meaning that you think of ∆  (at least for s-wave 

interactions) as being the energy of the Cooper pairs. 

The gap equation is also used to solve for the critical temperature Tc at which the Cooper 

pairs form and Bose-condense. Given that ∆ is essentially a binding energy, it won’t 
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come as a surprise that  𝑘𝐵𝑇𝑐 ∼ ∆, meaning that the transition temperature is the 

temperature above which the Cooper pairs become disassociated, which is true for weak 

interactions. As interactions become stronger, the binding energy of the Cooper pairs 

becomes large and the temperature scale at which they de-pair can become larger than the 

temperature at which they undergo Bose-Einstein condensation. At any rate , Tc is more 

or less the lesser of the two temperatures.   

3.1.4: Diagonalization Theory of Fermi Systems 

Consider the existence and the uniqueness of the BV diagonalization for the Fermi 

system. 

The Heisenberg equation for the fermionic field  can be derived from Eqn.(3.1), 

𝒾
𝑑

𝑑𝑡
 = 𝐷    (3.81) 

Where D is the dynamic matrix for the Fermi system, given by 𝐷 = 𝒾
𝑑

𝑑𝑡
 

𝐷 = [ 
𝜶

−𝜸+ 

𝜸

−�̃�
 ]                                                                                                                    (3.82) 

In contrast to the Bose system where the dynamic matrix is distinct from the coefficient 

matrix D is now identical to the coefficient matrix M, 

𝑀 = ( 𝜶
𝜸†

𝜸
−�̃�

 )                                                 (3.83) 

This demonstrates that the coefficient matrix M will control the dynamic behavior of the 

system, just as the dynamic matrix D. That is the radical difference between the Fermi 

and Bose systems. For the latter, as it is known, the coefficient matrix does not control 

the dynamic behavior of the system. Now that D=M is Hermitical, D is Hermitical, too. 

That is another feature of Fermi system, which will create much convenience. 

From Eqn.(3.82) and (3.83), since the dynamic matrix D and coefficient matrix M have 

the relation D=I-M, the relation between dynamic matrix D and coefficient matrix M can 

be formally written as; 
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𝐷 =  Ι + 𝑀                                                            (3.84) 

This relation is useful in the diagonalization of the Fermi system. 

As before, consider the eigen value problem, 

𝜔𝜓 = 𝐷𝜓                                                                                   

(3.85) 

For a quadratic Hamiltonian of fermions, its dynamic matrix is always BV 

diagonalizable. 

As mentioned above, the dynamic matrix for a Fermi system is Hermitian matrix and it is 

diagonalizable, and all its Eigen values are real. Therefore, the dynamic matrix for a 

Fermi system is always BV diagonalizable. This property is basically different from the 

Bose system. Therefore, the dynamic matrix is not always diagnosable. Needless to say, 

it is not always BV diagnosable. 

As D = M and both are Hermitian, they can be diagonalized by an exactly identical 

unitary transformation. Mathematically, a unitary transformation is always a similar 

transformation; the diagonalization manner of D is not inharmonious with that of M  any 

longer. The problem present in the Bose system disappears spontaneously in the Fermi 

system.  

Analogous to the Bose system, one can easily show that the lemmas and the same laws 

are all valid for the Fermi system. Since the dynamic matrix is always BV diagnosable 

now, the necessary condition for the BV diagonalization will hold automatically for a 

Fermi system. That guarantees further that all those laws which stem from Hermiticity of 

the Hamiltonian also hold for the fermion system, irrespective of the statistics and metric 

of the system. 

The eigenspace V0 of zero eigen value is even dimensional, let the dimension of 2m 

(m∈ ℕ), there always exists a basis for V0 that satisfies the requirement of Eqn.(3.86), 

i.e., 
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𝑉𝑚+𝑙(0) = ∑ 𝑣𝑙
∗(0),

𝑥
𝑙 = 1, 2, … , 𝑚,                                                                 (3.86) 

When m = 1, dim(𝑉0)=2, there are two basis vectors, i.e., 𝑣1(0)𝑎𝑛𝑑 𝑣2(0), they are 

linearly independent. First of all, making 𝑣1(0) normalized, 

𝑣𝐼
†(0)𝐼+𝑣2(0) = 1                                                                                                (3.87) 

And then consider 𝒗𝟐(𝟎). In fact, it is also normalized, 

𝑣2
†(0)𝐼+𝑣2(0) = 1                                                                                                  (3.88) 

that is because 

𝑣2(0) = ∑ 𝑣1
∗(0).                                                                                            (3.89)

𝑥
 

There are two possible cases for 𝑣2(0): (1) It is orthogonal to 𝑣1(0).  (2) It is not 

orthogonal to 𝑣1(0). 

If 𝑣2(0) ⊥ 𝑣1(0),  i.e., 

𝑣𝐼
†(0)𝐼+𝑣2(0) = 0,                                                                                      (3.90) 

yields 

𝑣𝐼
†(0)𝐼+𝑣1(0) = 1,                                                                                          (3.91) 

𝑣2
†(0)𝐼+𝑣2(0) = 1,                                                                                        (3.92) 

𝑣𝐼
†(0)𝐼+𝑣2(0) = 0.                                                                                         (3.93) 

and 

𝑣2(0) = ∑ 𝑣1
∗(0),                                                                                          (3.94)

𝑥
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So the basis {𝑣1(0), 𝑣2(0)}  is itself orthonormal and satisfies the requirement of 

Eqn.(3.86). In other words, the relation holds if 𝑣2(0) ⊥ 𝑣1(0). 

If 𝑣2(0) is not orthogonal to  𝑣1(0),      i.e., 

𝑣1
†(0)𝐼+𝑣2(0) ≠ 0,                                                                                              (3.95) 

Introducing two vectors 𝜔1(0)𝑎𝑛𝑑 𝜔2(0)  as follows, 

𝜔1(0) = 𝑎𝑣1(0) + 𝑏𝑣2(0)                                                                                      (3.96) 

𝜔2(0) = ∑ 𝜔1
∗(0).                                                                                                  (3.97)

𝑥
 

Here 𝑎 𝜖 ℂ 𝑎𝑛𝑑 𝑏 𝜖 ℂ  are two coefficients, they will be determined by the orthonormal 

conditions, 

𝜔1
†(0)𝐼+𝜔1(0) = 1,                                                                                (3.98) 

𝜔1
†(0)𝐼+𝜔2(0) = 0                                                                                  (3.99) 

Equations (3.96) and (3.97) show that both 𝜔1(0) and 𝜔2(0)  are linier combinations of 

𝑣1(0)  and 𝑣2(0). Consequently,  𝜔1(0)  and  𝜔2(0) are also the eigenvectors of zero 

eigenvalue of zero eigenvalue, i.e., 𝜔1(0) ∈ V0  𝑎𝑛𝑑 𝜔2(0) ∈ 𝑉0. 

