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ABSTRACT 

Superconductivity is the disappearance of the electrical resistance of certain materials at 

certain critical temperatures called transition temperatures. This phenomenon was 

discovered in 1911 and is one of the most interesting and sophisticated discoveries in 

condensed matter physics. Superconducting materials have long been classified into two 

categories, viz low temperature (conventional) and high temperature ( unconventional) 

supercunductors and the current work deals with the later type. High temperature 

superconductors have transition temperatures above 30 K (-243.150C) and are further 

grouped into pnictides and cuprates. Cuprates are copper oxide superconductors. This 

study investigated the role of long – range electron phonon and Coulomb interactions in 

high - Tc cuprate superconductors. In the study, the electron – phonon and Coulomb 

Hamiltonian was derived using frozen phonon method. The expectation value of the Hepc 

was calculated using second quantization and many body techniques. The equation for 

the energy of the system at ground state was obtained from the product of the expectation 

value of Hepc and the thermal activation factor, exp (-E1/kT). The equation relating 

specific heat and absolute temperature was obtained from the first derivative of the 

energy of the system at ground state with respect to absolute temperature.  The equation 

relating entropy and absolute temperature was obtained from the specific heat equation, 

using integral calculus. From the equations relating specific heat and entropy with 

absolute temperature, values of specific heat and entropy against absolute temperature 

were calculated. In these calculations, the onsite energy of copper (Ed) was fixed at 2.0 x 

10-6 eV. The onsite energy of oxygen (Ep), hybridization energy of oxygen and copper 

bands (tpd), the electron – phonon interaction energy, (gep) and energy due to repulsion of 

copper holes occupying the same orbital (ud), were varied. From the results, it was found 

out that increase in the parameters Ed, tpd, gep and ud leads to increase in the transition 

temperature from 30 K to 90 K. It was further found that entropy and specific heat 

decrease with increase in the parameters. It can therefore be concluded that long range 

electron – phonon and Coulomb interactions increase the transition temperature of 

superconducting cuprates.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Superconductivity is a phenomenon where electrical resistances of certain materials 

vanish completely at extremely low temperatures. It is among the most interesting and 

sophisticated discoveries in condensed matter physics in the twentieth century. 

Superconductivity has a number of applications, which includes superconducting 

quantum interference devices (SQUID), magnetic resonance imaging (MRI), scientific 

research and in magnetically levitated trains. 

 

1.2 The Discovery of Superconductivity 

Superconductivity was discovered by the Dutch physicist Heike Kamerlingh Onnes in 

1911, three years after he liquefied helium (with boiling point of 4.2 K at standard 

pressure). Kamerlingh Onnes and one of his assistants discovered the phenomenon of 

superconductivity while studying the resistance of metals at low temperatures. They 

studied mercury because very pure samples could easily be prepared by distillation 

(Onnes, 1911). Figure 1.1 illustrates the phenomenon of superconductivity that was 

observed in mercury. As in many other metals, the electrical resistance of mercury 

decreased steadily upon cooling, but dropped suddenly at 4.2 K, and became 

undetectably small.  
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Figure 1.1: Variation of resistance of mercury with temperature (Onnes, 1911) 

Soon after this discovery, many other elemental metals were found to exhibit zero 

resistance when their temperatures were lowered below a certain characteristic 

temperature of the material, called the critical temperature, Tc. The critical temperatures 

of some common superconducting materials are given in Table 1.1. 
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Table 1.1: The critical temperatures of some superconductors (Dagotto, 1994) 

 

 

1.3 The Meissner Effect 

In 1933, Meissner effect was discovered (Meissner & Ochsenfeld, 1933). This is a 

magnetic phenomenon in which a material excludes magnetic flux from its interior below 

its transition temperature. Figure 1.2 illustrates the difference between an ideal conductor 

and a superconductor when a magnetic field is applied. 
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Figure 1.2: The Meissner effect (Meissner & Ochsenfeld, 1933) 

The figure shows the behaviors of an ideal (normal) conductor and superconductor in the 

presence of external magnetic field above and below the critical temperature. At 

temperatures above TC, the magnetic field penetrates both materials but at temperatures 

below TC, the superconductor expels the magnetic field from inside it, while the ideal 

conductor maintains its interior field. The energy needed to expel the magnetic field by 

the superconductor comes from the exothermic superconducting transition. Switching off 

the field induces currents in the ideal conductor that prevent changes in the magnetic field 

inside it – by Lenz’s law. However, the superconductor returns to its initial state, i.e. no 

magnetic field inside or outside it. 
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1.4 Types of Superconductors 

Superconductors can be classified into type I and type II. High magnetic fields destroy 

superconductivity and restore the normal conducting state. Depending on the character of 

this transition, we may distinguish between type I and II superconductors.  

1.4.1 Type I Superconductors 

Fig. 1.3 illustrates the variation of internal magnetic field strength, Bi, with increasing 

applied magnetic field.  

 

Figure 1.3: Variation of induced magnetic field with external applied field for Type-

I superconductor (Meissner & Ochsenfeld, 1933) 

From figure 1.3, the internal field is zero (as expected from the Meissner effect) until a 

critical magnetic field, Bc, is reached where a sudden transition to the normal state occurs. 

This results in the penetration of the applied field into the interior. Superconductors that 

undergo this abrupt transition to the normal state above a critical magnetic field are 
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known as type I superconductors. Most of the pure elements in Table (1.1) tend to be type 

I superconductors.  

1.4.2 Type II superconductors 

Fig. 1.4 shows how type II superconductors respond to an applied magnetic field. 

 

Figure 1.4: Variation of internal field with external field for Type-II superconductor 

(Sanchez & Navau, 2001) 

An increasing field from zero results in two critical fields, Bc1and Bc2. At Bc1, the applied 

field begins to partially penetrate the interior of the superconductor. However, the 

superconductivity is maintained at this point. The superconductivity vanishes above the 

second, much higher, critical field, Bc2. For applied fields between Bc1 and Bc2, the 

applied field is able to partially penetrate the superconductor, so the Meissner effect is 

incomplete, allowing the superconductor to accommodate very high magnetic fields. 
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Type II superconductors have useful technical applications because of the remnant 

magnetic field between the two transition regions. This is very useful particularly because 

of absence of electrical resistance, hence eddy current losses is minimal and provides a 

means of fabrication of very strong electromagnets. Most compounds given in Table 1.1 

are type-II superconductors. Wires made from say niobium-tin (Nb3Sn) have a Bc2 as 

high as 24.5 Tesla – in practice it is lower. This makes them useful for applications 

requiring high magnetic fields, such as Magnetic Resonance Imaging (MRI) machines. 

The advantage of using superconducting electromagnets is that the current only has to be 

applied once to the wires, which are then formed into a closed loop and allow the current 

(and field) to persist indefinitely. As long as the superconductor stays below the critical 

temperature, the external power supply can be switched off. As a comparison, the 

strongest permanent magnets today may be able to produce a field close to 1 Tesla.  

1.5 Vortex States and Flux Pinning 

In type-II superconductors, there is partial penetration of the magnetic field in the form of 

a regular array of normal conducting regions (shown as the dark regions in Figure 1.5 (b). 
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(a)                                                                                           (b) 

Figure 1.5: Vortices (dark regions) in a type-II superconductor. (Haugan et al., 

2004) 

These normal regions allow the penetration of the magnetic field in the form of thin 

filaments, usually called flux lines, fluxons, fluxoids or vortices. The vortices are aptly 

named because each is a "vortex" or swirl of electrical current (shown on Fig. 1.5 (a)) 

that are associated with this state. While in the vortex state, the material surrounding 

these normal conductors can have zero resistance and has partial flux penetration. Vortex 

regions are essentially filaments of normal conductor (non-superconducting) that run 

through the sample when an external applied magnetic field exceeds the lower critical 

field, Bc1. As the strength of the external field increases, the number of filaments 

increases until the field reaches the upper critical value, Bc2, the filaments crowd together 

and join up so the entire sample becomes normal. One can view a vortex as a cylindrical 

swirl of current surrounding a cylindrical normal conducting core that allows some flux 

to penetrate the interior of type-II superconductors. Thrusting a permanent magnet 

towards a type-II superconductor will cause the applied magnetic field at the 
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superconductor to be within the region of the two critical fields. This creates the vortex 

states shown on Fig. 1.5 (b). In principle, the motion of a levitating permanent magnet 

will cause these vortices to move. In practice, real materials (such as High Tc 

superconductors) have defects (missing or misplaced atoms, impurity atoms) in their 

crystal lattices. They are also composed of many crystals, all bound together, resulting in 

many crystal boundaries. The crystal defects and boundaries stop the motion of the 

vortices, which is known as flux pinning. This provides the stability of a levitating 

magnet. Pinning the motion of its magnetic field lines also means stopping the motion of 

the magnet. Note that flux pinning can only occur in type-II superconductors.  

 

1.6 BCS theory and Cooper Pairs 

According to classical physics, part of the resistance of a metal is due to collisions 

between free electrons and the crystal lattice’s vibrations, known as phonons. In addition, 

part of the resistance is due to scattering of electrons from impurities or defects in the 

conductor. As a result, the question arose as to why this does not happen in 

superconductors. 

A microscopic theory of superconductivity known as the Bardeen, Cooper and Schrieffer 

(BCS) theory was developed (Bardeen et al.,1957). The central feature of the BCS theory 

is that two electrons in the superconductor are able to form a bound pair called a Cooper 

pair if they somehow experience an attractive interaction between them. This notion at 

first sight seems counterintuitive since electrons normally repel one another because of 

their like charges. Figure 1.6 illustrates coupling of Cooper pairs.  
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Figure 1.6: Coupling of a Cooper pair (Bardeen et al., 1957) 

An electron passes through the lattice and the positive ions are attracted to it, causing a 

distortion in their nominal positions. The second electron (the Cooper pair partner) comes 

along and is attracted by the displaced ions. Note that this second electron can only be 

attracted to the lattice distortion if it comes close enough before the ions have had a 
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chance to return to their equilibrium positions. The net effect is a weak delayed attractive 

force between the two electrons. This short lived distortion of the lattice is sometimes 

called a virtual phonon because its lifetime is too short to propagate through the lattice 

like a wave as a normal phonon would. From the BCS theory, the total linear momentum 

of a Cooper pair must be zero. This means that the electrons travel in opposite directions 

as shown in Figure 1.6. In addition, the nominal separation between the Cooper pair 

(called the coherence length) ranges from hundreds to thousands of ions separating them. 

 

If electrons in a Cooper pair were too close, such as a couple of atomic spacing apart, the 

electrostatic (Coulomb) repulsion will be much larger than the attraction from the lattice 

deformation and so they will repel each other. Thus, there will be no superconductivity. 

A current flowing in the superconductor just shifts the total moment slightly from zero so 

that, on average, one electron in a Cooper pair has a slightly larger momentum magnitude 

than its pair. They do, however, still travel in opposite directions. The interaction 

between the electrons in a Cooper pair is transient. Each electron in the pair goes on to 

form a Cooper pair with other electrons, and this process continues with the newly 

formed Cooper pair so that each electron goes on to form a Cooper pair with other 

electrons. The end result is that each electron in the solid is attracted to every other 

electron forming a large network of interactions. If one of these electrons collides and 

scatters from atoms in the lattice, the whole network of electrons must be made to collide 

into the lattice, which is energetically too costly. The collective behaviour of all the 

electrons in the solid prevents any further collisions with the lattice. Nature prefers 

situations that spend a minimum of energy. In this case, the minimum energy situation is 



12 

 

 

to have no collisions with the lattice. A small amount of energy is needed to destroy the 

superconducting state and make it normal. This energy is called the energy gap. 

Although a classical description of Cooper pairs has been given here, the formal 

treatment from the BCS theory is quantum mechanical. The electrons have wave-like 

behavior and are described by a wave function that extends throughout the solid and 

overlaps with other electron wave functions. As a result, the whole network of electrons 

behaves like one wave function so that their collective motion is coherent. In addition to 

having a linear momentum, each electron behaves as if it is spinning. This property is 

called spin. This does not mean that the electron is actually spinning, but behaves as 

though it is spinning. The requirement from the BCS theory is that spins of a Cooper pair 

be in opposite directions. Note that the explanation and pictorial representation of a 

Cooper pair presented here comes directly from BCS theory (Bardeen, et al., 1957) 

1.7 Statement of the Problem 

Since the discovery of superconducting cuprates, many theories have been proposed to 

explain both normal and superconducting properties of these materials. However, there is 

no clear agreement on the appropriate theoretical description of these materials even in 

their normal states. It is generally believed that characterizing the cuprates above Tc is a 

necessary first step in unraveling the superconducting mechanism. Experimental 

observations and theoretical considerations point towards electron – phonon and 

Coulomb interactions in cuprates, which remain to be quantitatively addressed. 
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1.8 Research Objectives 

1.8.1 General Objective 

The general objective of this study was to evaluate the impact of electron – phonon and 

Coulomb interactions on superconducting properties of cuprates.  

1.8.2 Specific objectives 

i) To derive the electron – phonon and Coulomb interaction Hamiltonian 

using frozen phonon method  

ii) To  calculate the expectation value of the electron – phonon and Coulomb 

interaction Hamiltonian  

iii) To determine the effect of electron – phonon and Coulomb interactions on 

the Transition Temperature of a high - Tc cuprate superconductor using 

Specific Heat and Entropy as parameters. 

1.9 Significance of the Study 

The electron – phonon and Coulomb interactions are of central importance for the 

electrical and thermal properties of solids, and its influence on high temperature 

superconductivity is the subject of intense research at present. However, the non – local 

nature of the interactions between valence electrons and lattice ions, compounded by 

vibrational modes present challenges for attempts to theoretically describe the physical 

properties of cuprates. Raman scattering study of the lattice dynamics in superlattices of 

high- temperature superconductors suggest a new approach to this problem. The 

superlattice geometry provides new opportunities for the electron - phonon interaction in 

complex materials. Experimental and theoretical studies of high – Tc superconductivity 

points to the possibility that the electron – phonon and Coulomb interactions have a 
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significant role in the behavior of high - Tc cuprate superconductors. This study, 

therefore, is essential because it explores the role played by electron – phonon and 

Coulomb interactions and unravel the quantitative theory that describes these 

interactions. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Several experimental observations and theoretical studies have been done on 

superconductivity and published in refereed journals and books.  In this chapter, 

important theories on superconductivity and literature review are presented.  

2.2 Cuprate Superconductors 

Superconductivity is a quantum mechanical phenomenon like magnetism. A modern and 

well accepted theory to explain superconductivity was developed by Bardeen, Cooper 

and Schrieffer in 1957 (Bardeen et al., 1957) and is usually refereed to as the BCS 

theory. According to this theory, superconducting current was explained as a superfluid 

of Cooper pairs (pairs of electrons interacting through the exchange of phonons). Another 

point to note is that while low resistivity is a necessary condition for a material to be a 

superconductor, it is not sufficient. 