Observe 

𝑣1
†(0)𝐼+𝑣2(0) = [�̃�1(0)𝐼+ ∑ 𝑣1(0)

𝑥
]

∗

                                                        (3.100) 

 Adjusting the phase of 𝒗𝟏(𝟎) anew so that 

𝑣1
†(0)𝐼+𝑣2(0) > 0.                                                                                                   (3.101) 

By use of Cauchy inequality, yields 
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𝑣1
†(0)𝐼+𝑣2(0) < √𝑣1

†(0)𝐼+𝑣1(0)√𝑣2
+(0)𝐼+𝑣2(0)                                       (3.102) 

Where it has been used the fact that 𝒗𝟏(𝟎) and 𝒗𝟐(𝟎)   are linearly independent. Since  

√𝑣1
†(0)𝐼+𝑣1(0)√𝑣2

†(0)𝐼+𝑣2(0) = 1                                                                     (3.103) 

yields 

𝑣1
†(0)𝐼+𝑣2(0) < 1                                                                                                    (3.104). 

In brief, it always yields 

                0<𝑣1
†(0)𝐼+𝑣2(0) < 1,                                                                                    (3.105) 

when 𝑣2(0) is not orthogonal to 𝑣1(0) 

Under such choice, Eqns. (3.98) and (3.99) become 

𝑎∗𝑎 + 𝑏∗𝑏 + (𝑎∗𝑏 + 𝑏∗𝑎)𝑣1
†(0)𝐼+𝑣2(0) = 1,                                    (3.106) 

(𝑎∗𝑎∗ + 𝑏∗𝑏∗)𝑣1
†(0)𝐼+𝑣2(0) + 2𝑎∗𝑏∗ = 0,                                       (3.107) 

It can be readily confirmed that there exists at least the following real solution for the 

coefficients a and b, 

𝑎 =
1

2√1 + 𝑣1
†(0)𝐼+𝑣2(0)

+
1

2√1 − 𝑣1
†(0)𝐼+𝑣2(0)

                                          (3.108) 

𝑏 =
1

2√1 + 𝑣1
†(0)𝐼+𝑣2(0)

+
1

2√1 − 𝑣1
†(0)𝐼+𝑣2(0)

                                         (3.109) 

With this solution, yields 
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𝜔1
†(0)𝐼+𝜔1(0) = 1,                                                                                                     (3.110) 

𝜔2
†(0)𝐼+𝜔2(0) = 1,                                                                                              (3.111) 

𝜔1
†(0)𝐼+𝜔2(0) = 0,                                                                                             (3.112) 

𝜔2(0) = ∑ 𝜔1
∗(0).                                                                                           (3.113)

𝑥
 

That is to say, the set {𝜔1(0), 𝜔2(0)}  will form an orthonormal basis for 𝑉0 , and satisfy 

the requirement of Eqn. (3.86). This implies that the same law also holds if 𝑉2(0)  is not 

orthogonal to 𝑉1(0) 

To sum up, the law holds when  𝑚 = 1 

Suppose that the law holds when 𝑚 = 𝑙 (𝑙 ∈ ℕ. Considering then the case where 

𝑚 = 𝑙 + 1. Obviously, it has a proper subspace ω spanned by the linearly independent set 

{𝑣1(0), 𝑣𝑙+2(0)}, i.e., 

𝜔 = 𝑠𝑝𝑎𝑛(𝑣1(0), 𝑣𝑙+2(0))                                                                                    (3.114) 

Taking notice of 

𝑣𝑙+2(0) = ∑ 𝑣1
∗(0);                                                                                                      (3.115)

𝑥
 

and following the same arguments as those for the case of m =1, it can yield an 

orthogonal basis for ω, 

𝑣𝑖
†(0)𝐼−𝑣𝑗

(0) = −𝜆𝑖𝛿𝑖𝑗,                                                                                         (3.116) 

where 𝜆𝑖 = ±1 𝑎𝑛𝑑 𝑖, 𝑗 = 1, 𝑙 + 2. It is evident that this basis satisfies the requirement of 

Eqn. (3.86). 
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The rest steps of mathematical induction are simply similar to those for the Bose case. 

The convention of Eqn. (3.86) can be kept by the modified Gram-Schmidt 

orthogonalization process 

The law still holds for the Fermi system, with 𝜆𝑖 = 1 𝑓𝑜𝑟 𝑖 = 1,2, … . . ,2𝑛 

Since all the eigenvectors are normalized to +1 now, one cannot use the sign of the norm 

to stipulate an order within a mode pair. Here, resorting to the sign of the eigen value: the 

first eigen value in a pair of positive, and the second one negative; it is arbitrary if both 

the eigen values in a pair are equal to zero. Under such stipulation, the normal derivative 

BV transformation has the form, 

Ψ=𝑇𝑛𝜑,                                                                                                                                (3.117) 

𝑇𝑛 = [𝑣(𝜔1), 𝑣(𝜔2), … . , 𝑣(𝜔𝑛), 𝑣(−𝜔2), … . , 𝑣(−𝜔𝑛)]                                  (3.118) 

where 

𝜔𝑖 ≥ 0, 𝑖 = 1, 2, … . . , 𝑛.                                                                                     (3.119) 

That is to say, the left half of 𝑇𝑛  is filled with the eigenvectors with non-negative 

eigenvalues; the right half of 𝑇𝑛 is filled with the eigenvectors with non-positive 

eigenvalues. 

With  𝑇𝑛   ordered as above, the law holds for the Fermi case, 

𝑇𝑛
†𝐼+𝑇𝑛 = 𝐼+,                                                                                                               (3.120) 

i.e., 𝑇𝑛 is a member of the U(2n) group (Chen,et.al., 2002). This law asserts that the new 

field is a standard fermionic field, which is modified as follows, 

𝑇𝑛
+𝑀𝑇𝑛 = 𝑑𝑖𝑎𝑔(𝜔1, … … 𝜔𝑛, −𝜔1, … , −𝜔𝑛).                                                      (3.121) 

𝑇𝑛
†𝑀𝑇𝑛 = 𝑇𝑛

†𝐼+𝐷𝑇𝑛 = 𝑇𝑛
†𝐼+𝑇𝑛𝑇𝑛

−1𝐷𝑇𝑛 = 𝑇𝑛
−1𝐷𝑇𝑛,                                            (3.122) 

where 𝑇𝑛
†𝐼+𝑇𝑛 = 𝐼+ has been used. 
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Hence, the diagonalization theorem for the Fermi system, 

which states that any quadratic Hamiltonian of fermions is BV diagonizable. 