 

Cuprates show a large number of interesting features. Apart from the exceptionally large 

superconducting transition temperature Tc, they exhibit antiferromagnetic (Kiryukhin et 

al., 2001), pseudogap marginal Fermi liquid (Hwang et al., 2004)  and ordinary Fermi 

liquid phases (Varma et al.,1989)  in addition to the superconducting phase. After the 

high-Tc cuprates had been discovered (Bednorz and Muller, 1986), there was initially 

much interest in the electron-phonon interaction (EPI). However, it was soon concluded 

that the EPI alone is too weak to explain high Tc superconductivity, in particular d-wave 

superconductivity, where the interest was focused  purely on electronic models of these 
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compounds. More recently, there has been substantial experimental evidence that the EPI 

plays an appreciable role for a number of properties. Certain phonons show a large 

softening and broadening under doping (Pintschovius, 2005), suggesting a strong 

interaction with doped holes. This is, for instance, seen for the so-called half-breathing 

copper-oxygen bond stretching phonon, apical oxygen phonons and the oxygen B1g 

buckling phonon. Photoemission spectroscopy (PES) experiments show the formation of 

small polarons for the undoped cuprates (Shen et al.,2007) and a kink in the nodal k-

direction also suggests strong EPI (Gunnarsson & Rösch, 2008). While there is only a 

weak isotope effect on Tc for optimally doped samples, a strong isotope effect has been 

seen away from optimum doping (Chen et al., 2007). Recent work suggests that a phonon 

mode plays a role in superconductivity (Xiang et al., 2012) although other interpretations 

are possible (Pilgram et al., 2006). In particular, an isotope effect has been observed 

(Gweon et al., 2004). While the phonon contribution to superconductivity remains 

unclear, it seems clear that phonons can be important to study the properties of high – Tc 

superconductivity.  

 

The EPI has been studied very extensively in the local density approximation (LDA) 

(Kohn & Sham, 1965) of the density functional formalism (Hohenberg et al., 1964) , 

which is particularly appropriate for systems where correlation effects are not very 

strong. This approach has been shown to be very successful for conventional 

superconductors (Flores-Livas et al., 2011). For cuprates (Pickett, 1989) a rather weak 

EPI was found, which alone would not be sufficient to explain the superconductivity 

(Savrasov & Anderson, 1996). However, the calculated width (Bohnen & Krauss, 2003) 
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of the half-breathing phonon is an order of magnitude smaller than the reported 

experimental value (Pintschovius & Braden, 1999),  raising some questions about the 

accuracy of the LDA in this context( Reznik et al.,  2008). This is one of the reasons that 

the interest has recently focused on whether the interplay between the Coulomb 

interaction and the EPI can explain experimental signs of a strong EPI. 

 

Due to the important effects of the Coulomb interaction in these systems, models such as 

the Hubbard and t-J models are often used. In these models phonons couple to charge 

fluctuations. Since charge fluctuations are strongly suppressed in the cuprates by the 

Coulomb interaction, an important issue is if this could mean that the EPI is actually 

suppressed.  

 

In the so-called sudden approximation, angle resolved photoemission spectroscopy 

(ARPES) can be directly related to the one-electron Green’s function. If 

superconductivity is due to bosons coupling to electrons and forming electron pairs, this 

coupling should show up in the one-electron Green’s function. Due to the high interplay 

between electron-phonon and Coulomb interactions in cuprates energy- and k-resolution 

that can now be obtained in ARPES, a lot of interest has focused on ARPES recently. 

ARPES experiments strongly indicate that small polarons are formed for undoped 

cuprates and there are signs of strong phonon side bands (Zhou et al.,2007). This 

indicates that there is a strong EPI for these systems. For weakly underdoped or optimally 

doped cuprates, ARPES experiments show quasiparticles, suggesting that there are no 

small polarons formed in these cases. However, there is still substantial spectral weight in 



18 

 

 

the energy range where phonon side bands would be expected, suggesting that the EPI is 

still substantial. There has been extensive work on polarons and bipolarons in metals, 

treating both electronic properties in general and superconductivity (Alexandrov & Mott, 

1995). 

Since experiments suggest that small polarons are not formed at dopings relevant for 

superconductivity, there was a focus on polaron formation for insulating systems. Due to 

the great interest in cuprates, there have been many reviews covering many aspects of 

these systems (Mandal et al., 2014). 

2.3 Conventional Superconductivity and high – Tc superconductivity. 

Conventional Superconductivity can be understood as instability of a multi- electron 

system due to a phonon – mediated attractive interaction between the electrons resulting 

in the formation of Cooper pairs. Such systems could be understood on the basis of the 

weak coupling BCS Theory (Bardeen et al., 1957). But in the case of Copper Oxide high-

temperature superconductors (HTSC), which exhibit superconductivity at a much higher 

temperature (Bednorz & Müller,1986) than do conventional superconductors, it appears 

that established theories cannot explain the properties of HTSC and a new pairing 

mechanism has to be proposed. As a rule, the 2CuO  compounds are poor conductors, with 

one or two 2CuO  planes, which are separated by insulating oxide layers. It is believed 

that the  2CuO  layers form a charge reservoir with pairing interaction, and 

simultaneously these layers insulate the buffer layers(Gulacsi & Chan, 2001). It is well 

understood that due to the virtual charge excitations in oxygen-copper, an attraction 

appears at the oxygen ion sites. 
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2CuO planes or layers are regarded as the most important ingredients in achieving the 

high transition temperatures in superconductors. There appears to be a strong on-site 

attraction. A huge variation in the effective spin correlation is observed, and this changes 

sign with increasing oxygen-copper hopping. This can lead to changes in the on-site 

energies of oxygen (Ep) and copper (Ed).  The energy gap ∆E for the charge transfer is 

p dE E E  
         

(2.1) 

The hybridization enargy between copper and oxygen bands is represented by pdt . The 

repulsion between the holes occupying the same 223
yx

d


 orbital is du . Consequently, the 

Hamiltonian will contain two new terms. One will be due to the oxygen-copper spin 

exchange, pdj ; and the second will be the oxygen-copper inter-site repulsion , pdu , term. 

 Thus there will be a new term in the Hamiltonian, and this will be the correlated oxygen-

copper hopping term of the form  )),(),(),( hcajdaippain 









   with a co-

efficient denoted by p

pdt .The presence of this new term will have a significant impact on 

the behavior of HTSC and in understanding the charge dynamics of the HTSC systems. 

 

Hence in the second quantization notation, the Hamiltonian H can be written as  

 

 , , , ,
, ,

p d d d

P i d j pd i a j a d j j
i j i j a j

H E n E n t p d hc u n n

 
       

  (2.2)

 

 

where p and d refer to the oxygen and copper ions, respectively. The first term in eq. 

(2.2) represents the energy of oxygen ions while the second term, the energy of the 
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copper ions (Gulacsi & Chan, 2001). The third term represents the energy due to the 

hybridization between copper and oxygen bands, and the fourth term represents the 

repulsion between the holes occupying the same copper orbital. 

There are two new processes that can generate new terms, not present in the Hamiltonian 

given by equation (2.2). One of these new terms is a correlated oxygen-copper hopping 

term of the form  

)( ,, hcdpn jaai

p

i 

         
(2.3)

 

with a co-efficient denoted by; p

pdt . The presence of the new term will have a significant 

impact on the behavior of HTSC and in understanding the charge dynamics of the HTSC 

systems. The second term will be completely new oxygen on-site coupling term 

represented by pu and of the form 

p

i
i

p

ip nnu
 ,,

                   (2.4) 

The total Hamiltonian of the system will be the sum of equations (2.2) and the 

expressions (2.3) and (2.4) ; and the resultant Hamiltonian can be used to study  the 

phenomena of the HTSC.  

 

However, quite a large amount of research (Kaldis, et al., 2012) in the field of high-

temperature superconductivity suggests that the interaction in novel super-conductors is 

essentially repulsive and unretarted but it provides high-Tc without any phonons. On the 

other hand if it is assumed that Cooper pairing of repulsive fermions is possible, then the 

cT of repulsive fermions is very low. Such models and BCS like theories fail to describe 
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the properties of high- cT cuprates .It can therefore be said that models of this type are 

highly conflicting and confusing. 

 

2.4 Theoretical Models 

A number of theoretical models have been proposed to explain the mechanism of high 

temperature superconductivity. Some of the models are described below. 

2.4.1 Fermi – liquid Model 

A significant fraction of research in the field of high-temperature superconductivity 

suggests that the interaction in novel superconductors is essentially repulsive and 

unretarted, but it provides high Tc without any phonons (Anderson, 2004) .Earlier work 

(Kohn & Luttinger, 1965) showed that the Cooper pairing of repulsive fermions is 

possible. However, the same work showed that Tc of repulsive fermions is extremely low, 

well below the milliKelvin scale. Nevertheless, the BCS and BCS-like theories (including 

the Kohn–Luttinger consideration) heavily rely on the Fermi-liquid model of the normal 

state. This model fails in cuprates, so that there are no obvious reasons to discard the 

dogma, if the normal state is not the Fermi liquid. Strong on - site repulsive correlations 

(Hubbard U) are essential in undoped (parent) cuprates, which are insulators with an 

optical gap about 2 eV or so. Indeed, if repulsive correlations are weak, one would expect 

a metallic behaviour of a half-filled d-band of copper, or, at most, a much smaller gap 

caused by lattice and spin distortions (Gabovich et al., 2001). It is a strong onsite 

repulsion of d-electrons which results in the “Mott” insulating state of parent cuprates. 

Different from conventional band structure insulators with completely filled or empty 
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Bloch bands, the Mott insulator arises from a potentially metallic half-filled band as a 

result of the Coulomb blockade of electron tunneling to neighbouring sites (Mott, 1990).  

2.4.2 Hubbard Model 

Hubbard model describes high-Tc superconductivity at finite doping. However some 

authors could not find any superconducting instability without an additional electron–

phonon interaction (Sherman & Ambrose, 2000). Therefore, it has been concluded that 

model of this kind are highly conflicting and confuse the issue by exaggerating the 

magnetism rather than clarifying it ( Alexandrov, 2007). There is another serious problem 

with the Hubbard-U approach to high-temperature superconductivity in the cuprates. The 

characteristic (magnetic) interaction, which might be responsible for the pairing in the 

Hubbard model, is the spin exchange interaction, J = 4t2/U, of the order of 0.1 eV. It turns 

out much smaller than the (intersite) Coulomb repulsion and the unscreened long-range 

(Frohlich) electron–phonon interaction each of the order of 1 eV, routinely neglected 

within the approach. There is virtually no screening of electron–phonon interactions with 

c-axis polarised optical phonons in cuprates because the upper limit for the out-of-plane 

plasmon frequency = 200 cm−1 (Bozovic et al., 1994) is well below the characteristic 

phonon frequency, ω ≈ 400–1000 cm−1. Because of the poor screening, the magnetic 

interaction remains small compared with the Frohlich interaction at any doping. Hence, 

any realistic approach to superconductivity and heterogeneity in cuprates should treat the 

Coulomb and unscreened electron – phonon interactions on the same footing.  

2.4.3 Frohlich – Coulomb Model 

The “Frohlich– Coulomb” model was developed to deal with the strong Coulomb and 

long-range electron–phonon interactions in cuprates and other doped oxides (Alexandrov, 
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2003). The model Hamiltonian explicitly includes the long-range electron–phonon and 

Coulomb interactions as well as the kinetic and deformation energies. The implicitly 

present large Hubbard term prohibits double occupancy and removes the need to 

distinguish fermionic spins. Introducing spinless fermionic, cn, and phononic, dm, 

operators, the Hamiltonian of the model is written as 

 

' ' ', '
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where e is the polarization vector of the vibration coordinate, um−n ≡ (m − n)/|m − n| is 

the unit vector in the direction from electron n to the ion m, g(m − n) is a dimensionless 

electron – phonon coupling function, and )'( nnVc  is the intersite Coulomb repulsion. 

gα(m − n) is proportional to the force acting between an electron on site n and an ion m. 

For simplicity, we assume that all the phonon modes are dispersionless with frequency 

ωα. The Hamiltonian, Eq. (2.5), can be solved analytically in the extreme case of the 

strong electron – phonon interaction with the electron – phonon dimensionless coupling 

constant λ = Ep/zt >1 using 1/λ multi-polaron expansion technique (Alexandrov, 2003). 

 Here Ep =
22 ))(( n

n

a ueng  



 , is the polaronic level shift about 1 eV and zt is the half 

bandwidth in a rigid lattice.  

 

The model shows a phase transition depending on the ratio of the intersite Coulomb 

repulsion Vc and the polaronic (Franc–Condon) level shift Ep ( Alexandrov & 

Kornilovitch,2002). The ground state is a polaronic Fermi liquid at large Coulomb 
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repulsion, a bipolaronic high-temperature superconductor at intermediate Coulomb 

repulsions, and a charge-segregated insulator at weak repulsion. The model predicts 

superlight bipolarons with a remarkably high superconducting critical temperature. It 

describes many other properties of the cuprates in particular the isotope effects, normal 

state thermomagnetic transport and real-space modulations of the single-particle density 

of states (DOS). 

 

2.4.4. Coulomb Interaction and Hopping Model 

The Coulomb interaction plays an important role in the cuprates. A frequently used 

model for describing this is the three-band model (Emery, 1987), which includes a  

Cux2 − y2 3d orbital and two O orbitals in a CuO2 plane. The model includes the Cu-O 

hopping integrals and the Coulomb interaction between two electrons on the Cu orbital 

given by the Hamiltonian 
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where εd and εO are the energies of the Cu and O atoms, respectively.  describes the O 

atom positions in the unit cell and runs over (a/2, 0) and (0, a/2) in the second term and 

over (±a/2, 0) and (0,±a/2) in the third term, where ‘a’ is the lattice parameter.  PP 

, 1P  for δ = (a/2, 0) and 1P  for δ = (0, a/2), 

ic creates a Cu electron with spin σ, 



ia  creates an O electron and  ii ccn  . U is the Coulomb interaction and pdt  is a 

hopping integral. 
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2.4.5. t – J model 

From Coulomb interaction and hopping model, the t-J model was derived (Zhang & Rice, 

1988), where each site corresponds to a Cu atom in the CuO2 plane. In the undoped 

system, corresponding to all Cu atoms being in d9 configurations, each site is occupied by 

one hole. In a hole doped system, the holes go primarily onto the O sites. Such an O hole 

forms a Zhang-Rice singlet with a Cu hole (Zhang & Rice, 1988). A Zhang-Rice singlet 

is described by an empty site in the t-J model. 

The corresponding Hamiltonian is 

1
( . ) ( . )

4
t J i j i j i j

i j i j

H t c c H c J S S n n 






   

                   (2.7) 

where <ij> refers to a sum over nearest neighbor pairs, and 

ic  creates a hole of spin σ on 

site i if this site was previously empty. Si is the spin and 
  iii ccn


   is the number of 

holes on sites i. 