Apparently, the diagonalized form for the Hamiltonian is  

𝐻 = ∑ 𝜔𝑖𝑑𝑖
+𝑑𝑖

𝑛

𝑖=1

−
1

2
∑ 𝜔𝑖

𝑛

𝑖=1

+
1

2
𝑡𝑟(𝛼),                                                                (3.123) 

where all the eigen energies are non-negative 

𝜔𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛                                                                                                  (3.124) 

Here it is worth emphasizing that the BV diagonalization for a Fermi system is itself of 

unitary diagonalization, that is because Tn is, in fact, a unitary matrix, 𝑇𝑛
+𝑇𝑛 = 𝐼+ 

All in all, the BV diagonalization for a quadratic Hamiltonian of fermions is much 

simpler than that for a quadratic of Hamiltonian of bosons.   

The normal and pairing Hamiltonians have been considered, since they represent the 

problems which are encountered most frequently in practice. 

3.1.5: The normal Hamiltonian 

The normal Hamiltonian reads 

𝐻 = ∑ ∝𝑖𝑗 𝑐𝑖
†𝑐𝑗

𝑛

𝑖,𝑗=1

                                                                                                              (3.125) 

The normal Hamiltonian of Equation (3.125) can be BV diagonalized by the unitary 

transformation generated by the coefficient matrix ∝, or generally, a normal Hamiltonian 

of fermions can be BV diagonalized by the unitary transformation generated by its 

coefficient matrix. 

That is also because the Heisenberg equation for the Hamiltonian of Eqn.(3.125) is 

reducible. It can be reduced as  
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𝑖
𝑑

𝑑𝑡
𝑐 =∝ 𝑐                                                                                                            (3.126) 

Since ∝ is Hermitian, this equation of motion can generate a unitary transformation U for 

the field c, 

𝑐 = 𝑈𝑑,                                                                                                                             (3.127) 

where 

𝑈†𝑈 = 𝑈𝑈† = 1,                                                                                                          (3.128) 

𝑈† ∝ 𝑈 = 𝑑𝑖𝑎𝑔(𝜔1, 𝜔2, … … . . , 𝜔𝑛)                                                                             (3.129) 

The d represents the new field, it is easy to show that d is a standard fermionic field, 

𝑑. 𝑑† = 𝐼, 𝑑. 𝑑 = 0, 𝑑†. 𝑑†

= 0                                                                                             (3.130) 

Accordingly, 

𝐻 = 𝑑†𝑈† ∝ 𝑈𝑑 = ∑ 𝜔𝑖𝑑𝑖
†𝑑𝑗

𝑛

𝑖=1

                                                                     (3.131) 

Besides a particle-hole transformation will be needed if some eigen energies are negative. 

To sum up, a normal Hamiltonian can be BV diagonalized by the unitary transformation 

generated by its coefficient matrix no matter whether the system is bosonic or fermionic 

as demonstrated below,  

Consider  

𝐻 = 𝜀(𝑐1
†𝑐1 + 𝑐2

†𝑐2) + 𝜇(𝑐1
†𝑐2 + 𝑐2

†𝑐1),                                                              (3.132) 

where μ >0. 

The coefficient matrix is  
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∝= [
𝜀 𝜇
𝜇 𝜀].                                                                                                         (3.133) 

It has two eigen values, 

𝜔1 = 𝜀 + 𝜇, 𝜔2 = 𝜀 − 𝜇                                                                                     (3.134) 

The unitary matrix can be easily found, 

𝑈 = [𝑣(𝜔1), 𝑣(𝜔2)] =
1

√2
[
1 1
1 −1

].                                                                 (3.135) 

1. If 𝜀 ≥ 𝜇, 𝜔1 > 0 𝑎𝑛𝑑 𝜔2 ≥ 0, 

[
𝑐1

𝑐2
] =

1

√2
[
1 1
1 −1

] [
𝑑1

𝑑2
],                                                                                         (3.136) 

𝐻 = 𝜔1𝑑1
†𝑑1 + 𝜔2𝑑2

†𝑑2                                                                                         (3.137) 

2. If −𝜇 ≤ 𝜀 < 𝜇, 𝜔1 ≥ 0 𝑎𝑛𝑑 𝜔2 < 0, 

[
𝑐1

𝑐2
] =

1

√2
[
1 1
1 −1

] [
𝑑1

𝑑2
†],                                                                                           (3.138) 

𝐻 = 𝜔1𝑑1
†𝑑1 − 𝜔2𝑑2

†𝑑2 + 𝜔2                                                                                  (3.139) 

3. If 𝜀 < −𝜇, 𝜔 < 0 𝑎𝑛𝑑 𝜔2 < 0, 

[
𝑐1

𝑐2
] =

1

√2
[
1 1
1 −1

] [
𝑑1

†

𝑑2
†

],                                                                      (3.140) 

 

𝐻 = −𝜔1𝑑1
†𝑑1 − 𝜔2𝑑2

†𝑑2 + 𝜔1 + 𝜔2                                                 (3.141) 

Here, a particle-hole transformation is performed to the d2 −particles if −μ ≤ ε <

𝜇, and both the d1 − and d2 −particles if ε < −𝜇. 
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3.1.6: The pairing Hamiltonian 

The pairing Hamiltonian states 

𝐻 = ∑ (∝𝑖𝑗 𝑎𝑖
†𝑎𝑗 + 𝜀𝑖𝑗𝑏𝑖

†𝑏𝑗 + 𝛾𝑖𝑗𝑎𝑖 𝑏𝑗 + 𝛾𝑗𝑖
∗ 𝑎𝑖

†𝑏𝑗
†)

𝑛

𝑖,𝑗=1

                                 (3.142) 

where 

∝†=∝, 𝜀† = 𝜀, �̃� = −𝛾                                                                (3.143) 

Following the Bose case, introduces the new operators 𝑐𝑖 𝑎𝑛𝑑 𝑐𝑖
†
as 

𝑐𝑖 = 𝑏𝑖
†, 𝑐𝑖

† = 𝑏𝑖, 𝑖 = 1,2, … , 𝑛.                                                          (3.144) 

The new anti-commutators will be  

𝑎. 𝑎† = 𝐼, 𝑎. 𝑎 = 0, 𝑎†. 𝑎† = 0,                                                      (3.145) 

𝑐. 𝑐† = 𝐼, 𝑐. 𝑐 = 0, 𝑐†. 𝑐† = 0,                                                        (3.146) 

𝑎. 𝑐 = 0, 𝑎. 𝑐† = 0, 𝑎†. 𝑐 = 0, 𝑎†. 𝑐† = 0.                              (3.147) 

Obviously, they are still standard, which is rather different from the Bose case. In terms 

of these new operators, Eqn.(3.142) can be expressed as  

𝐻 = 𝜓†𝑀𝜓 + 𝑡𝑟(𝜀),                                                                                                     (3.148) 

where M is the coefficient matrix, 

𝑀 = [
∝ 𝛾

𝛾† −𝜀
],                                                                                                               (3.149) 

and ψ the field operator, 

𝜓 = [
𝑎
𝑐

] , 𝜓† = [𝑎†, 𝑐†].                                                                                       (3.150) 
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It is evident that 

𝑀 = 𝑀†,                                                                                                                                   (3.151) 

𝜓. 𝜓† = 𝐼+,                                                                                                                                     (3.152) 

Namely, M is Hermitian, and ψ is a standard fermionic field. This means that Eqn.(3.148) 

is, in fact, a normal Hamiltonian from which it is established that a pairing Hamiltonian 

of fermions can be first transformed into a normal Hamiltonian, and then BV 

diagonalized by the unitary transformation generated by the corresponding coefficient 

matrix. 

As well known, Eqn.(3.144) represents a particle-hole transformation in Physics. So, and 

hence the pairing Hamiltonian of fermions can be transformed into a normal Hamiltonian 

by a particle-hole transformation. These diagonalization procedures can be used to get 

energy excitation spectrum of any system of particles, bosons or fermions, and in any 

phase, superfluid or crystalline. 

3.2:  Dilute Neutron Gas (low density) 

The theoretical study of dilute quantum gases goes back to 1950’s and 1960’s (Pethick, 

et.al., 1995), but the experimental realization of such systems is a recent phenomenon. 

This has led to considerable insight into the properties of neutron matter.  

At low energies, the effective interaction between two particles is determined by the S-

wave scattering length, a. For two neutrons in the singlet spin state, the scattering length 

is -18.5 fm, which is large in magnitude compared with the range of nuclear 

interactions ≈  1.0𝑓𝑚. For densities much less than 
1

𝑎3
≈ 10

-4 𝑓𝑚-3
(particle number 

density) which in mass density ≈ 10
-4 𝑓𝑚-3 × 1.67× 10−24g ≈  𝜌𝑛

′  =10
-4 ×10

39 ×1.67× 

10
-24

gcm
-3 

= 1.67 × 10
11

gcm
-3 

which is much less than the range of values,  𝜌𝑛, of the 

density of neutron matter in neutron stars. For the neutron matter whose density is of the 

order of 𝜌𝑛
′ , the leading interaction contribution to the properties of the system can be 

calculated, in momentum space, in terms of an effective interaction of the form (Gezerlis, 

et.al., 2015), 
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𝑈 =  
4𝜋ℏ2 𝑎

𝓂
                                                                                                                               (3.153)                    

where m =  mass of the neutron 

This corresponds to a delta function in co-ordinate space (hard-sphere interaction).  

It is well known that the condition for a gas to be dilute is that the inter-particle 

spacing,𝑟𝑠, must be large compared with the magnitude of the scattering length, a, of the 

particles, or since the Fermi wave number,  𝑘𝐹 is proportional to,1 𝑟𝑠⁄ , this condition is 

equivalent to kF |a|≪ 1. 

 

For neutron matter at low density, where the interaction is mainly S-wave, the BCS 

Theory can be used to calculate the energy of the system, the energy gap, and the 

thermodynamic properties such as the specific heat Cv, the entropy, S, and the transition 

temperature 𝑇𝑐 to the superfluid state. 

3.2.1: High Density Neutron Matter 

At higher densities, there are larger uncertainties because additional terms in the neutron-

neutron interaction (three neutron interactions etc.) become increasingly important and 

the increased density complicates the calculations. However, it is also possible that in 

neutron matter, three-neutron interactions may be suppressed because configurations in 

which three-neutrons are close together may be unlikely, since at least two of the 

neutrons must be in the same spin state. Thus when neutrons are very close under high 

pressure and high density, neutron crystallization is certainly possible, and this is what 

has been studied. However, the theories developed are meant for superfluid neutron 

matter, whereas I am studying the properties of crystal neutron matter. Here again the 

Heisenberg’s uncertainty principle and infinite   repulsion between neutrons will be the 

basis for calculating the energy of the system which is a high density system.     

Calculations have been done to get values of (𝐸
𝑁⁄ ) and how it varies with the density, 

𝜌𝑛, of the neutron star when it is in the crystalline state. 
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3.2.2: The Equation of state of nuclear systems in the t- matrix formalism 

There are different types of nuclear systems, for instance, low mass nuclei 

(A≤20),medium mass nuclei(A≤100),heavy mass nuclei(A≥120),symmetric nuclear  

matter (N=Z, number of protons=number of neutrons),asymmetric nuclear matter(N ≠Z 

,and this is the situation in heavy nuclei),neutron matter in which small percentage of 

protons and electrons also exist, and pure neutron matter (like neutron star) 

From time to time, nuclear models were proposed to explain the properties of finite 

nuclei and larger nuclear systems. But no single model could explain the properties of all 

nuclear systems. In the last thirty years density-functional-theory(DFT),rather nuclear 

DFT which is an extension of the self-consistent -mean-field theory, has been used to 

study the ground state properties and low-lying excitation of medium mass and heavy 

nuclei. The procedure is to model the ground state properties of many-body systems by 

DFT, and the total energy E of the system becomes a function of the observable, say Q. 

In each model, the ultimate objective is to calculate the total energy of the system. Just as 

in thermodynamics in which PV=RT is the equation of state, in nuclear physics also, the 

formula for the total energy will be called the equation of state. The total energy is 

composed of kinetic energy and the potential energy. In any system the general form of 

the kinetic energy is the sum of (
𝑝2

2𝑀
) or ∑ 𝜖𝑘𝑎𝑘

†𝑎𝑘𝑘  in terms of second quantization. 

However, the form of potential energy depends on type of interactions that may exist 

between the constituents of the nuclear system. Till a few years ago, pairing interaction 

between the nucleons of a nuclear system was considered to be most important and many 

nuclear theories were developed keeping this in mind. Recent discoveries and the 

properties of pure neutron matter and neutron stars emphatically point out the existence 

of the two-body and other many-body interactions. Such many-body interactions can be 

calculated using the many-body-theory via the t-matrix formalism. Once the total energy 

of the assembly can be calculated taking into account all kinds of nuclear and other 

interactions, I can obtain the equation of state which can be used to study the properties 

of the nuclear system under consideration. 
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3.3: Low Density Neutron Matter 

Low-density neutron-matter can be described by a neutron-neutron potential that is 

central,V(r), i.e., the potential is a function of the inter-particle distance, r, only, and there 

is no angular variation that is, V(|r|) depends on the magnitude of |r|. In such a case, the 

essential feature of the interaction can be captured by the s-wave scattering length ‘a’ and 

the effective range 𝑟𝑒 of the interaction. Thus the interaction is determined mainly by two 

terms ‘a’ and 𝑟𝑒. 