The breathing (oxygen bond-stretching) phonons have attracted much interest due to the 

observation of an anomalous softening and broadening of these phonons when the system 

is doped (Graf et al., 2008). That these phonons may have a strong coupling can be 

understood by noticing that the formation of the Zhang-Rice singlet in the t-J model 

involves a large energy of the order of several eV. For a system without phonons and a 

fixed number of doped holes, this energy only enters as an uninteresting constant. If 

phonons are added, however, the singlet energy can be modulated by the phonons. This is 

the case for the breathing phonons, where the O atoms in the CuO2 plane move in the 

direction of the Cu atoms, thereby changing the bond lengths. This directly modulates the 

Cu-O hopping integrals tpd (in a three-band model) determining the Zhang-Rice singlet 
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energy and leads to a substantial coupling. This has been discussed by several groups 

(Horsch and Khaliullin, 2005). A general formula for this coupling was given (Rosch and 

Gunnarson, 2004), considering both the modulation of the Cu-O hopping integrals and 

shifts of the levels due to Coulomb interactions. It was found that the main coupling is an 

on-site coupling due to the modulation of the Cu-O hopping integrals. One reason for this 

result is that the hopping integrals in the t-J model, obtained after the O levels have been 

projected out, are about an order of magnitude smaller than the on-site singlet energy. 

This strongly favors the on-site electron-phonon interaction over the coupling to the t-J 

hopping integrals (Sentef et al., 2013).  

2.4.6 One-band Hubbard Model 

This model is often used and the Hamiltonian is given by 

 


 
i

iiij

ij

iHub nnUcHcctH .).(



                           (2.8) 

The t-J model can also be derived from the Hubbard model in the large U limit if certain 

terms are neglected (Auerbach, 2012). 

2.4.7. Holstein Model 

Often, the electron-phonon interaction is treated in a Holstein model, where there is an 

on-site coupling to one local Einstein phonon per site. This corresponds to a k and q 

independent coupling 

0),( gqkgHol                  (2.9) 

where g0 is the coupling constant, and a q independent phonon frequency ωq,Hol= ωph. 

2.5. Electronic Structures of High Temperature Superconductors 
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A common structural feature of all cuprate superconductors is the CuO2 plane which is 

responsible for the low lying electronic structure. The CuO2 planes are sandwiched 

between various block layers which serve as charge reservoirs to dope CuO2 planes 

(Maekawa, 2012). For the undoped parent compound, such as La2CuO4, the valence of 

Cu is 2+, corresponding to 3d9 electronic configuration. Since the Cu2+ is surrounded by 

four oxygens in the CuO2 plane and apical oxygen(s) or halogen(s) perpendicular to the 

plane, the crystal field splits the otherwise degenerate five d-orbitals, as schematically 

shown in Figure 2.1 (Pickett, 1989).  

 

 

Figure 2.1: Bonding in CuO2 plane (Pickett, 1989) 
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The atomic Cu 3d level is split due to the cubic crystal field into eg and t2g states. There is 

a further splitting due to an octahedral crystal field into x2 - y2, 3z2 - r2, xy, and xz, yz  

states. For divalent Cu which has nine 3d electrons, the uppermost x2 - y2 level is half  

filled, while all other levels are completely filled. There is a strong hybridization of the 

Cu  states, particularly the x2 - y2 states, with the O 2p states thus forming a half-filled   

two  dimensional Cu 3 dx2−y2 -O 2px,y  antibonding dp band. The hybridization of the 

other 3d levels is smaller and is indicated in Figure (2.1) only by a broadening 2px,y 

character.  

The four lower energy orbitals, including xy, xz, yz and 3z2 - r2, are fully occupied, while 

the orbital with highest energy, x2-y2, is half-filled. Since the energies of the Cu d-orbitals 

and O 2p-orbitals are close, there is a strong hybridization between them. As a result, the 

topmost energy level has both Cu dx
2

−y
2and O 2px,y character. The same conclusion is 

also drawn from band structure calculations (Pickett, 1989). 
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Figure 2.2: LDA calculated band structure of La2CuO4 (Pickett, 1989) 

In Figure 2.2(a), the band labeled B is bonding band between Cu- 3dx2−y2 and O - 2p 

states while the band labeled A is the corresponding antibonding band that is half-filled; 

Figure 2.2(b) is the Schematic of Zhang- Rice singlet state; Figure 2.2 (c) is the 

Schematic energy diagrams for undoped and doped CuO2  planes. (c1) is the band picture 

for a half-filled (undoped) CuO2 plane (Fermi liquid); (c2) is the charge-transfer 

insulating state of the CuO2 plane with split Cu 3d bands due to on-site Coulomb 

repulsive interaction U. 
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The O 2p band is separated by a charge transfer energy ET from the upper Cu 3d band; 

(c3) and (c4) show rigid charge transfer energy bands doped with holes and electrons, 

respectively; (c4). Formation of mid-gap states inside the charge transfer gap. 

 

According to both simple valence counting (Fig.2.1) and band structure calculation 

(Fig.2.2a), the undoped parent compound  is supposed to be a metal. However, strong 

Coulomb interactions between electrons on the same Cu site make it an antiferromagnetic 

insulator with an energy gap of 2 eV (Lee et al, 2006). The basic theoretical model for 

the electronic structure most relevant to our discussion is the multi-band Hubbard 

Hamiltonian (Sénéchal et al.,2002) containing d states on Cu sites, p states on O sites, 

hybridization between Cu-O states, hybridization between O-O states, and Coulomb 

repulsion terms. In terms of hole notation, i.e., starting from the filled-shell configuration 

(3d10, 2p6) corresponding to a formal valence of Cu1+and O2−, the general form of the 

model can be written as (Wagner et al., 1991):  
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where the operator  

id creates Cu (3dx
2

−y
2)holes at site i, and  

lp creates O(2p) holes at 

the site i. Ud is the onsite Coulomb repulsion between two holes on a Cu site. The third 

term accounts for the direct overlap between Cu-O orbitals. The fifth term describes 

direct hopping between nearest-neighbor oxygens, and Upd in the sixth term is the nearest 
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neighbor Coulomb repulsion between holes on Cu and O atoms. Qualitatively, this model 

gives the energy diagram in Fig.2.2c. 

 

 Simplified versions of model Hamiltonians have also been proposed. Notably among 

them are the single-band Hubbard model (Anisimov et al., 2004) and t-J model (Sirker & 

Klümper, 2002). The t-J Hamiltonian can be written in the following form (Bazak, 2013): 
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where the operator )1( ,  

  iii ncc


 excludes double occupancy, J = 4t2/U is the 

antiferromagnetic exchange coupling constant, Si is the spin operator, ,ic


 is the 

projected annihilation operator, ,ic is the annihilation operator for the electron and  

 ,,, iii ccn  . Since the hopping process may also involve the second (t′ ) and third (t”) 

nearest neighbor, an extended t-J model, the t− t ′−t”−J model, has also been proposed 

(Tohyama & Maekawa, 2000).  

 

2.6. Brief Summary of Some Latest ARPES Results 

Angle resolved photoemission spectroscopy (ARPES) has provided key information on 

the electronic structure of high temperature superconductors, including the band 

structure, Fermi surface, superconducting gap, and pseudogap. These topics are well 
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covered in recent reviews (Campuzano et al., 2004). A brief summary of some of the 

latest developments not include before are given as follows. 

2.6.1Band Structure and Fermi Surface 

The bi-layer splitting of the Fermi surface is well established in the overdoped Bi2212 

(Ding et al., 2001) as shown in Fig.2.3 and also suggested to exist in under doped and 

optimally doped Bi2212 ( Chuang et al.,2004). Recent measurements also show that there 

is a slight splitting along the (0,0)-(π,π) nodal direction. The measurement on four-

layered Ba2Ca3Cu4O8F2 has identified at least two clear Fermi surface sheets (Zhou et al., 

2007).  

 

 

Figure 2.3: Experimentally measured Fermi surface and calculated Fermi surface in 

Pb-doped Bi2212 (Zhou et al., 2007). 
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2.6.2 Superconducting Gap 

Since the first identification of an anisotropic superconducting gap in Bi2212 (Schabel, 

1998), subsequent measurements on the superconductors such as Bi2212(Kordyuk,2003), 

Bi2201(Sato,2001), Bi2223(Muller, 2002), YBa2Cu3O7−δ (Zhang et al.,2006), 

LSCO(Ino et al.,1999) have established a universal behavior of the anisotropic 

superconducting gap in these hole-doped superconductors which is consistent with d-

wave pairing symmetry (although it is still an open question whether the gap formed is a 

simple d-wave-like    )cos()cos(0 kyakxak   or higher harmonics of the expansion 

should be included). The measurements on electron-doped superconductors also reveal an 

anisotropic superconducting gap (Matsui, 2005). One interesting issue is, if a material has 

multiple Fermi surface sheets, whether the superconducting gap on different Fermi 

surface sheets is the same. This issue traces back to superconducting SrTiO3 where it was 

shown from tunneling measurements that different Fermi surface sheets may show 

different Fermi surface gaps (Yokoya et al., 2001). With the dramatic advancement of the 

ARPES technique, different superconducting gaps on different Fermi surface sheets have 

been observed in 2H-NbSe2 (Yokoya,2006) and MgB2(Lorenz,2006). For high-Tc 

materials, Bi2212 shows two clear FS sheets, but no obvious difference of the 

superconducting gap has been resolved (Zhou et al., 2006).  

2.6.3. Time Reversal Symmetry Breaking  

It has been proposed theoretically that, by utilizing circularly polarized light for ARPES, 

it is possible to probe time-reversal symmetry breaking that may be associated with the 

pseudogap state in the underdoped samples (Li et al., 2010). The observation of such an 

effect had been reported earlier (Kaminski et al., 2002). However, this observation is not 
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reproduced by another group (Borisenko et al., 2004) and the subject remain 

controversial (Lu, 2012). 

2.7. Electron-phonon Coupling in High Temperature Superconductors 

It is well-known that, in conventional superconductors, electron-phonon (el-ph) coupling 

is responsible for the formation of Cooper pairs (Bardeen et al., 1957). The discovery of 

high temperature superconductivity in cuprates was actually inspired by possible strong 

electron-phonon interaction in oxides owing to polaron formation or in mixed-valence 

systems (Bednorz & Müller, 1986). However, shortly after the discovery, a number of 

experiments led some researchers to believe that electron-phonon coupling may not be 

relevant to high temperature superconductivity (Reznik, 2006). But now there are many 

experimental observations and theoretical calculations that emphasize the effectiveness of 

EPI (Plakida, 2010). 

2.7.1 Many – Body Effect 

The many-body effect refers to interactions of electrons with other entities, such as other 

electrons, or collective excitations like phonons, magnons, and so on. It has been 

recognized from the very beginning that many-body effects are key to understanding 

cuprate physics. Due to its proximity to the antiferromagnetic Mott insulating state, 

electron-electron interactions are extensively discussed in the literature (Yoshida et al., 

2007). This study will mostly review the recent progress in understanding of electrons 

interacting with bosonic modes, such as phonons. This progress stems from improved 

sample quality, instrumental resolution, as well as theoretical development. In a complex 

system like the cuprates, it is not possible to isolate various degrees of freedom as the 

interactions mix them together. One may discuss the electron-boson interactions in this 
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spirit, and will comment on the interplay between electron-phonon and Coulomb 

interactions whenever appropriate. Here, bosonic modes refer to collective modes with 

sharp collective energy scale such as the optical phonons and the famous magnetic 

resonance mode seen in some cuprates (Yu et al.,2010), but not the broad excitation 

spectra such as those from the broad electron/spin excitations as these issues have been 

discussed in previous reviews. Furthermore, it is believed the effects due to sharp mode 

coupling seen in cuprates are caused by phonons rather than the magnetic resonance. The 

reason for not attributing the observed effect to magnetic resonance will become apparent 

from the rest of the write up. With more limited data, different groups have taken the 

view that the magnetic resonance is the origin of the boson coupling effect. For this 

reason, one may focus more on our own results in reviewing the issues of electron-

phonon interaction in cuprates. The electron-phonon interactions can be characterized 

into two categories: (i). Weak coupling where one can still use the perturbative self-

energy approach to describe the quasiparticle and its lifetime and mass; (ii). Strong 

coupling and polaron regime where this picture breaks down. 

2.7.2 High critical transition temperature Tc 

So far, the highest Tc achieved in cuprate superconductors is 135 K in HgBa2Ca2Cu3O8 

(Uchida, 2015). Such a high-Tc was not expected in simple materials using the strongly 

coupled version of BCS theory, or the McMillan equations (Dal Conte, 2012). 

2.7.3 Isotope Effect in High Cuprate Superconductors 

The discovery of superconductivity in La2−xBaxCuO4 (Bednorz & Muller, 1986) 

prompted a burst of experimental and theoretical investigations in these systems in order 

to clarify the microscopic pairing mechanism for high temperature superconductivity. 
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However, the mechanism is still highly controversial because the opinions as regards the 

role of electron - phonon interaction vary widely (Hardy, et al., 2009). Also, the 

unprecedentedly high transition temperatures in some cuprates were difficult to reconcile 

with the conventional phonon mediated mechanism which could account for a maximum 

𝑇𝐶 of 30K (Pasupathy, 2008). Existence of short coherence length raises further 

challenges against BCS theory. Cuprates have a complex structure as compared to 

elemental superconductors and essentially have layered character, confirmed by the 

anisotropy of their properties. Usually, cuprates consist of four layers: (a) Conducting  

layer (i.e CuO2 planes), (b) separating Layer typically like Ca or Y, (c)  bridging layer 

typically like BaO, LaO or SrO, and (d) additional layer like BiO, HgO or TlO. 

Superconductivity is believed to take place in CuO2 planes which are present in all high 

𝑇𝐶 superconductors, but the number of CuO2 planes varies among the different families 

of cuprates, ranging from a single-layer up to an infinite-layer structure. Thus, the 

existence of layer structure introduces complexity in the investigation of isotope effect in 

cuprates.  

2.7.4 Transport Measurement 

The linear resistivity-temperature dependence in optimally doped samples and the lack of 

a saturation in resistivity over a wide temperature range have been taken as an evidence 

of weak electron-phonon coupling in the cuprate superconductors (Johnston et al., 2010). 

 

2.7.5 d-wave Symmetry of the Superconducting Gap 

The electron-phonon interaction, which plays a vital role in conventional 

superconductors, may not account fully for superconductivity in the cuprates. A natural 
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explanation for the d-wave gap symmetry and for the magnitude and doping dependence 

of Tc has been given in terms of an effective spin spin interaction (t-J model) between the 

carriers on the border of a Mott transition and antiferromagnetism.  As in the original 

BCS theory we consider an effective pairing Hamiltonian but now for the exchange 

interaction rather than the electron-phonon interaction. For a single tight-binding band 

near half filling on the border of the Mott transition, we consider the Hamiltonian 

j

ij

ieffi

ij

jeff SSJhccctH  


 )(       (2.12) 

where <ij>denotes sum over nearest neighbor, (nn) pairs of sites, teff is the effective nn 

hopping matrix element, Jeff(>0) is the effective exchange constant, ciσ destroys an 

electron of spin index σ on atomic site I and Si is the electron spin on site i.  