As the density increases, different partial wave and spin states contribute to the 

interaction. This means that any theoretical formulation of the neutron-neutron or 

nucleon-nucleon potential has to take into account all of the allowed ways in which 

nucleons (neutrons) can interact with each other. Thus to derive the equation of state (that 

correlates energy with density via ‘a’ and maybe 𝑟𝑒) for pure neutron matter, quantum 

many-body method may be used keeping in mind the operator structure of standard 

nuclear forces. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1: Introduction  

In this thesis, the properties of a crystalline Fermi system were studied with regard to 

transition temperature at which fermions crystallizes, variation of energy per neutron 

with density and the saturation density with hard-sphere diameter. Note that in a 

fermionic system, the fermions are  very close to each other, and the interaction 

between a pair of fermions will be assumed to be a hard sphere one.  

4.2: Transition Temperature, 𝑻𝒄, at crystallization  

A gas or a liquid composed of fermions in which pairs of particles interact via hard-

sphere interaction has been studied to obtain the total energy E of the system and to 

obtain the saturation density ρs, leading to crystallization of the system. The well-

known fermion systems are 
3
He, neutron matter and symmetric nuclear matter. The 

degrees of freedom 𝜈 for both 
3
He and neutron is v=2, but for symmetric nuclear matter 

composed of equal number of neutrons and protons, v=4. It will be assumed that each 

particle of diameter, C, is confined to move in a space with the characteristic 

dimension R, such that the mean particle spacing is R-C. Using Heisenberg’s 

uncertainty principle, the particle spacing is given as: 

 ∆𝑥∆𝑝 = ℏ ⟹ ∆𝑝 =
ℏ

∆𝑥
=

ℏ

(𝑅−𝐶)
    (4.1) 

 

The energy per particle E/N is given as: 

𝐸

𝑁
=

(∆𝑃)2

2𝑚
=

ℏ2

2𝑚(𝑅−𝐶)2      (4.2) 
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Where m = mass of each particle and if the ultimate particle number density in the 

space with characteristic dimension 𝑅 = 2.84𝑥10−8 
cm is 𝜌 (Solis, et.al., 2003), then 

the total number of particles N, in the system whose volume is V, can be written as 

 𝑁 =
4

3
𝜋𝑅3𝜌        (4.3) 

The number of particles on crystallization of the fermions is given, from equation (4.3) 

as: 

𝑁 =
4

3
𝜋𝐶3𝜌0        (4.4) 

Where0 is  the particle number density at crystallization. 

Substituting for R and C from equations (4.3) and (4.4) in equation (4.2), yields E/N in 

a general form, 

  
𝐸

𝑁
= 𝐴

ℏ2

2𝑚
(𝜌−

1

2 − 𝜌0

−
1

2)

−2

     (4.5) 

Where  𝐴 =
𝜋2

2
1
2

≅ 7.834 is a constant called the residue of the pole at close packing. In 

theory,  A is predicted to lie within 1.63 A 27.0 for random close packing (rcp) 

polyhedron cell and for regular close Packing (face centered cubic) or hexagonal a = 


2
 (Baker, et. al., 1982). However, experimentally, the value of A obtained from the 

high pressure data of 
3
He, 

4
He, H and 

2
H is  A  15.7  0.6  for the crystalline branch 

of the equation of state. 

The general expression for uniform fermion hard-sphere systems with a degeneracy 

factor of v for the ground state energy per particle with a hard-core potential of 

range C (Felter and Walecka, 1971) is close pack at the same densities. The value 

of 𝑣 = 2 for a fermion gas and the reduced mass of 
3
He is 6.64x10

-24
 gm, then 

𝐸

𝑁
=

ℏ2𝑘𝐹
2

2𝑚
[

3

5
+ (𝜈 − 1) {

2𝑘𝐹𝐶

3𝜋
+

4

35𝜋2
(11 − 2𝑙𝑜𝑔2)(𝑘𝐹𝐶)2 + 0(𝑘𝐹𝐶)3}] (4.6) 
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As 
𝐸

𝑁
→ 𝐸0, and introducing the thermal activation factor, 𝜏 = 𝑒𝑥𝑝 [−

𝐸0

𝑘𝐵𝑇
] , 𝑘𝐹 is Fermi 

momentum and using equation  (4.6), yields, 

 𝐸(𝑇) = 𝐸0𝑒𝑥𝑝 [−
𝐸0

𝑘𝐵𝑇
]      (4.7) 

The transition temperature, 𝑇𝑐 at crystallization is derived by considering the specific 

heat capacity of the fermions. Eqn. (4.6) gives 

 
𝐸

𝑁
= 𝐸0  

𝜕𝐸

𝜕𝑇
= 𝐶𝑣 =

𝜕

𝜕𝑇
(𝐸0𝑒−𝐸0 𝑘𝐵𝑇⁄ )  

= 𝐸0 (−
𝐸0

𝑘𝐵
𝑒−𝐸0 𝑘𝐵𝑇⁄ ) (

1

𝑇2)  

𝐶𝑣 =
𝐸0

2

𝑘𝐵𝑇2 (𝑒−𝐸0 𝑘𝐵𝑇⁄ )                                                                            (4.8) 

The specific heat, CV for a hard-sphere assembly of fermions, is given by: 

  𝐶𝑣 = [
𝜕𝐸

𝜕𝑇
]                         

At the transition temperature, T = Tc, and differentiating equation (4.8) with respect to 

temperature gives:  

[
𝜕𝐶𝑣

𝜕𝑇
]

𝑇=𝑇𝑐

= 0 = [
𝜕2𝐸

𝜕𝑇2
]     

(
𝜕𝐶𝑣

𝜕𝑇
)

𝑇=𝑇𝑐

= 0  

0 = −
2𝐸0

2

𝑘𝐵𝑇𝑐
3 +

𝐸0
3

𝑘𝐵
2 𝑇𝑐

4  

 
2

1
=

𝐸0

𝑘𝐵𝑇𝑐
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 𝑇𝑐 =
𝐸0

2𝑘𝐵
                                                                                                               (4.9) 

Where 𝜈 = 2, 𝐶 =Particle diameter= 2.48Å, 

𝑘𝐹 = 1.92/𝑟0 ≈ 2.1Å, where 𝑟0 =inter – particle spacing 

Since E/N →𝐸0at crystallization, and given values of m, R, C or/and A, ρ and 𝜌0, eqn. 