 

2.7.6 Structural Instability 

 It is generally believed that sufficiently strong electron-phonon coupling to yield high Tc 

will result in structural instability (Pasupathy, 2008). Although none of these 

observations can decisively rule out the electron - phonon coupling mechanism in high- 

Tc superconductors, overall they suggest a different approach. Instead, strong electron-

electron correlation has been proposed to be the mechanism of high-Tc superconductivity 

(Cuk et al., 2005).This approach is attractive since d−wave pairing is a natural 

consequence. Furthermore, the high temperature superconductors evolve from 

antiferromagnetic insulating compounds where the electron-electron interactions are 

strong (Comanac et al., 2008).  However, there is a large body of experimental evidence 

also showing strong electron-phonon coupling in high-temperature superconductors 

(Kordyuk, 2011).  
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2.7.7 Optical Spectroscopy and Raman Scattering 

Raman scattering (Le Tacon, et al., 2006) and infrared spectroscopy (Dubroka, 2011) 

reveal strong electron-phonon interaction for certain phonon modes. In YBa2Cu3O7−δ, it 

has been found that, the B1g phonon, which is related to the out-of-plane, out-of-phase, in 

plane oxygen vibrations , exhibits a Fano-like lineshape (Fig.2.4) and shows an abrupt 

softening upon entering the superconducting state (Graf., 2008). 

 

 

Figure 2.4: Anomalous softening of the B1g phonon when YBCO is cooled below Tc 

(Zhou et al., 2006) 
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In Fig. (2.4), the inset shows the fit of a Fano function to the phonon peak at T=72K. 

(Zhou et al.,  2006). The A1gmodes, as found in HgBa2Ca3Cu4O10 (Hg1234) 

(Hadjiev,1998) and in HgBa2Ca2Cu3O8 (Hg1223)( Zhou, 1997), exhibit especially strong 

superconductivity-induced phonon softening( Fig.2.5). 

 

Figure 2.5: Raman spectra of Hg1234 (Zhou et al., 2007). 

Figure 2.5 shows a giant superconductivity-induced mode softening across Tc=123 K . 

The modes at 240 cm−1 and 390 cm−1 correspond to A1g out-of-plane, in-phase vibration 

of oxygen in the CuO2 planes. Upon cooling from room temperature to 4.5 K, the 240 

cm−1 A1g mode shows an abrupt drop in frequency at Tc from 253 to 237 cm−1 and the 

390 cm−1 mode drops from 395 to 317 cm−1(Zhou et al., 2007). 
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Infrared reflectance measurements on various cuprates found that the frequency of the 

Cu-O stretching mode in the CuO2 plane is very sensitive to the distance between copper 

and oxygen (Carbone et al., 2010) 

 

Figure 2.6: Variation of scattering intensity with energy shift in LSCO (Kim et al., 

2004). 
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The sharp structures in Figure 2.6 at high frequency are signals from multiphonon 

processes, which can only occur if the electron-phonon interaction is very strong 

(Gadermaier, 2010). One can see that this effect is very strong in undoped and deeply 

underdoped regime, and gets weaker with doping increase. 

 

2.7.8 Neutron Scattering 

Neutron scattering measurements have provided rich information about electron-phonon 

coupling in high temperature superconductors (Reznik, 2012).  

 

Figure 2.7: Dispersion of the Cu-O bond-stretching vibrations (Ohkawa, 2007). 

As seen from Figure 2.7, the in-plane “half-breathing” mode exhibits strong frequency 

renormalizations upon doping along (001) direction (Ohkawa, 2007). In La1.85Sr0.15 

CuO4, it is reported that, at low temperature, the half-breathing mode shows a 
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discontinuity in dispersion (Fig.2.7b) (Mc Queen, 1999). In YBCO, neutron scattering 

indicates that the softening of the B1g mode upon entering the superconducting state is not 

just restricted near q=0, as indicated by Raman scattering (Fig.2.6), but can be observed 

in a large part of the Brillouin zone (Fig.2.7) (Fong, 1995). 

 

2.7.9 Material and Structural Dependence 

There is a strong material and structural dependence to the high-Tc superconductivity 

(Armitage, 2002), as exemplified in Figure 2.8 below.  

 

Figure 2.8: q dependence of B1g mode peak position at different temperatures in 

YBCO (Armitage, 2002) 

In Fig. 2.9, the range parameter, r is controlled by the energy of the axial orbital, a hybrid 

between Cu 4s, apical-oxygen 2pz, and farther orbitals (Pavarini et al., 2001). Filled 

squares represent single-layer materials and most bonding sub - band for multilayer while 
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empty squares represent most antibonding sub - band. Half-filled squares represent 

nonbonding sub - band. Dotted lines connect sub - band values. Bars give kz dispersion 

of r in primitive tetragonal materials. 

 

Figure 2.9: Correlation between calculated range parameter r and observed Tc max 

Empirically it is found that, for a given homologous series of materials, the optimal Tc 

varies with the number of adjacent CuO2 planes, n, in a unit cell: Tc goes up first with n, 

reaching a maximum at n=3, and goes down as n further increases. For the cuprates with 

the same number of CuO2 layers, Tc also varies significantly among different classes. For 

example, the optimal Tc for one-layered (La 2−xSrx)CuO4 is 40K while it is 95K for one-

layered HgBa2CuO4. These behaviors are clearly beyond simplified models that consider 

CuO2 planes only, such as the t−J model. In fact, such effects were taken as evidence 

against theoretical models based on such simple models and in favor of the interlayer 
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tunneling model (Leggett, 1996). Although the interlayer tunneling model has 

inconsistencies with some experiments, the issue that the material dependence cannot be 

explained by single band Hubbard and t-J model remains to be true. 

The above results suggest that the lattice degree of freedom plays an essential role. 

However, the role of phonons has not been scrutinized as much, in particular in regard to 

the intriguing question of whether high- Tc superconductivity involves a special type of 

electron- phonon coupling. In other words, the complexity of electron-phonon interaction 

has not been as carefully examined as some of the electronic models. As a result, many 

naive arguments are used to argue against electron - phonon coupling as if the 

conclusions based on simple metals are applicable here. Recently, a large body of 

experimental results from angle-resolved photoemission, as we review below, suggest 

that electron-phonon coupling in cuprates is not only strong but shows behaviors distinct 

from conventional electron-phonon coupling. In particular, the momentum dependence 

and the electron-phonon interaction are very important.  

2.8. Electron-Phonon Interaction and Strong Electron Correlation 

Theory of electron – phonon interaction in the presence of strong electron correlation has 

not been developed. Given both interactions are important in cuprates, it is difficult to 

have a good way to address these issues. In fact, it is believed that an important outcome 

of this research is the stimulus to develop such a theory. In the meantime, the strategy is 

to separate the problem in different regimes and see to what extent a heuristic 

understanding of the experimental data can be developed. Such empirical findings can 

serve as a guide for comprehensive theory. The theories of electron-phonon coupling in 

condensed matter have been developed rather separately for metals and insulators. In the 
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former case, the dominant energy scale is the kinetic energy or the Fermi energy F  on 

order of 1 − 10eV, and the phonon energy  ∼ 1−100meV is much smaller. The Fermi 

degeneracy protects the many-body fermion system from perturbations and only the 

small energy window near the Fermi surface responds. Therefore even if the lattice 

relaxation energy ELR= g2/ω for the localized electron is comparable to the kinetic energy 

F the electron - phonon coupling is essentially weak and the perturbative treatment is 

justified. The dimensionless coupling constant λ is basically the ratio of ELR/ F , which 

ranges λ ∼= 0.1 − 2 in the usual metals. In the diagrammatic language, the physics 

described above is formulated within the framework of the Fermi liquid theory (Clarke et 

al., 1995). The electron-electron interaction is taken care of by the formation of the quasi-

particle, which is well-defined near the Fermi surface, and the electron –phonon vertex 

correction is shown to be smaller by the factor of F/  and can be neglected. Therefore 

the multi-phonon excitations are reduced and the single-loop approximation or at most 

the self-consistent Born approximation is enough to capture the physics well, i.e., 

Migdal-Eliashberg formalism. When a carrier is put into an insulator, on the other hand, 

it stays near the bottom of the quadratic dispersion and its velocity is very small. The 

kinetic energy is much smaller than the phonon energy, and the carrier can be dressed by 

a thick phonon cloud and its effective mass can be very large. This is called the phonon 

polaron. Historically the single carrier problem coupled to the optical phonon through the 

long range Coulomb interaction, i.e., Fr¨ohlich polaron, is the first studied model, which 

is defined in the continuum. When one considers the tight-binding models, which is more 

relevant to the Bloch electron, the bandwidth W plays the role of εF in the above metallic 

case. Then again we have three energy scales, W, ERL, and   . Compared with the 
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metallic case, the dominance of the kinetic energy is not trivial, and the competition 

between the itinerancy and the localization is the key issue in the polaron problem, which 

is controlled by the dimensionless coupling constant λ = ERL/W. Another dimensionless 

coupling constant is S = ERL/ , which counts the number of phonon quanta in the 

phonon cloud around the localized electron. This appears in the overlap integral of the 

two phonon wavefunctions with and without the phonon cloud as:  

<phonon vacuum | phonon cloud >∝e−S     (2.13) 

This factor appears in the weight of the zero-phonon line of the spectral function of the 

localized electron, and S can be regarded as the maximum value for the number of 

phonons Nph near the electron. In a generic situation, Nph is controlled by λ, and there are 

cases where Nph shows an (almost) discontinuous change from the itinerant undressed 

large polaron to the heavily dressed small polaron as λ increases. This is called the self 

trapping transition. Here a remark on the terminology “self-trapping” is in order. Even for 

the heavy mass polaron, the ground state is the extended Bloch state over the whole 

sample and there is no localization. However a small amount of disorder can cause the 

localization. Therefore in the usual situation, the formation of the small polaron implies 

the self-trapping, and we use this language to represent the formation of the thick phonon 

clouds and huge mass enhancement. In cuprates, it is still a mystery why the transport 

properties of the heavily underdoped samples do not show the strong localization 

behavior even though the ARPES shows the small polaron formation. The electron - 

phonon coupling in cuprates depends on the hole doping concentration, momentum and 

energy. The half-filled undoped cuprate is a Mott insulator with antiferromagnetic 

ordering, and a single hole doped into it can be regarded as the polaron subjected to the 
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hole-magnon and hole-phonon interactions. At finite doping, but still in the 

antiferromagnetic (AF) order, the small hole pockets are formed and the hole kinetic 

energy can be still smaller than the phonon energy. In this case the polaron picture still 

persists. The main issue is to what range this continues. One scenario is that once the 

antiferromagnetic order disappears the metallic Fermi surface is formed and the system 

enters the Migdal-Eliashberg regime. However, there are several physical quantities such 

as the resistivity, Hall constant, optical conductivity, which strongly suggest that the 

physics still bears a strong characteristic of doped holes in an insulator rather than a 

simple metal with large Fermi surface. Therefore the crossover hole concentration xc 

between the polaron picture and the Migdal - Eliashberg picture remains an open issue. 

Probably, it depends on the momentum/energy of the spectrum. For example, the 

electrons have smaller velocity and are more strongly coupled to the phonons in the anti-

nodal region near (±π, 0), (0,±π), remaining polaronic up to higher doping, while in the 

nodal region, the electrons behave more like the conventional metallic ones since the 

velocity is large along this direction. Furthermore, the low energy states near the Fermi 

energy are well described by Landau’s quasi-particle and Migdal- Eliashberg theory, 

while the higher energy states do not change much with doping even at x   0.1 

(Anderson et al., 2004) suggestive of polaronic behavior. In any event, the dichotomy 

between the hole doping picture and the metallic (large) Fermi surface picture is the key 

issue in the research of high Tc superconductors. 
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2.9. Weak Coupling – Perturbative and Self-Energy Description 

First, the Migdal-Eliashberg regime is reviewed, in which the electron-phonon interaction 

results in single-phonon excitations and can be considered as a perturbation to the bare 

band dispersion. In this case, dominant features of the mode coupling behavior can be 

captured using the following form for the self-energy: 

3

,

3

2 ),(),(),(/),(  iviwqkGwqDqkgNTwkE
vq
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    (2.14) 

where
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


  is the phonon propagator, q is the phonon energy, T is 

temperature, N is the number of particles and τ3 is the Pauli matrix and G


 is the 

corresponding Green’s function. 

 

In this form of the self-energy, corrections to the electron-phonon vertex, g, are neglected 

as mentioned above (Reizer, 1989). Furthermore, we assume only one-iteration of the 

coupled self-energy and Green’s function equations. In other words, in the equation for 

the self- energy, E, we assume bare electron and phonon propagators, G0 and D0. With 

these assumptions, the imaginary parts of the functions Z, χ, and φ, denoted as Z2, 2 , 

and φ2, are: 
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where f(x),n(x), are the Fermi, Bose distribution functions and Ek is the superconducting 

state dispersion,  

222

kkkE            (2.16) 

The above equations are essentially those of Eliashberg theory for strongly-coupled 

superconductors. Although λ can be large (>1), i.e., “strongly-coupled”, the vertex 

corrections and multi-phonon processes are still negligible due to the Fermi degeneracy 

and small FE/ / (Wolf, 2011). 

 

2.10 Weak coupling and Non-interacting Electrons 

2.10.1. Electron Self-energy 

The electron-phonon interaction is often studied assuming that the electrons are non-

interacting. This is a quite unrealistic assumption for the cuprates, where the electron-

electron interaction is crucial. Below, nevertheless some of the results (Calandra & 

Mauri, 2007) for this case are given, since they provide a basis for discussing similarities 

and deviations for strongly correlated systems.  
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The electrons are described by the Hamiltonian 





 kk

k

knon ccH             (2.18) 

where εk is the energy for the wave vector k and   is the spin index. The electrons are 

assumed to couple to phonons via the Holstein model (Macridin et al., 2012). The 

retarded electron self – energy to lowest order in the coupling  for T = 0, it is given by 

(Calandra & Mauri, 2007) 
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where N is the number of sites, f(ε) is the Fermi function and δ is a positive infinitesimal 

(later small) quantity. N(ε) = 1/B is assumed to be constant, where N(ε) is the density of 

states (DOS) per spin and B is the band width. The band is assumed to be half-filled and 

to extend from -B/2 to B/2. 

 

2.10.2 Electron-phonon Coupling 

Two-dimensional (2d) correlated models with EPI are often compared with the 2d 

Holstein model to determine the effects of correlation on the EPI. A 2d Holstein model at 

half-filling with only nearest neighbor hopping is unstable to an infinitesimal EPI due to 

perfect nesting. Therefore the comparison is often made to a Holstein model with just a 

single electron at the bottom of the band (Mischenko, 2009). Often a t-J model doped 

with one hole is studied, suggesting similarities with a Holstein model with a single 

electron. The half-filled Holstein model, however, is of particular interest, since the 

relevant antibonding Cu-O band in the cuprates is close to half-filling. 
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2.10.3 Anharmonic Apical Oxygen Vibrations in High  Tc Superconductors 

It is well established that most of the high Tc superconductors have Cu–O layers 

sandwitched between layers of other materials (Klemm, 2012). The charge carriers are 

electrons and the pairing mechanism between the electrons is exotic. The electronic 

pairing in exotic superconductors is such that three electrons take part in the 

superconducting current and that they interact with each other through harmonic forces 

(Khanna & Kirui, 2002). Two of these electrons form a bound pair while the third one is 

a polarization electron which hops from one lattice site to another lattice site of similar 

symmetry. Studies that have been done in photo – induced Raman Scattering (Nyawere & 

Khanna, 2011) have confirmed that there exists strong anharmonic nature of apical 

oxygen vibrations. When the spectral function of electron – phonon interaction is 

compared with the phonon spectrum in bismuth compounds it is noted that, both low 

frequency vibrations (buckling mode) and high frequency vibrations (breathing mode) 

contribute to the electron – phonon coupling. 

It is therefore assumed that the polarization electron causes perturbation with respect to 

the apical oxygen vibrations leading to the contraction of 3OCu p  bond. The 

unperturbed Hamiltonian is given by 

 43' xxH             (2.20) 

where   and   may or may not depend on temperature. 

The eigenvalues and eigenfunctions of the unperturbed harmonic oscillator Hamiltonian  

are given by 

  0,0, 0 nnH no           (2.21) 

where 
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are the hermite polynomials such that, 
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where   is the phonon frequency and   is the reduced mass of the pair of electrons 

interacting harmonically. 

When the system is perturbed, the eigenvalue equation to be solved is, 

 nnH n          (2.25) 

Where H  is the perturbed Hamiltonian of the entire system such that 
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CHAPTER THREE 

METHODOLOGY AND THEORETICAL DERIVATIONS 

3.1 Introduction 

This chapter presents the method used and the procedure for deriving the electron – 

phonon and Coulomb interaction Hamiltonian.  

3.2 The Frozen phonon method 

The electron – phonon interaction Hamiltonian may be written using the frozen phonon 

method (Yildirim, 2013). This technique is often applied to deduce electron – phonon 

coupling in the context of more conventional band structure approaches which are highly 

numerical. Here, we proceed somewhat more analytically. The starting point is the three 

– band Hubbard Hamiltonian which describes the copper oxide plane. Following earlier 

work (McMahan et al., 1988), a model Hamiltonian which includes a next – nearest – 

neighbor interaction i.e oxygen – oxygen overlap may be constructed as 
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  ( 3.1) 

where p  and 0

d  are oxygen and copper energy levels, 



 ,, jj CandC


 are creation and 

annihilation operators for the oxygen electrons at site j and spin   respectively, 

 ,, ii DandD
 are the creation and annihilation operators for the copper electrons at site i 

and spin   respectively. The hopping interaction jiV ,  is between neighbouring copper 

and oxygen sites, while ljt ,  describes the transfer between two nearest – neighbour 

oxygen sites, and  ,,, iii DDn  . Here, ),( yxn   represents two oxygen orbitals (px and 
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py) and )'( nnjl   denotes the nearest neighbouring orbitals 'nandn  at sites 

landj , respectively. The Coulomb repulsion between electrons on Copper sites is Ud. 

It is generally assumed that Ud is the largest energy scale in the problem. At infinite Ud, a 

mean – field theory may be derived using the auxiliary boson (ei) approach; this model 

has been extensively studied (Kim et al.,  1991) and in slightly different variations, by 

others ( Newns, et al., 1988). It is based on a 1/N expansion, where N is the spin 

degeneracy of the Copper and Oxygen sites. Here, one works in the electron picture. This 

allows one to take semirealistic values for the parameters in Eq. (3.1) and still preserve 

the Mott localization at half-filling. This localization arises from a suppression of the 

renormalized hybridization. 

In the limit of infinite Ud, we introduce an auxiliary boson, ei which corresponds to the 

Cu3+ valence state, in which the 2 2x y
d


 state is empty. The fermion operator ,id

represents a Cu2+ state with spin  . In this case, the 2 2x y
d


is half full. Imposing a 

constraint via a Lagrange multiplier, i at each site that there being no double occupancy 

of the 2 2x y
d


requires that  

 1,,   iiii eedd 



         (3.2) 

In the mean- field limit, the operator ei (auxiliary boson) is replaced by its expectation 

value e0 which is spatially uniform and similarly i is replaced by the average 0  
so that 

the mean - field Hamiltonian may be written as 
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Finally, the parameters e0 and 0  may be obtained by minimizing the resulting mean – 

field free energy. A diagonalization of the Hamiltonian in eqn. (3.3) for the case of zero 

oxygen - oxygen overlap t = 0 yields a simple dispersion relation 

kE for the renormalized 

band structure 
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    (3.4) 

In eqn. (3.4), 0

0   dd  , Ver 00  , and the dispersion is given by 

 









2
cos

2
cos4 222 yx

k

kak
         (3.5) 

The dispersion given by eq. (3.5), arises entirely from the hopping terms between copper 

and oxygen orbitals. Associated with the eigen energies of the mean – field Hamiltonian 

are the eigenstates   ,,, , kkk and which correspond to the antibonding, bonding and 

non bonding states respectively. We consider the case of non zero t so that Ek does not 

reduce to a simple expression. 

 

3.3 The procedure for deriving electron – phonon interaction Hamiltonian 

The procedure for deriving the electron – phonon interaction Hamiltonian using the 

frozen – phonon method involves a standard sequence of steps applied to a renormalized 

band structure. First, the frozen phonon, with wave vector q , is introduced as a static 

displacement of ions within the 2 D copper – oxide plane. Next, the electronic dispersion 

is recomputed in the presence of this distortion. Comparison with the electronic energy in 

the undistorted lattice indicates a mixing of states having wave vector k with those of  
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k + q. The associated transition matrix element is readily related to the electron – phonon 

coupling at wave vector q. 

The standard frozen – phonon calculation can be extended to include the strong Coulomb 

correlations which are believed to lead to the insulating state of the cuprates at half 

filling. These Coulomb correlations are incorporated via the renormalized band structure 

which can be derived from Eq. (3.3) and its extension in the presence of a frozen phonon. 

To provide an overview of  the general formulation, a simpler example, which focuses on 

a 1 D model containing both Cu and O components, is presented in Appendix A. 

The electron – phonon Hamiltonian is written in terms of a vector representation of the 

quasiparticle basis operator ,k . These basis operators, deduced from a diagonalization 

of the Hamiltonian ( Eq. 3.3), are the eigenstates .,,, ,, etcqkk    . The difference 

between the distorted and undistorted Hamiltonian is called MD , which is directly related 

to the electron – phonon coupling. A natural basis for representing this difference matrix 

is the band representation, 

 ,, kk dandC  , corresponding to the various oxygen and 

copper electron operators. Thus, MD contains contributions from changes in the copper - 

oxygen hybridization, the d – band centre of gravity, and the oxygen – oxygen overlap. 

The values of these shifts are linear in the ionic displacement and their ‘bare’ values can 

be deduced (Sherrington & Von Molnar, 1975). Conversion of MD to the quasiparticle 

basis  ,k  involves a unitary transformation U. 

In the strong - Ud limit, the matrix MD is self – consistently derived. In this way, 

important screening effects enter a renormalization of the ‘bare shifts’ in the copper – 

oxygen hybridization and d – band center of gravity. These self – consistently obtained 
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(Coleman, 2007) screening contributions are parametrized in terms of the quantities e0 

and 0 . 

In order to make analytical progress, the ionic component can be simplified by 

considering only the zone edge ( q = X = a ) phonons. These X phonons appear to 

couple most effectively since they lead to strong perturbations in the crystalline potential 

associated with the charge transfer between like atoms. In contrast to these longitudinal 

modes, correlation effects deriving from the transverse modes at q = X are not as 

dramatic since they maintain the equivalence of like atoms. Because there is a large 

number of X phonons in two dimensions, we build on the lattice – dynamics calculation 

(Succi, 2001). In La2CuO4 in the tetragonal phase, a potential induced breathing model 

shows that there are 21 modes, 4 of which are unstable. Ignoring the 4 unstable modes 

(since their associated motions seem to couple only weekly to the electronic degrees of 

freedom), the remaining 17 modes are categorized by considering only the motion of 

those copper and oxygen ions which are in the plane. 2D models do not distinguish 

modes which involve motion of atoms, other than those in the plane. In this way, six 

distinct types of 2 D copper – oxygen phonon modes are found (Von Stetten et al., 1988). 

Following this frozen – phonon (FP) procedure, we calculate the renormalized band 

structure and the quasiparticle states in the distorted (X – mode) lattice can be calculated. 

The distorted Hamiltonian in the infinite Ud limit is written in terms of auxiliary boson 

operators as 
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where the index n = 1,2 denotes two positions for the copper orbitals and the indices m 

(=1,2) denote two unequal oxygen sites. As in the undistorted case, the operators 

ine  and 



ind  create 
3Cu  and 

2Cu  states, respectively, whereas 

,,miC  creates an electron at the 

mth oxygen site within the ith unit cell. The constraint equation is imposed on each copper 

site 

 1,,,,,,  nininini eedd 



         (3.7) 

A renormalized band structure is directly obtained from equation (3.6) by replacing the 

boson operators by their corresponding expectation values and introducing equation (3.7) 

via a Lagrangian multiplier. 

Following the details described in Appendix A for the simple 1 D case, one can express 

the quasiparticle operators as 
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where the operators ,  and   destroy a quasiparticle in the antibonding, nonbonding 

and bonding bands respectively. 
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Within this field approximation, the difference between the Hamiltonian corresponding to 

the distorted d

FPH 2  and the undistorted , 0H , cases may be readily deduced from 

equations( 3.3) and (3.6) as: 

 )1(2)1( 2

00

2

,

,

,0   

 eeMHHH n

n

nkD

k

kFPphe 



   (3.9) 

where the sn '  are the Lagrange multipliers introduced to satisfy the constraint equation 

(3.7) and  UMUM DD ..  is the transformed distortion matrix which includes 

‘screening’ effects via the parameters ne  and n . 

In this method, the focus is on intraband scatterings between  ,k and  ,Xk because 

these states near 
FE  are strongly scattered by the ionic displacement. Furthermore, other 

contributions such as interband scattering require higher energies than a phonon can 

provide. These intraband terms are written as 
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         (3.10) 

Here, the electron - phonon coupling in the quasiparticle basis is 

   ,,
ˆ

XkphekX Hg         (3.11) 

We may express this matrix element in terms of phonon creation and annihilation 

operators 

vXa ,  and vXa ,  respectively, for a wave vector X with quantized displacement 

(h=1) as 
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where the electron – phonon transition matrix element is 
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H
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and vX ,̂  is the polarization vector for a normal mode v, N0  is the number of ions in each 

unit cell, MX,v is the reduced mass corresponding to a phonon mode (X,v), vX ,  is a 

normal mode frequency. 

The electron – phonon matrix element in equation (3.13) can now be evaluated in terms 

of changes in the ‘bare’ Hamiltonian parameters which arise from a lattice distortion. 

Hybridization between copper 22 .
3

yx
d  and oxygen 2p orbital distance is highly 

anisotropic (Kim et al., 1991). A small distortion along the longitudinal direction ( 

parallel to the bonding axis) leads to significant changes in hybridization. This can be 

represented as linearly proportional to the ionic displacement when the distortion is small 

(Appendix B) 
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and    
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R
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 )(2)()(         (3.15) 

Along the transverse direction (perpendicular to the bonding axis), however, the change 

in hybridization is almost negligible. These changes in V ultimately lead to changes in 

the variational parameters such as ne and n . These parameters have been calculated self – 

consistently, and they are found to vary linearly with displacement about the equilibrium 

or undistorted values 0e and 0 : 
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and 

 R
R





 0

21            (3.17) 

where Re  0  and R0 are the Coulomb interaction – induced screening responses.  

These functions depend on 
FE  and their concentration dependence may be calculated 

using a somewhat simplified analysis. First, we change the amplitude of the static 

displacement of either the copper or oxygen ions is changed and then ne  and n  are 

calculated from the mean – field equations for d

FPH 2  at each 
FE . Finally, Re  0  and 

R0 are extracted by comparing ne  and n  to 0e  and 0  as a function of the 

displacement.  

3.4 Derivation of Coulomb interaction Hamiltonian. 

It is clearly established that the high temperature superconductivity [HTSC] cannot be 

explained by using the BCS theory. A new type of pairing mechanism between the 

electrons has to be invoked to explain the properties of high - Tc superconductors. 

The structure of these HTSC compounds is explained in the section (2.5). It is also 

emphasized that there exists a pairing interaction between the charges in the charge 

reservoir; and there exists an attractive term at the oxygen ion sites as a result of oxygen 

virtual charge excitations. It seems such interactions are relevant to study the properties 

of high - Tc superconductors. The resulting oxygen-copper hopping due to attractive term 

leads to the changes in the onsite energies of oxygen (Ep) and copper (Ed). The 

hybridization between copper and oxygen bands is represented by ( tpd) and the repulsion 

between the holes occupying the same copper orbital is(ud). 
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Using second quantization and many body techniques, the Hamiltonian Hc ( Coulomb 

interaction Hamiltonian) for the assembly can be written as, 

 
, ,

( . .)p j j d

c p i d n pd j d i j
i i j n

H E n E n t d h c u n n
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

 
           (3.18) 

where  p and  d operators refer to the oxygen and copper ions, respectively. Each term in 

equation (3.18) can be written in terms of the creation and annihilation operators. Here 

p

in refers to the number of electrons at the site i for oxygen, and d

jn refers to the numbers 

of electrons at the site j for copper. 

ipip

p

i aan  and jdjd

d

j aan         (3.19)  

Due to hybridization between copper and oxygen bands we have the term 

jd( ) and this 

term can be written as ( )( ipjdjdip aaaa   .The term d  represents the repulsion between the 

holes occupying the same copper orbital. Let the creation and annihilation operators for 

holes be represented by ‘b’. We can then write dropping spin orientation 

jpipidjd

d

j

d

i bbbbnn          (3.20) 

which means the holes on repulsion in copper orbital go to oxygen from the site j in 

copper to the site i in oxygen, and the opposite can also happen. Now the creation of a 

hole results due to the disappearance of the electron, and the destruction of a hole means 

the appearance (creation) of an electron. To convert eq. (3.18) into a set of creation and 

annihilation operators for the electrons, this can be written as, 

( )c p ip ip d jd jd pd ip jd jd ip d jd jd ip ip

i j ij ji

H E a a E a a t a a a a u a a a a              

                                                                                                                                      (3.21)  
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3.5 The electron – phonon and Coulomb interaction Hamiltonian 

The electron – phonon and Coulomb interaction Hamiltonian, epcH  is obtained from the 

sum of eq. (3.10) and (3.21) as  

, , , ,

,
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epc ep k k X k X k p ip ip d jd jd

k i j

pd ip jd jd ip d jd jd ip ip
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 (3.22) 

where epg is the energy for electron – phonon interaction. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this section, the expectation value of the Hepc is calculated and the results on the effect 

of the electron – phonon and Coulomb Hamiltonian on transition temperature, specific 

heat and entropy are presented. Numerical values of specific heat against absolute 

temperature and those of entropy against absolute temperature were calculated and 

tabulated. 

The results for specific heat and entropy against absolute temperature are presented. 

From the graphs specific heat against absolute temperature, the transition temperatures, 

Tc, were obtained. The effects of the various parameters on transition temperature, 

specific heat and entropy are presented.  

4.2 Calculation of the expectation value of the electron – phonon and Coulomb 

interaction Hamiltonian. 