(4.2) or (4.5) or (4.6) is applied to calculate 𝐸0 and substituting the values of 𝐸0and 

𝑘𝐵in eqn. (4.9), the value of 𝑇𝑐 is obtained as, 

𝑇𝑐 = 19.26𝐾                               (4.10) 

Thus, the transition temperature at which phase transition takes place in a system of 

hard-sphere gas of fermions (
3
He) is 19.26 K.Thus the value of Tc obtained in this 

Thesis for crystallization of fermions as given in eqn. 4.9. is close to the Tc =20.3K 

value obtained earlier (Mishra & Rama, 1985). Note that Tc varies whenever fermion 

density,  and had-sphere diameter, C varies. An improved hard-sphere ground state 

equation of state for N-fermions hard-spheres (Solis, et. al., 2013) is given by: 

𝐸

𝑁
= 𝜆𝜈𝜌

2

3 +
(𝜈−1)

𝜈

2𝜋ℏ2𝐶

𝑚
[

1

(𝜌
−

1
3−𝜌

−
1
3)2(𝜌

−
1
3+𝑏(𝜈)𝜌0

−
1
3)

]                    (4.11) 

where 

𝜆𝑣 =
3ℏ2

10𝑚
(

6𝜋2

𝑣
)

2

3
 , 𝑏(𝑣) =

(𝑣−1)

𝑣
(𝛾 + 1) − 1,               

 (4.12) 

and 

𝛾 = (
2

2
3

𝜋
− 1)         (4.13) 
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Equation (4.11) is the generalized modified London equation. In the limit 𝑣 →

∞,𝑏(𝑣) → 𝛾 and  𝜆𝑣 → 0, then Eqn. (4.11) shows that at both low and high densities, 

equation (4.11) reduces to the limiting expressions. 

4.3: Variation of energy per neutron, E/N with density  

The variation of energy per unit neutron, E/N with density of a hard-sphere assembly 

starting from the ground state energy was studied for both low and high densities, and 

the results are presented below.  

At low density, 𝜌0 → 0, equation (4.11) becomes  

𝐸

𝑁
= 𝜆𝑣𝜌

2

3 +
(𝑣−1)

𝑣

2𝜋ℏ2

𝑚
𝜌𝐶       (4.14) 

where 

𝜆𝑣 =
3ℏ2

10𝑚
(

6𝜋2

𝑣
)

2

3
         (4.15) 

On the other hand, at high density, 𝜌 → 𝜌0and 𝑣 → ∞ in equation (4.11) such that 

𝐸

𝑁
=

2𝜋ℏ2

𝑚
(𝜌

−1

2
 −𝜌0

−1

2 )

−2
1

[𝜌0

−1
2 (1−𝜍)]

      (4.16) 

Now using 𝜌0 ≡
√2

𝐶3 and  𝜍 ≡ [
2

2
3

𝜋
− 1]then equation (4.11) becomes  

𝐸

𝑁
= 𝜋22

2

3
ℏ2

2𝑚

1

(𝜌
−1
2

 −
𝜌0

−1
2 )

2       (4.17) 

Where π
2
 2

2/3
 =A=15.7and m is the reduced mass for 

3
He. 

Fig. 4.1 presents the results for a low density assembly, and is a plot of E/N verse 

density. The results indicate that the value of E/N varies linearly with density. This is 

due to the fact that at low density the interaction plays fewer roles in crystallization of 

fermions and the energy simply increases with particle number.  
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Fig. 4.1: Energy per particle for low density. 

Fig. 4.2, on the other hand, presents the results for high density assembly, which is 

also a plot of E/N versus density. For high density assembly of fermions, there is little 

variation in E/N with density up to a particular density where its value suddenly rises. 

This is due to the fact that when the density becomes large, close to ρs, interactions 

become predominant due to the proximity of the particles at high density, and hence 

the energy E/N suddenly becomes large.  
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Fig. 4.2: Energy per particle for high density. 

4.4: Variation of saturation density with Hard-Sphere diameter C for both low and 

high density fermionic system 

The saturation density for an assembly of fermions will be defined as that density  ρs, at 

which the hard-sphere assembly of fermions form close-pack (cp) crystalline structure. 

At this density, the total energy, E, of the assembly will be such that, 

(
𝜕𝐸

𝜕𝜌
)

𝜌=𝜌𝑠

= 0          (4.18) 

Now using low density value of E/N from equation (4.14) in equation (4.18), I can 

get 𝜌0 as a function of C as, 

𝜌𝑠 = (
4𝑚𝜆𝜈

9𝜋ℏ2𝐶
)         (4.19) 

In the high density system, the saturation density is obtained by using equation (4.17) 

in equation (4.19), and this calculation yields 
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𝜌𝑠 = 𝜌𝑜 ≡
√2

𝐶3
         (4.20) 

Fig. 4.3 presents the results on the variation of saturation density with the hard-sphere 

diameter. In the case of low density, the value of s varies, on first approximation, 

almost linearly with C. This means that at low density the variation of s with C is 

insignificant since the inter-particle distance is larger than C. However, for high 

density assembly, the value of s decreases exponentially with C, and this is an 

essential condition for crystallization. 

 

Fig. 4.3: Variation of saturation density with corresponding hard-sphere diameter 

for 
3
He particles. 

Table 4.1.shows variation of values of energy per particle with saturation density for 

both low and high densities at free particle spacing, R=2.8401Å.  
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Table 4.2. Energy per particle and Saturation density for low and high densities 

(Free-particle spacing, R =2.8401 Å). 

Parameter Density Range 

Low High  

𝐸

𝑁
𝐽𝑜𝑢𝑙𝑒𝑠 

1.435x10
-22

 3.113x10
-21

 

𝜌𝑠(𝑚−3) 7.117x10
27

 1.502x10
29

 

4.5: The Variation of Energy per particle (E/N) with Density, 𝛒, both for low and 

high density Neutron Stars 

In the crystalline state of neutron matter, the nature of interaction changes drastically. A 

crystalline state being intrinsically restless, the particles vibrate around their position and 

even exchange positions. The motion is determined by the Heisenberg’s uncertainty 

principle and gives zero-point energy. Since the particles are frozen, they almost touch 

each other, and the interaction between them could be treated as infinitely repulsive. 