The expectation value of Hepc given in Eq. (3.22) was calculated by writing the trial wave 

function for such a system. The trial wave function was written as, 

0,))(( navauaaaa iijjii

            (4.1) 

and its conjugate was 

   ,0 i i j j i in u va a a a a a               (4.2) 

Using the trial wave function and its conjugate, the expectation value of the Hepc was 

written as; 

epcHnE   
           (4.3) 

Eqs. (4.1), (4.2)  were substituted in eq. (4.3) to obtain 
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               (4.4) 

 

The expectation value of the electron – phonon and Coulomb Hamiltonian was calculated 

using second quantization and many body techniques to obtain the coefficients of Ep, Ed, 

tpd, ud and gep  from eq. (4.4) . 

The terms containing Ep were obtained from eq. (4.4) as follows; 
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              (4.5) 

Applying the properties of creation and annihilation operators to the eq. (4.5), we obtain 

 2,0 ,0 ,0 ,0 0j j p ip ip i i p j j ip ip i in ua a E a a ua a n u E n a a a a a a n         (4.6) 

 ,0 ,0 ,0 ,0 0j j p ip ip i i i i p j j ip ip i i i in ua a E a a va a a a n uvE n a a a a a a a a n            (4.7) 
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               (4.8) 

 ,0 ,0 0j j p ip ip j j i in ua a E a a va a a a n               (4.9)  
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             (4.10) 

 ,0 ,0 0j j p ip ip i i i in ua a E a a va a a a n             (4.11) 

 ,0 ,0 0j j p ip ip j jn ua a E a a ua a n              (4.12) 

 ,0 ,0 0j j p ip ip j j i in ua a E a a va a a a n               (4.13) 

 ,0 ,0 0i i j j p ip ip i in va a a a E a a ua a n          (4.14) 

 ,0 ,0 0i i j j p ip ip i i i in va a a a E a a va a a a n           (4.15) 
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 ,0 ,0 0i i j j p ip ip j jn va a a a E a a ua a n           (4.16) 
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             (4.17) 

 ,0 ,0 0i i i i p ip ip i in va a a a E a a ua a n            (4.18) 
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             (4.19) 

 ,0 ,0 0i i i i p ip ip j jn va a a a E a a ua a n             (4.20) 

 ,0 ,0 0i i i i p ip ip j j i in va a a a E a a va a a a n               (4.21) 

The sum of sum of eq. (4.8), (4.10), (4.17) and (4.19) gives, 
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           (4.22) 
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From eq. (4.4), the terms containing Ed were obtained; 
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             (4.23) 

Applying the properties of creation and annihilation operators to eq. (4.23), the terms in 

the equation reduced to: 

 ,0 ,0j j d jd jd i in ua a E a a ua a n
= 0        (4.24) 
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             (4.25) 

 ,0 ,0 0j j d jd jd i i i in ua a E a a a a va a n           (4.26) 

 ,0 ,0 0j j d jd jd j j i in ua a E a a a a va a n             (4.27) 
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             (4.28) 

 ,0 ,0 0i i d jd jd j jn ua a E a a ua a n              (4.29) 

 ,0 ,0 0i i d jd jd i i i in ua a E a a a a va a n             (4.30) 

 ,0 ,0 0i i d jd jd j j i in ua a E a a a a va a n               (4.31) 

 ,0 ,0 0i i j j d jd jd i in va a a a E a a ua a n          (4.32) 
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             (4.35) 

 ,0 ,0 0i i j j d jd jd i in va a a a E a a ua a n          (4.36) 

 ,0 ,0 0i i j j d jd jd j jn va a a a E a a ua a n           (4.37) 

 ,0 ,0 0i i j j d jd jd i i i in va a a a E a a a a va a n           (4.38) 
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             (4.39) 

 ,0 ,0 0i i i i d jd jd i in va a a a E a a ua a n           (4.40) 

 ,0 ,0 0i i i i d jd jd j jn va a a a E a a ua a n             (4.41) 
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             (4.42) 

 ,0 ,0 0i i i i d jd jd j j i in va a a a E a a a a va a n               (4.43) 

The sum of eqs. (4.25), (4.28), (4.35), (4.39) and (4.42) gives, 

 5

2

2 2 2 2 2

5

2 22

( 1)( 2) ( 1)( 2) ( 1)( 2)( 3)( 4)

( 1)( 2)( 3)( 4) ( 1) ( 1) ( 2)
d

u n n u n n n v n n n n
E

v n n n n v n n n n

          
 
 
          

  

             (4.44) 

The terms containing  tpd  were obtained by expanding the third term in eqn. (4.44) as 

follows: 
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             (4.45) 

Applying the properties of creation and annihilation operators to eq. (4.45), one obtains 

the following; 

,0 ,0 0j j pd ip jd i in ua a t a a a a nu          (4.46) 
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             (4.47) 

 ,0 ,0 0i i j j pd ip jd i in va a a a t a a a a u n          (4.48) 

 ,0 ,0 0i i i i pd ip jd i in va a a a t a a a a nu            (4.49) 

 ,0 ,0 0j j pd jd ip i in ua a t a a a a u n          (4.50) 
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             (4.51) 

 ,0 ,0 0i i i i pd jd ip i in va a a a t a a a a nu            (4.52) 
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             (4.53) 

 

 ,0 ,0 0i i pd ip jd j jn ua a t a a a a u n              (4.54)  

 

 ,0 ,0 0i i j j pd ip jd j jn va a a a t a a a a u n           (4.55) 

 

 ,0 ,0 0i i i i pd ip jd j jn va a a a t a a a a nu             (4.56) 
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             (4.57) 

 

,0 ,0 0i i pd jd ip j jn ua a t a a a a u n              (4.58) 

 

,0 ,0 0i i j j pd jd ip j jn va a a a t a a a a u n           (4.59) 

 

,0 ,0 0i i i i pd jd ip j jn va a a a t a a a a u n             (4.60) 

 

,0 ,0 0j j pd ip jd i i i in ua a t a a a a va a n           (4.61) 
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 ,0 ,0 0j j pd jd ip i i i in ua a t a a a a va a n           (4.65) 

 

 ,0 ,0 0i i pd jd ip i i i in ua a t a a a a va a n             (4.66) 

 

 ,0 ,0 0i i j j pd jd ip i i i in va a a a t a a a a va a n           (4.67) 
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             (4.68) 

 

 ,0 ,0 0j j pd ip jd j j i in ua a t a a a a va a n             (4.69) 

 

 ,0 ,0 0i i pd ip jd j j i in ua a t a a a a va a n               (4.70) 
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             (4.71) 

 

 ,0 ,0 0i i i i pd ip jd j j i in va a a a t a a a a va a n               (4.72) 

 

 ,0 ,0 0j j pd jd ip j j i in ua a t a a a a va a n             (4.73) 

 

 ,0 ,0 0i i pd jd ip j j i in ua a t a a a a va a n               (4.74) 
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                        (4.75) 

 

 ,0 ,0 0i i i i pd jd ip j j i in va a a a t a a a a va a n                          (4.76) 

 

The sum of eq. (4.47), (4.51), (4.53), (4.57), (4.64), (4.68), (4.71) and (4.75) gives 
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 
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 
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 
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                        (4.77) 
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From eq. (4.4), the terms in ud were determined as follows;
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             (4.78) 

Applying properties of creation and annihilation operators to eq. (4.78), one obtains the  

 

following; 

 

  

 ,0 ,0 0j j d jd jd ip ip i in ua a u a a a a a a u n          (4.79) 
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              (4.80) 

 ,0 ,0 0i i j j d jd jd ip ip i in va a a a u a a a a a a u n         (4.81) 

 ,0 ,0 0i i i i d jd jd ip ip i in va a a a u a a a a a a u n           (4.82) 
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             (4.83) 
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 ,0 ,0 0i i d jd jd ip ip j jn ua a u a a a a a a u n                         (4.84) 

 

 ,0 ,0 0i i j j d jd jd ip ip j jn va a a a u a a a a a a u n           (4.85) 

 

 ,0 ,0 0i i i i d jd jd ip ip j jn va a a a u a a a a a a u n             (4.86) 

 

 ,0 ,0 0j j d jd jd ip ip i i i in ua a u a a a a a a va a n           (4.87) 

 

 ,0 ,0 0i i d jd jd ip ip i i i in ua a u a a a a a a va a n             (4.88) 

 

 ,0 ,0 0i i j j d jd jd ip ip i i i in va a a a u a a a a a a va a n          (4.89) 
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            (4.90) 

 

 ,0 ,0 0j j d jd jd ip ip j j i in ua a u a a a a a a va a n             (4.91) 
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 ,0 ,0 0i i d jd jd ip ip j j i in ua a u a a a a a a va a n              (4.92) 
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             (4.93) 

 

 ,0 ,0 0i i i i d jd jd ip ip j j i in va a a a u a a a a a a va a n               (4.94) 

 

 

The sum of eq. (4.80), (4.83), (4.90) and (4.93),  gives 
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From eq. (4.4), the terms in gep were determined as follows; 
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             (4.96) 

 

Applying the properties of creation and annihilation operators to eq. (4.96), one obtains; 
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The sum of eq.  (4.99), (4.103), (4.105), (4.109), (4.116), (4.120), (4.122) and (4.126) 

gives; 
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The sum of eqs. (4.22), (4.44), (4.77), (4.95), and (4.129) gives the expectation value of 

the Hepc as 
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           (4.130) 
 

For n =1, when the system is in its lowest energy state (superconducting state) and 

substituting 
2

1
 vu  (from second quantization formalism)

 

in eq. (4.130) one gets; 
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           (4.131) 

Eq. (4.131) simplifies to 

 1 312 980 888 800 720p d pd d epE E E t u g         (4.132) 

Eq. (4.132) is the expectation value of the electron – phonon and Coulomb interactions 

Hamiltonian. 

 

4.3 Effects of electron – phonon and Coulomb interactions on the transition 

temperature of high – Tc cuprate superconductors. 

At the temperature of interest, it is necessary to consider the difference between the states 

in which the hopping electron is on one site and then when it is on another site of similar 

symmetry or different symmetry. The difference in energy of the two sites gives the 

probability amplitude Green’s function which according to quantum treatment of lattice 

vibrations, is equivalent to the thermal activation factor exp (-E1/kT). Thus, the values of 

energy at ground state multiplied by the thermal activation factor gives 
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kTE E e


          (4.133) 

where k is Boltzmann’s constant. 

The specific heat, vC , of the system is obtained from the first derivative of eq. (4.133) 

with respect to absolute temperature and is written as, 

1 1

1
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E E

kT kT
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EE
C E e e

T T kT

   
   
   

       (4.134) 

To obtain the equation relating entropy, S, and absolute temperature T, one may start with 

the equation 

vC dTdQ
dS

T T
          (4.135) 

Taking integrals on both sides of eq. (4.135), one obtains, 

 vC dT
dS

T
           (4.136) 

Substituting for Cv from eq. (4.134) in eq. (4.136), one obtains, 
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From eq. (4.137), one obtains, 
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S e e dT
k T T k T

 

        (4.138) 

To obtain an exact calculation of the integral in eq. (4.138), we let 

 1E
u

kT
           (4.139) 

From eq. (4.139), one obtains, 

 1

2

E
du dT

kT
          (4.140) 
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From eq. (4.140), one obtains, 
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          (4.141) 

Substituting value of u  and dT  from eqs. (4.139) and (4.141) in eq. (4.138), one obtains, 
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Substituting for 1E
T

ku
   in eq. (4.142), one obtains, 
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Applying integration by parts to eq. (4.143), one obtains, 
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where C is a constant of integration. 

As T tends to zero, S = 0 and hence, C = 0. Therefore eq. (4.144) becomes. 
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      (4.145) 

The effects of electron – phonon and Coulomb interactions on the Tc of cuprate 

superconductors was investigated in terms of Cv and S using ens (4.134) and (4.145) 

respectively. 
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4.4 Effect of Various Parameters on Transition Temperature and Specific Heat 

4.4.1 Effect of tpd and gep on Cv and Tc(For Ep = 3.5 x 10-6 eV and ud = 2.5 x 10-6eV) 

for YBaCuO. 

Eqn. (4.134) was used to investigate the effects of tpd and gep on Cv. The values of the 

other parameters in eq. (4.132) were kept constant at Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 

eV and ud = 2.5 x 10-6 eV. Four equations relating specific heat and absolute temperature 

were obtained from eq. (4.134) as follows; 

i) Substituting in eq. (4.134) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 2.5 x 10-6 eV   gep = 0 eV and k = 8.6 x 10-5 eV/K, one obtains the 

equation; 

(4.146) 

ii) Substituting in eq. (4.134) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 2.5 x 10-6 eV , gep = 2.0 x 10-6 eV and k = 8.6 x 10-5 eV/K ,one 

obtains the equation; 

(4.147) 

iii) Substituting in eq. (4.134) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 2.5 x 10-6 eV , gep = 0 eV, and k = 8.6 x 10-5 eV/K 

,one obtains the equation; 

          (4.148) 

 

iv) Substituting in eq. (4.134) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  
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tpd = 1.6 x 10-6 eV, ud = 2.5 x 10-6 eV  , gep = 2.0 x 10-6 eV and k = 8.6 x 10-5 

eV/K, one obtains the equation; 

          (4.149) 

Using equations (4.146), (4.147), (4.148) and (4.149) values of Cv at different T were 

calculated and tabulated in Table 1 in appendix C. 

Fig. 4.1, shows a plot of Cv against T for the data in Table 1, for different combinations of 

tpd  and  gep. 
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Figure 4.1: Variation of Specific Heat with temperature for YBaCuO 

From Figure (4.1) , one notices that Cv increases with absolute temperature and attains a 

peak value and thereafter, decreases with further increase in absolute temperature.  

The peak values of Cv are 9.3 x 10-3 eV/kgK, 7.2 X 10-3 eV/kgK, 7.3 x 10-3 eV/kgK and 

7.2 X 10-3 eV/kgK for the control parameters tpd and gep which occur at 30 K, 40 K, 40 K 

and 45 K respectively. 

These results show that as tpd and gep are increased, the peak value of Cv reduce but  Tc 

increases. 
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4.4.2 Effect of tpd and gep on Cv and Tc(For Ep = 5.5 x 10-6 eV and ud = 5.5 x 10-6eV) 

for YBaCuO. 

Eqn. (4.134) was used to investigate the effects of tpd and gep on Cv. The values of the 

other parameters in eq. (4.132) were changed to new values and kept constant at Ep = 5.5 

x 10-6 eV, Ed = 2.0 x 10-6 eV and ud = 5.5 x 10-6 eV. Four equations relating specific heat 

and absolute temperature were obtained from eq. (4.134) as follows; 

i) Substituting in eq. (4.134) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 5.5 x 10-6 eV   gep = 0 eV and k = 8.6 x 10-5 eV/K, one obtains the 

equation; 

(4.150) 

ii) Substituting in eq. (4.134) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 5.5 x 10-6 eV , gep = 2.0 x 10-6 eV and k = 8.6 x 10-5 eV/K, one 

obtains the equation; 

 

(4.151) 

iii) Substituting in eq. (4.134) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 5.5 x 10-6 eV  , gep = 0 eV and k = 8.6 x 10-5 eV/K, 

one obtains the equation; 

          (4.152) 

 

iv) Substituting in eq. (4.134) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  
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tpd = 1.6 x 10-6 eV, ud = 5.5 x 10-6 eV , gep = 2.0 x 10-6 eV and k = 8.6 x 10-5 

eV/K, one obtains the equation; 

          (4.153) 

Using equations (4.150), (4.151), (4.152) and (4.153) values of Cv against T were 

calculated and recorded in Table 2, appendix C.  

 

Figure (4.2) shows the variation of Cv with  T . 
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Figure 4.2: Variation of Specific heat with absolute temperature for YBaCuO 

 

From Figure (4.2) above, CV increases with absolute temperature and attains a peak 

value and thereafter, decreases with further increase in absolute temperature. The peak 

values of CVs are 5.9 x 10-3 eV/kgK, 4.9 x 10-3 eV/kgK, 5.0 x 10-3 eV/kgK and 4.3 x 

10-3eV/kgK which occur at 45 K, 55 K, 55 K and 60 K respectively. These transiton 

temperatures are higher than the value obtained in section 4.5.1. These results show 

that as tpd and gep are increased, the peak value of Cv decreases but  Tc increases.  
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4.4.3 Effect of tpd and gep on Cv and Tc (For Ep = 7.5 x 10-6 eV and ud = 6.5 x 10-6 eV) 

for YBaCuO. 

Eqn. (4.134) was used to investigate the effects of tpd and gep on Cv. The values of the 

other parameters in eq. (4.132) were again increased further and  kept constant at Ep = 7.5 

x 10-6 eV, Ed = 2.0 x 10-6 eV and ud = 6.5 x 10-6 eV. Four equations relating specific heat 

and absolute temperature were obtained from eq. (4.134) as follows; 

i) Substituting in eq. (4.134) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 6.5 x 10-6 eV  , gep = 0 eV and k = 8.6 x 10-5 eV/K, one obtains the 

equation; 

(4.154) 

ii) Substituting in eq. (4.134) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 6.5 x 10-6 eV  and gep = 2.0 x 10-6 eV, one obtains the equation; 

 

(4.155) 

iii) Substituting in eq. (4.134) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 6.5 x 10-6 eV  and gep = 0 eV, one obtains the 

equation; 

          (4.156) 

 

iv) Substituting in eq. (4.134) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 6.5 x 10-6 eV  and gep = 2.0 x 10-6 eV, one obtains the 

equation; 
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(4.157) 

 

Using equations (4.154), (4.155), (4.156) and (4.157) numerical values of Cv against T 

were calculated and recorded in table 3 in appendix C. 

 

From Table 3 in appendix III, graphs of numerical values of Cv against T were drawn as 

shown in Figure (4.3) 
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Figure 4.3: Variation of Specific Heat with absolute Temperature (For Ep = 7.5 x 10-

6 eV and ud = 6.5 x 10-6 eV) for YBaCuO 

 

From Figure 4.3 above, one notices that Cv increases with absolute temperature and 

attains a peak value and thereafter, decreases with further increase in absolute 

temperature. The maximum values of Cvs  are 5.0 x 10-3 eV/kgK, 4.5 x 10-3 eV/kgK 

and 3.8 x 10-3 eV/kgK  occurring  at  55 K, 60 K, 60 K and 70 K respectively. 

The values of Cv are lower as compared to the values obtained in section 4.5.2 

However, the values of  Tc obtained are higher. 
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These results show that Tc increase with increase in the values of the various 

parameters but Cv decrease. 

 

4.5 Effects of Various Parameters on Transition Temperature and Entropy 

Numerical values of entropy against absolute temperature were calculated using eq. 

(4.145) with tpd and gep as controlled parameters. The calculations were done for tpd = 0 

eV ,  tpd = 1.6 x 10-6 eV, gep = 0 eV and gep = 2.0 x 10-6 eV. The other values were 

fixed at Ep = 3.5 x 10-6 eV, Ed= 2.0 x 10-6 eV, ud = 2.5 x 10-6 eV. From the values, 

graphs of entropy against temperature were drawn. 

 

4.5.1 Effect of tpd and gep on S and Tc  (For Ep = 3.5 x 10-6 eV and ud = 2.5 x 10-6 eV) 

for YBaCuO. 

Eqn. (4.145) was used to investigate the effects of tpd and gep on S. The values of the other 

parameters in eq. (4.132) were kept constant at Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV and 

ud = 2.5 x 10-6 eV. Four equations relating entropy and absolute temperature were 

obtained from eq. (4.145) as follows; 

i) Substituting in eq. (3.167) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 2.5 x 10-6 eV  and gep = 0 eV, one obtains the equation; 

58
1

0.017 TS e
T

 
  
         (4.158)

 

ii) Substituting in eq. (4.145) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 2.5 x 10-6 eV  and gep = 2.0 x 10-6 eV, one obtains the equation; 
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76
1

0.013 TS e
T

 
  
 

       (4.159) 

iii) Substituting in eq. (4.145) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 2.5 x 10-6 eV  and gep = 0 eV, one obtains the 

equation; 

74
1

0.014 TS e
T

 
  
 

       (4.160) 

 

iv) Substituting in eq. (4.145) for Ep = 3.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 2.5 x 10-6 eV  and gep = 2.0 x 10-6 eV, one obtains the 

equation; 

92
1

0.011 TS e
T

 
  
 

       (4.161) 

Using equations (4.158), (4.159), (4.160) and (4.161), numerical values of S against T 

were calculated and recorded in Table 4 in appendix C.  

 

From Table 4 in appendix III, graphs of values of S against T were drawn as shown in 

Figure (4.4) 
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Figure 4.4: Variation of Entropy with absolute Temperature for YBaCuO 

 

From Figure (4.4) above, S increases with absolute temperature. The increase is large 

for lower values of absolute temperature as compared to higher values of absolute 

temperature.  The graphs above change from linear to non – linear at temperatures of 

35 K, 40 K, 40 K and 50 K respectively. These occur at entropy of 9.0 x 10-3 ergs/K, 

5.0 X 10-3 ergs / K, 4.3 X 10-3 ergs/ K and 4.0 x 10-3 ergs/K respectively. 
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These results show that as tpd and gep are increased, the value of  S reduce. However, 

the transition temperature increase with increase in values of tpd and gep. 

 

4.5.2. Effect of tpd and gep on S and Tc (For Ep = 5.5 x 10-6eV and ud = 5.5 x 10-6 eV) 

for YBaCuO. 

Eqn. (4.145) was used to investigate the effects of  tpd and gep on S. The values of the 

other parameters in eq. (4.132) were increased and kept constant at Ep = 5.5 x 10-6 eV, Ed 

= 2.0 x 10-6 eV and ud = 5.5 x 10-6 eV. Four equations relating entropy and absolute 

temperature were obtained from eq.  (4.145) as follows; 

i) Substituting in eq. (4.145) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 5.5 x 10-6 eV   gep = 0 eV and k = 8.6 x 10-5 eV/K one obtains the 

equation; 

93
1

0.011 TS e
T

 
  
 

       (4.162) 

ii) Substituting in eq. (4.145) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 5.5 x 10-6 eV ,  gep = 2.0 x 10-6 eV and k = 8.6 x 10-5 eV/K, one 

obtains the equation; 

110
1

0.0091 TS e
T

 
  
 

       (4.163) 

iii) Substituting in eq. (4.145) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 5.5 x 10-6 eV , gep = 0 eV, and k = 8.6 x 10-5 eV, one 

obtains the equation; 
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109
1

0.0092 TS e
T

 
  
 

       (4.164) 

 

iv) Substituting in eq. (4.145) for Ep = 5.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 5.5 x 10-6 eV, gep = 2.0 x 10-6 eV,and k = 8.6 x 10-5 

eV, one obtains the equation; 

127
1

0.0079 TS e
T

 
  
 

       (4.165) 

Using equations (4.162), (4.163), (4.164) and (4.165), numerical values of S against T 

were calculated and recorded in Table 5 in appendix C.  

 

From Table 5 in appendix C, graphs of numerical values of S against T were drawn as 

shown in Figure (4.5). 
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Figure  4.5: Variation of entropy with absolute temperature for YBaCuO 

 

From Figure (4.5) above, S increases with absolute temperature.  

The graphs change from linear to non linear at temperatures of 45 K, 60 K, 60 K and 70 

K respectively. This occur at entropy of 4.8 x 10-3 ergs/K, 4.3 x 10-3 ergs/K, 4.2 X 10-3 

ergs/ K and 3.5 x 10-3 ergs/K respectively. 

These results show that as tpd and gep are increased, the values of S reduce but values of Tc 

increase. 
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4.5.3 Effect of tpd and gep on S and Tc  (For Ep = 7.5 x 10-6 eV and ud = 6.5 x 10-6 eV) 

for YBaCuO. 

Eqn. (4.145) was used to investigate the effects of tpd and gep on Cv. The values of the 

other parameters were kept constant at Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV and ud = 6.5 

x 10-6 eV. Four equations relating specific heat and absolute temperature were obtained 

from eq. (4.145) as follows; 

i) Substituting in eq. (4.145) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 6.5 x 10-6 eV , gep = 0 eV and k = 8.6 x 10-6 eV, one obtains the 

equation; 

109
1

0.0092 TS e
T

 
  
 

        (4.166) 

ii) Substituting in eq. (4.145) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV , tpd = 0 

eV, ud = 6.5 x 10-6 eV , gep = 2.0 x 10-6 eV and k = 8.6 x 10-5 eV, one obtains 

the equation; 

126
1

0.0079 TS e
T

 
  
 

 

(4.167) 

iii) Substituting in eq. (4.145) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 6.5 x 10-6 eV , gep = 0 eV, and k = 8.6 x 10-6 eV,one 

obtains the equation; 

 

122
1

0.0082 TS e
T

 
  
 

      (4.168) 
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iv) Substituting in eq. (4.145) for Ep = 7.5 x 10-6 eV, Ed = 2.0 x 10-6 eV ,  

tpd = 1.6 x 10-6 eV, ud = 6.5 x 10-6 eV , gep = 2.0 x 10-6 eV, k = 8.6 x 10-6 eV 

one obtains the equation; 

143
1

0.0070 TS e
T

 
  
 

       (4.169) 

Using equations (4.166), (4.167), (4.168) and (4.169) numerical values of S against T 

were calculated and recorded in Table 6, appendix C.  

 

From Table 6 in appendix C, graphs of numerical values of S against T were drawn as 

shown in Figure (4.6). 
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Figure 4.6: Variation of Entropy with absolute Temperature for YBaCuO 
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From Figure (4.6) above, S increases with absolute temperature. The graphs change from 

linear to non linear at temperatures of 70 K, 80 K, 80 K and 90 K with corresponding 

values of entropy of 4.2 x 10-3 ergs/K, 3.8 X 10-3 ergs/K, 3.5 X 10-3 ergs/K and 3.0 x 10-3 

ergs/K respectively. 

These values of S are lower compared with values obtained in section 4.5, but the values 

of Tc are higher. 

These results show that as tpd and gep are increased, the value of S reduce but values of Tc 

increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

 

CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The combined effects of electron – phonon and Coulomb interactions on the transition 

temperature of high - Tc cuprate superconductors were investigated by deriving the 

electron – phonon and Coulomb interaction Hamiltonian using the frozen phonon 

method.  The expectation value of the derived electron – phonon and Coulomb 

interaction Hamiltonian was calculated using second quantization and many body 

techniques. 

The effects of Ep, Ed, tpd, ud and gep on Tc were determined from the results of specific 

heat against absolute temperature and  graphs of entropy against absolute temperature. 

From the study, it was found out that 

(i) the electron Phonon and Coulomb interaction Hamiltonian is 

, , , ,

,

( )

( )

epc ep k k X k X k p ip ip d jd jd

k i j

pd ip jd jd ip d jd jd ip ip

ij ji

H g E a a E a a

t a a a a u a a a a

   


      

 

   

    

 

  

 
 

(ii) the expectation value of the electron – phonon and Coulomb interaction Hamiltonian 

is given by 

1 303 980 888 800 720p d pd d epE E E t u g      

(iii) increase in Ep, Ed, tpd, ud and gep  in cuprate superconductors leads increase in 

transition temperature from 30 K to 90 K. 

It can therefore be concluded that the role of long range electron – phonon and Coulomb 

interactions is to increase the transition temperature of cuprate superconductors.  
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5.2 Recommendations 

In future, 

 

i) electron – dipole and dipole – dipole interactions effects on superconductivity 

may be investigated 

ii) internal electric and magnetic fields effects on superconductivity may be 

studied 

iii) effects of internal electric and magnetic fields on onsite energy of copper (Ed) 

and onsite energy of oxygen (Ep) in cuprate superconductors may be 

investigated 
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APPENDICES 

Appendix I: One Dimensional Electron – Phonon Transition Matrix Elements 

In this section, we focus on a simplified one – dimensional (copper – oxygen chain) 

model for the purpose  of obtaining insight into the electron – phonon interaction in the 

copper oxides. We consider only phonon modes that are most relevant to transport 

properties. For instance, the zone edge (q=X) phonon modes, identical to the Periels 

distortion, interact strongly with electrons by way of doubling the unit cell, ( i,e., by 

Brilluoin zone folding). Therefore, phonon modes with this wave vector are important for 

transport. The zone center )( q  modes, on the other hand, are more relevant for 

Raman scattering and less important for transport measurements. There are six X modes 

in one dimension, two of which are longitudinal ( the oxygen and copper breathing 

modes), the remaining four are twofold – degenerate transverse modes.  

To calculate the renormalized band – structure and the quasiparticle states in the infinite 

Ud limit, we may apply a slave boson formalism to a distorted ( X mode) lattice. Within 

this approach, we extend the Anderson lattice Hamiltonain ( Levin, et al., 1991) 
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where the indices n and m = 1, 2 denote two positions for copper and oxygen orbitals, 

respectively, and <nm> denotes the pairs of nearest – neighbor copper – oxygen orbitals. 

The operators  

ine   and  

ind  create 3Cu  and 2Cu  states, respectively, whereas 

imC  

creates an electron at the mth oxygen site. Here, each phonon mode is characterized by 

the relative displacements of copper and oxygen ions. The quasiparticle operator ,k  of 
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the Hamiltonian can be expressed as a linear combination of copper and oxygen orbitals 

at different sites. We may write this in terms of a unitary matrix U
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where Q = π/a denotes the wave vector for a frozen phonon mode. Here, α and β destroy 

quasiparticles in the antibonding and bonding bands, respectively. 