Hence these two energies could constitute the equation-of-state in terms of the scattering 

length ‘a’ and density ρ 

The energy, E, of an assembly of crystalline neutron matter in the low density limit will 

be given by (Mishra & Rama, 1985) 

𝐸
𝑁⁄  = 𝜆𝑣 𝜌

2
3⁄ +

(𝑣−1)

𝑣

2𝜋ℏ𝜌𝑎

𝓂
+

4𝜋ℏ2𝑎

𝓂
                                                                            (4.21) 

where  𝜆𝑣 =
3ℏ2

10𝑚
(

6𝜋2

𝜈
)

2

3
, and   𝜈 = 2, which is the intrinsic degrees of freedom for each 

fermion. 

The energy, E, of an assembly of crystalline neutron matter in the high density limit 

(𝜈 → ∞, 𝜆𝑣 → 0, ) will be given by (Mishra & Rama, 1985) 
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𝐸

𝑁
=  𝜋 2 2

2
3⁄ ℏ2

2𝓂
[

1

𝜌
−1

3⁄ −𝜌0

−1
3⁄
]

2

 + 
4𝜋ℏ2𝑎

𝓂
       (4.22) 

where  𝜌0 =  
√2

𝑎3  and a  is the scattering length. 

The variation of   
𝐸

𝑁
 with  𝜌  both for low density and high density neutron stars, keeping 

‘a’ constant, 𝜌 may be varied between 1.4 x 10
15

 g/cm
3
 and 5.237 x 10

15
 g/cm

3
 and 

10.85x10
15

 g/cm
3
, with a difference of 0.5; and a may be varied from -18.5 fm to 1.0 fm 

with a difference of 0.5. One value for 𝜌 should be 3.7x10
15

g/cm
3
 since this is supposed 

to be the density of neutron matter at which there may be onset of the solid phase. Also 

calculated was the value of   
𝐸

  𝑁
 for 𝜌 = 5x10

14 
g/cm

3
, since at this density under a pressure 

of 5x10
27

atm, solidification of neutron matter occurs. 

4.6: Low density Crystallization 

Eqn.(4.20) gives the energy E/N=ε, which can be written, 

𝜀 =
𝑝2

2𝑚
                     (4.23) 

𝜀 = 1.435 𝑥 10−15𝑒𝑟𝑔  

Now, if ∆p is maximum fluctuation in the momentum of the particle in the state of 

crystallization, then the fluctuation x  in the displacement will be, 

∆𝑥 =
ℏ

√2𝑚𝜀
                        

(4.24) 

Substituting the values of  , m and ε in equation (4.24), yields  

∆𝑥 = 7.9 𝑥 10−9𝑐𝑚                                                                                                       

(4.25) 

Now, using the equation, 
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 px                                                                                                           (4.26) 

yields, 

∆𝑝 =
ℏ

∆𝑥
= 1.265𝑥10−19𝑔𝑐𝑚/𝑠𝑒𝑐                                                                     

(4.27) 

4.7: High density crystallization 

Similarly from eqn.(4.22) for high density condition,    𝜖 = 3.113𝑥10−14𝑒𝑟𝑔, from 

which yields, 

∆𝑥 = 1.6𝑥10−9cm                                                                                  (4.28) 

and 

      ∆𝑝 = 6.25𝑥10−19gcms
-1  

                                                                                  

(4.29) 

Table 4.2. shows values of energy, fluctuations in position and momentum for low and 

high densities. 

Table 4.2: The values of energy, fluctuation in position and momentum for low and high 

densities 

 

Parameter  Density Range 

Low  High   

𝜀 
1.435x10−15erg 3.11x10−14erg 

∆𝑥 
7.9x10−9cm 1.6x10−9cm 

∆𝑝 
1.265x10−19gcmsec

-1
 6.25x10−19gcmsec

-1
 



 

122 
 

 

 

Table 4.3 shows variation of values of energy per particle with saturation density for a 

hard-core radius, 𝒂 = 𝟐. 𝟏𝟏𝟏𝟕Å 

Table 4.3: Energy per particle and saturation density, (hard-core radius a=2.1117Å) 

          s  x 10
15 

g/cm
-3

 

0.5 3.7 10.85 

𝐸
𝑁⁄ 𝑥10−30𝐽 

1.3 4.8 9.8 

Fig. 4.4 shows variation of energy per particle and saturation density for low and high 

densities at a constant radius, a=2.1117Ǻ. 
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Fig. 4.4: Variation of energy per particle with density 
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The transition temperature Tc will vary with  and C. For the values of 𝜌 and C, Tc 

=19.26K, but this could vary from assembly to assembly. These results show that for 

both low and high density; ρs varies as C
-3

 which means that the assembly will 

crystallize for some value of C irrespective of the value of ρs. Such results were 

obtained for bosons by (Khanna, et. al., 2011).  

Crystallization of a hard-sphere system of fermions with densities ranging from low to 

high values has been studied. Saturation densities at which the total energy E, is 

maximum has been calculated. The values of saturation particle number 

densities 𝜌𝑠 for low and high densities are; 7.11x10
27

 m
-3

 and 1.502x10
29

m
-

3
 respectively at which the fermions close pack or crystallize. Variation of 𝜌𝑠 with 

hard-sphere diameter C is not linear and it is more or less the same for both low and 

high density since crystallization occurs in both the cases. The total energy, E, has 

been found to vary non-linearly with ρ at high densities and closely linear for low 

density.  

Table 4.1. shows that the value of E for low density is 1.435x10
-22

 J, and for high 

density it is 3.113x10
-21

 J. These findings are consistent with experimental and 

computer-simulated results obtained by others. 

The Table 4.3 shows that the energy E/N increases as the density increases, both for low 

density and high density neutron stars, keeping ‘a’ constant. This is exactly what it should 

be since increasing the density can lead to strong interactions resulting in the increase in 

energy of the system. This also confirms that under high pressures the system will have 

large density and huge amount of energy on crystallization. 

Calculations have shown that the fluctuation x in the position for low density system is 

larger than the corresponding value of x for the high density neutron star. It should be 

so since the high density system is more closely packed compared to the low density 

system. The fluctuation p  in the momentum in high density system is large compared 

to the low density system, because high density system has more energy 
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Fig. 4.4 shows that for low density variation in E/N is almost linear with small gradient. 

For high density, the variation is large with large gradient. This is because in a high 

density system, the energies involved are large, x is large, and hence the variation has to 

be large. The variation of 
𝐸

𝑁
 with ρ shown in Figure 4.4 is very similar to what was 

obtained by (Grandolf, et al., 2012) 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1: CONCLUSION 

The transition temperature at which phase transition takes place in a system of hard-

sphere gas of fermions (
3
He) is 19.26 K.Thus the value of Tc obtained in this Thesis for 

crystallization of fermions as given in eqn. 4.9. is close to the Tc =20.3K value 

obtained earlier. Note that Tc varies whenever fermion density,  and had-sphere 

diameter, C varies. 

Crystallization of a hard-sphere system of fermions with densities ranging from low to 

high values has been studied. Saturation densities at which the total energy E, is 

maximum has been calculated. The values of saturation particle number 

densities 𝜌𝑠 for low and high densities are; 7.11x10
27

 m
-3

 and 1.502x10
29

 m
-3

 , 

respectively, at which the fermions close pack or crystallize. Variation of 𝜌𝑠  with 

hard-sphere diameter C is not linear and it is more or less the same for both low and 

high density since crystallization occurs in both the cases. The total energy, E, has 

been found to vary non-linearly with ρ at high densities and closely linear for low 

density. The value of E for low density is 1.435x10
-22

 J, and for high density it is 

3.113x10
-21

 J. These findings are consistent with experimental and computer-simulated 

results obtained by others. 

It is established that the energy E/N increases as the density increases, both for low 

density and high density neutron stars, keeping ‘a’ constant. This is exactly what it should 

be since increasing the density can lead to strong interactions resulting in the increase in 

energy of the system. This also confirms that under high pressures the system will have 

large density and huge amount of energy on crystallization. 

It is found that the fluctuation x in the position for low density system is larger than the 

corresponding value of x for the high density neutron star. It should be so since the high 

density system is more closely packed compared to the low density system. The 
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fluctuation p in the momentum in high density system is large compared to the low 

density system, because high density system has more energy 

Further, it has been shown that for low density variation in E/N is almost linear with 

small gradient. For high density, the variation is large with large gradient. This is because 

in a high density system, the energies involved are large, x is large, and hence the 

variation has to be large. 

5.2: RECOMMENDATIONS 

Since the Physics of compact neutron stars constitutes a new thriving feel of research 

under relativistic nuclear astrophysics which is a collection of disjointed disciplines such 

as high energy astrophysics, gravitational physics, nuclear and hadronic Physics, QCD, 

superfluid hydrodynamics, plasma Physics; the interdisciplinary nature of this study 

makes it a rewarding undertaking for future research studies. Neutron stars being a 

fascinating testbed for all sorts of extreme Physics, studying the details of their interior 

remains an active area of research to establish what happens to the protons and electrons 

and to simulate the states of matter in a neutron star on the Earth. 

Cold atom trapping technique in optical lattice is an experimental tool commonly used in 

Condensed Matter, atomic, molecular and optical Physics, through which nano gears 

were made, it is recommended that further studies be undertaken in nano Science to pave 

way for machines or setups working on the molecular scale which could in turn lead to 

advances in nanotechnology. With the recent discovery of type II Weyl fermions, since 

quantum statistical effects fade away with decreasing particle density leading to recovery 

of average fermionic behaviour, their crystals could be grown in a laboratory to allow for 

experimental studies into their behaviour as exotic particles whose behaviour switches 

between electrical conductor and insulator depending on the direction of the induced 

current; their understanding to create highly efficient transistor components/devices in 

electronics and quantum computers, and could lead to more new materials with unusual 

transport properties.  

Another promising avenue for future research is whether the very high density of a 

neutron star is due to the gravitational forces or nuclear forces or both.  
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APPENDICES 

i) Table A1: Energy per particle for low density; corresponds to Fig. 4.1. 

E/N(J) ρ(𝑀−3) 

1.411 0.6 

1.500 0.658 

1.577 0.716 

1.660 0.774 

1.743 0.800 

1.826 0.861 

1.992 0.919 

2.000 0.977 

2.075 1.000 

2.158 1.064 

2.241 1.122 

2.324 1.180 

2.407 1.200 
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2.532 1.267 

2.656 1.325 

2.718 1.383 

2.801 1.400 

2.905 1.470 

3.030 1.528 

3.154 1.600 

 

ii) Table A2: Energy particle for high density; corresponds to Fig. 4.2. 

E/N(J) ρ(𝑀−3) 

0.000 0.605 

0.000 0647 

0.000 0.689 

0.000 0.750 

0.000 0.794 

0.000 0.845 

0.000 0.889 

0.000 0.941 

0.058 1.000 
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0.062 1.046 

0.068 1.088 

0.071 1.130 

0.107 1.188 

0.142 1.250 

0.284 1.282 

0.639 1.324 

1.500 1.382 

2.414 1.424 

 

iii) Table A3: Variation of saturation density with corresponding Hard-Sphere 

diameter for 
3
He particles; corresponds to Fig. 4.3. 

Hard-Sphere diameter, 

CX10−10𝑚 

Low Density ρ X 

1029𝑚−3 

High Density ρ 

X102𝑚−3 

1.625 0.016  

1.750 0.014  

1.813 0.012  

1.938 0.010  

2.000 0.008 0. 
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2.125 0.007 0.148 

2.250 0.006 0.132 

2.313 0.006 0.114 

2.438 0.006 0.100 

2.500 0.005 0.088 

2.625 0.005 0.080 

2.750 0.004 0.068 

2.813 0.004 0.064 

2.938 0.004 0.060 

3.000 0.002 0.052 

3.125 0.002 0.046 

3.250 0.002 0.042 

3.313 0.002 0.040 

3.438 0.002 0.036 

3.500 0.001 0.032 

3.625 0.001 0.030 

3.750 0.001 0.026 

3.813 0.001 0.022 

3.938 0.001 0.020 



 

146 
 

 

 

4.000 0.001 0.016 

 

iv) Table A4: Energy per particle and saturation density for low and high densities 

at a constant hard-core radius, a=2.1117Ǻ; Corresponds to Fig. 4.4 

Density, ρ 

 in terms of 10
15

gcm
-3

 

Low density 

a = constant 

High density 

a=constant 

 
𝐸

𝑁⁄ 𝑥10−30𝐽 𝐸
𝑁⁄ 𝑥10−30𝐽 

1.4 
2.5014 14.8 

1.9 
3.0019 18.1354 

2.4 
3.5874 21.1917 

2.9 
4.0699 24.0412 

3.4 
4.5254 26.7307 

3.9 
4.9589 29.2910 

4.4 
5.3739 31.7438 

4.9 
5.7749 34.1053 

5.4 
6.1614 36.3876 

5.9 
6.5359 38.6004 

6.4 
6.9004 40.7516 

6.9 
7.2559 42.8473 
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7.4 
7.6024 44.8930 

7.9 
7.9409 46.8931 

8.4 
8.2729 48.8514 

8.9 
8.5982 50.7712 

9.4 
8.9174 52.6554 

9.9 
9.2410 54.5064 

10.4 
9.5301 56.3266 

10.9 
9.8332 58.1177 

11.4 
10.1317 59.8817 
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