Although the states at kBZ are degenerate as a consequence of BZ folding, this degeneracy 

is lifted by ionic displacements because a distortion changes the renormalized parameters  

ɛd and rn. The electron – phonon Hamiltonian, therefore, is given by Equation (3.9) with 

the distortion matrix  
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where R  is the displacement vector for either copper or oxygen ions and 2/kak  . The 

renormalized copper level and effective hybridization are nndnd   0

,, and  
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)( RRVer nn  . There are two contributions to the matrix MD which ultimately lead to 

electron – phonon scattering processes: one is the shift in Bloch waves by a lattice 

distortion and other is the change in electronic potential brought about by band 

renormalizations. The latter contribution is simplified as follows. We assume that the 

bare energy levels for copper sites are identical. The results do not change significantly 

even when this restriction is relaxed. As a consequence of screening, the energy level 

difference, 0

2,

0

1, dd   , between the copper sites is mostly cancelled by the quantity 

21    because Coulomb renormalizations tend to minimize the effects of an external 

perturbation by acting as a restoring force. Similarly, we extend this approximation to the 

oxygen sites 

In order to evaluate Eq. (3.13), we need to account for the variational response functions 

in Eq. (3.17). We distinguish these functions by their origin. For instance, the 

hybridization screening response is brought about by either copper or oxygen motion 

which changes the copper – oxygen overlap integral. The variational response of copper,

CuCu ReVS )/( 0   is small compared to  that of oxygen, OO ReVS )/( 0  . Although the 

x dependence of the response function CuS  and OS  is different for x>0.12 )1.0( 0 e , 

both functions are proportional to 0e  for x < 0.12 ( i.e., 0eSCu   and 0eSO  ). On the 

other hand, the energy - level screening  response, )/( 0 RS   , is a direct 

consequence of charge transfer on the copper sites usually mediaited by an oxygen mode. 

S varies as powers of 2

0e  for x < 0.12. 

The oxygen breathing mode generates charge transfer between copper atoms. When two 

oxygen atoms are displaced 1800 out of phase with one another, different local 
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environments are created for copper site. These inequivalent copper environments lead to 

a slight accumulation of charge on one site and depletion on the other. As a result, a static 

copper charge – density wave with wave vector X is formed, but the amplitude of this 

wave changes as a function of doping concentration. Because the charge fluctuation is 

strongly suppressed as half  is approached, the amplitude is larger in the metallic regime 

than near the insulating regime. The electron – phonon transition matrix element for this 

mode, therefore, depends strongly on concentration. The oxygen breating mode 

corresponds to the following parameterization: 

 212,11,22,11,1 , eeVVVV   and
21        (A5) 

We write the matrix element for oxygen breathing mode near half – filling )0( 0 r as 

 )7(
8

2

1
00

0
0, Sr

p

r
Sg

d

X 





       (A6) 

The concentration dependence of the matrix element in Eq. (A6) comes from band 

renormalization ( 0r and 0 ). Therefore, we can easily deduce, based on counting powers 

of 0e , that Eq. (A6) varies as 2

0e  near the metal – insulator transition.  

In the copper breathing mode, two copper ions are displaced in opposite directions. As a 

result, this motion leads to a formation of static oxygen CDW. The copper breathing 

mode corresponds to the parameterization 

 21212,22,11,21,1 ,   andeeVVVV       (A7) 

Because only the oxygen environment is changed, the variational parameters associated 

with copper sites are identical. Although this copper mode is identical to that of an 

oxygen mode in many ways, it is translated by a copper – oxygen bond length. This 

transition leads to the following phase changes in Bloch waves: 
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     (A9) 

With this changes, the electron – phonon matrix element near the metal – insulator 

transition is expressed as 

 )2sin72cos2(
4 2

0
, kkk

r
g

pd

CuX 





      (A10) 

Although the matrix element for copper does not have contributions from the variational 

responses, its concentration dependence is similar to that of the oxygen breathing mode 

due to band renormalization effects.  

Because the copper –oxygen overlap integral is almost unchanged when ions are 

displaced perpendicularly, the transverse motion of either copper or oxygen ions have 

smaller matrix elements than for the copper breathing mode. To lowest order, the 

variation in hybridization depends quadratically on the displacement. In linear response 

theory, both of these motions lead to almost equivalent electronic responses. This 

corresponds to  

 21212,21,22,11,1 ,   andeeVVVVV      (A11) 

The matrix element for these modes near the  metal – insulator transition is 

 kk
r

g
pd

TX 4sin
)(

4
22

4

0
,

 
        (A12) 

Here, the z axis is the direction perpendicular to the chain. As might be expected, there 

are no contribution dependence of the transition matrix element, therefore, is entirely 

from renormalized band structure. Furthermore, we can easily see that the x dependence 
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of the matrix element is negligible because of the lack of a distortion – induced electronic 

response. 
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Appendix II: Two Dimensions Electron – Phonon Transition Matrix Elements 

As in one dimension, we consider the scattering processes between states  ,k and  ,Qk

, and express these quasiparticle states explicitly in terms of a linear combination of 

xyx
pd 2,3 22

 and yp2 , orbitals 

  ,,

*

,,,,

*

,,,,2,,1, 2121
)( kyykyykxxkxxkkk CBCBCBCBDDA  

 
(B1) 

and 

  ,,

*

,,,,

*

,,,,2,,1, 2121
)( kxxkxxkxxkxxkkQk CBCBCBCBDDA 

 
 

(B2) 

Here, the coherence factors A  and  

B  measure the copper and oxygen contribution to a 

quasiparticle state. An asterisk ( )  denotes the complex conjugate, and the superscripts 

(+ and - ) are used to indicate the elements of the first and second row in the unitary 

matrix.  

In order to derive Eqns (3.14) and (3.15), we determine the overlap integrals V and t as a 

function of the separation distance and orientation. First, we change the amplitude of the 

static displacement of either the copper or oxygen ions and then calculate ne  and n  from 

the mean – field equations for d

FPH 2  at each FE . Finally, we extract Re  0  and R /0  

by comparing ne and n  to 0e and 0  as a function of the displacement. Each phonon 

response leads to a different response. We therefore consider each X mode separately. 

Because d and p orbitals are highly directional, the overlap integrals depend strongly on 

the relative orientation of these orbitals. This is illustrated in the orientation dependence 

of oxygen – oxygen overlap integral 

  ppppyx VmlVmlppt ),(            (B3) 

and the copper – oxygen hybridization 
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   (B4) 

 pdyxy VmlmdpV )(
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3
),( 22

22 


      (B5) 

Here, the relative orientation of two overlapping orbitals are denoted by ,,ml  and n  

where .ˆˆˆ znymxld  The overlap integral between orbitals 22 yx
d


and yxp , , and 

between xp  and yp  also depends strongly on the separation distance 

 
21

23

)()(

1

d

r

m
V d

pdpd             (B6) 

 
2)()(

11

dm
V pppp             (B7) 

Where   is a constant which is determined by the types of bonds between the two 

orbitals.although the hybridization integrals (V and t) have both   and   bond 

contributions, these details are not necessary for the purpose of our calculation. When the 

distortion is small, we can reexpress the changes in hybridization in terms of the 

undistorted values V and t. We calculate the changes in the copper – oxygen as well as 

the oxygen – oxygen overlap to lowest order in displacement by expanding Eqs. B3,  B4 

and B5. 

Expressing the antibonding state in terms of coherence factors A and B , which depend 

on dopant concentration, we examine the x dependence of the matrix element for each X 

phonon by evaluating Eq. 3.13. When the antibonding band is half full, the states near 

FE  are copperlike with no oxygen mixture i.e., 1A and  0B . When holes are 

added to this band, however, the copperlike states near FE become somewhat 
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oxygenlike.This implies 

B  increases while A  decreases by the same amount. Since 

A  and B are elements of a unitary matrix, we can easily see concentration dependence 

of the matrix elements by counting the number of sB ' . 

The frequency of the planer mode, calculated by the LDA approach, range from 6 to 60 

meV and the phonon density is a maximum at roughly 20 meV. However, the actual 

measured value differs somewhat from this because screening effects are not fully 

accounted for in LDA calculations. The copper mode is equivalent to a one dimensional 

breathing mode which creates a different local environment for oxygen sites for 2px and 

2py orbital sites, while maintaining identical copper sites. Therefore, this mode generates 

a static oxygen CDW by transferring charge from one oxygen site to another. We write 

the matrix element for this mode as 

  











  



,,

'

0,,
2

7
24

1 cbxCuMX I
V

IkirISg     (B8) 

We express the various orbital contributions to the matrix element in terms of coherence 

factors A  and B  

  kBAkBAIa sincos '''

,

  ,           (B9) 

  kBAkBAIb cossin '''

,

  ,      (B10) 

  kBAkBAIc sincos '''

,

  ,      (B11) 

  kBAkBAId cossin '''

,

        (B12) 

Although the 
A ’s are real, the 



B ’s are complex. Hence, we separate 
B  in terms of 

real and imaginary components 
''    iBBB . We use the notation 
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to simplify the expression. A single prime on k  denotes the momentum in the reduced 

BZ corresponding to a distorted lattice having a frozen X phonon. By counting the 

powers of 0e , we see that the x – dependence of this matrix element varies as 
2

0e  as half – 

filling is approached.  

Although the oxygen quadrupolar mode appears to transfer charge between copper sites, 

all copper sites remain identical. Furthermore, all oxygen sites remain equivalent as well. 

The energy of this mode is 100 meV and the density of the states is very low. The matrix 

element for this mode is given by 














  



 )coscos(2)()7(4 ,,,

,,0,0,0, 2 xyxycyxcxbaMX kEkkEtIkIkrIrISg  
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Appendix III: Data for Specific Heat and Entropy against absolute Temperature. 

 

Table C1: Data for Specific Heat against temperature ( Ep = 3.5 x 10-6 eV and ud = 

2.5 x 10-6 eV) for YBaCuO.   

 

Temperature, 

T(K) 

Specific Heat, Cv x 10-3(eV/kgK) 

0.0pdt eV
 

0.0epg eV  

0.0pdt eV
 

62.0 10epg eV   

61.6 10pdt eV 
 

0.0epg eV  

61.6 10pdt eV 
 

62.0 10epg eV   

15 5.4 2.1 2.4 0.9 

20 8.0 4.3 4.6 2.3 

25 9.1 5.8 6.1 3.7 

30 9.3 6.7 7.0 4.8 

35 9.0 7.1 7.2 5.4 

40 8.5 7.2 7.3 5.8 

45 7.9 6.9 7.1 5.9 

50 7.3 6.6 6.7 5.8 

60 6.1 5.9 6.0 5.5 

70 5.2 5.2 5.2 5.0 

80 4.4 4.6 4.6 4.6 
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Table C2: Data for specific heat against absolute temperature  

( Ep = 5.5 x 10-6 eV and ud = 5.5 x 10-6 eV) for YBaCuO. 

 

Temperature, 

T(K) 

Specific Heat, Cv x 10-3(eV/kgK) 

0.0pdt eV
 

0.0epg eV  

0.0pdt eV
 

62.0 10epg eV   

61.6 10pdt eV 
 

0.0epg eV  

61.6 10pdt eV 
 

62.0 10epg eV   

15 0.8 0.3 0.3 0.1 

20 2.2 1.1 1.2 0.6 

25 3.6 2.2 2.3 1.3 

30 4.7 3.1 3.2 2.0 

35 5.3 3.9 4.0 2.8 

40 5.7 4.4 4.5 3.3 

45 5.9 4.7 4.8 3.7 

50 5.8 4.8 4.9 4.0 

55 5.7 4.9 5.0 4.2 

60 5.5 4.8 4.9 4.3 

70 5.0 4.7 4.7 4.2 

80 4.5 4.3 4.3 4.1 

90 4.1 4.0 4.0 3.8 

100 3.7 3.7 3.7 3.6 

 

 

 

 

 



144 

 

 

Table C3: Data for specific heat against absolute temperature ( Ep = 7.5 x 10-6 eV 

and ud = 6.5 x 10-6 eV) for YBaCuO. 

Temperature

, T(K) 

Specific Heat, Cv x 10-3(eV/kgK) 

 
0.0pdt eV

 

0.0epg eV
 

0.0pdt eV
 

62.0 10epg eV 

 

61.6 10pdt eV 

 

0.0epg eV  

61.6 10pdt eV 
 

62.0 10epg eV 

 

15 0.3 0.2 0.1 0.1 

20 1.2 0.7 0.6 0.3 

25 2.3 1.5 1.3 0.8 

30 3.2 2.3 2.1 1.4 

35 4.0 3.1 2.8 2.0 

40 4.5 3.6 3.4 2.5 

45 4.8 4.0 3.8 2.9 

50 4.9 4.3 4.1 3.3 

55 5.0 4.4 4.2 3.5 

60 4.9 4.5 4.3 3.7 

70 4.7 4.4 4.2 3.8 

80 4.3 4.1 4.1 3.7 

90 4.0 3.9 3.8 3.6 

100 3.7 3.6 3.6 3.4 

110 3.3 3.3 3.3 3.2 
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Table C4: Data for entropy against absolute temperature (Ep = 3.5 x 10-6 eV and ud 

= 2.5 x 10-6 eV) for YBaCuO. 

Temperature, 

T(K) 

Entropy, S x 10-3(ergs/K) 

0.0pdt eV
 

0.0epg eV  

0.0pdt eV
 

62.0 10epg eV   

61.6 10pdt eV 
 

0.0epg eV  

61.6 10pdt eV 
 

62.0 10epg eV   

20 3.7 1.4 1.6 0.7 

25 5.6 2.5 2.7 1.3 

30 7.2 3.7 4.0 2.1 

35 8.8 4.7 5.1 2.9 

40 9.9 5.7 6.1 3.6 

45 10.7 6.5 6.8 4.3 

50 11.6 7.2 7.5 4.9 

60 12.9 8.4 8.9 6.0 

70 13.6 9.2 9.8 6.8 

80 14.5 9.9 10.5 7.4 

100 15.1 10.8 11.5 8.4 
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Table C5: Data for entropy against absolute temperature ( for Ep = 5.5 x 10-6 eV and 

ud = 5.5 x 10-6 eV) for YBaCuO. 

 

Temperature, 

T(K) 

Entropy, S x 10-3(J/K) 

0.0pdt eV
 

0.0epg eV  

0.0pdt eV
 

62.0 10epg eV   

61.6 10pdt eV 
 

0.0epg eV  

61.6 10pdt eV 
 

62.0 10epg eV   

30 2.00 1.08 1.12 0.60 

40 3.52 2.18 2.24 1.38 

50 4.83 3.22 3.30 2.20 

60 5.87 4.12 4.21 2.96 

70 6.70 4.86 4.95 3.62 

80 7.35 5.46 5.56 4.17 

90 7.87 5.95 6.05 4.64 

100 8.29 6.36 6.46 5.03 

110 8.63 6.69 6.79 5.36 
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Table C6: Data for entropy against absolute temperature (Ep = 7.5 x 10-6 eV and ud 

= 6.5 x 10-6 eV) for YBaCuO. 

Temperature, 

T(K) 

Entropy, S  x 10-3(ergs/ K) 

0.0pdt eV
 

0.0epg eV  

0.0pdt eV
 

62.0 10epg eV   

61.6 10pdt eV 
 

0.0epg eV  

61.6 10pdt eV 
 

62.0 10epg eV   

30 1.12 0.62 0.71 0.34 

40 2.24 1.41 1.57 0.90 

50 3.30 2.24 2.45 1.55 

60 4.20 3.01 3.26 2.18 

70 4.95 3.67 3.94 2.76 

80 5.56 4.22 4.50 3.26 

90 6.04 4.69 4.98 3.70 

100 6.46 5.08 5.37 4.07 

110 6.79 5.40 5.70 4.39 

 


