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Abstract 
Assuming some known nucleon-nucleon interactions, and using the relations 
between phase shift δ  and nucleon-nucleon interaction potential ( )V r ; 

the relation between nucleon-nucleon interaction and scattering length a; the 
relation between energy gap ∆ , and scattering length a; an equation is ob-
tained between energy gap ∆  and Fermi momentum Fk  via the phase shift 

( )Fkδ . Assuming 1s0 (singlet) pairing between the nucleons, the energy gap 

∆  has been calculated and it is found that 3.0 MeV∆ =  at Fermi momen-

tum 10.8 fmFk −= . 
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1. Introduction 

When one particle approaches another particle, and they are in the field of force 
of each other; they interact and scatter. In this process the following three para-
meters are involved. 

1) The interaction potential ( )V r  between the two particles; 
2) The distance between the nearest-approach, called impact parameter or the 

scattering length a; 
3) Phase shift, δ , due to scattering. 
However, when dealing with large finite-nuclei, or infinite nuclear matter and 

neutron matter (in stars), another important parameter gets involved, and this is 
the so called 1s0 pairing gap ∆ . Thus there must exist, a definite relationship 

How to cite this paper: Koech, W.K., 
Muguro, K.M., Murunga, G.S. and Khanna, 
K.M. (2019) Correlation between Nucle-
on-Nucleon Interaction, Pairing Energy 
Gap and Phase Shift for Identical Nucleons 
in Nuclear Systems. Journal of High Energy 
Physics, Gravitation and Cosmology, 5, 
321-331. 
https://doi.org/10.4236/jhepgc.2019.52018 
 
Received: December 25, 2018 
Accepted: February 17, 2019 
Published: February 20, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jhepgc
https://doi.org/10.4236/jhepgc.2019.52018
http://www.scirp.org
https://orcid.org/0000-0002-2517-6622
https://doi.org/10.4236/jhepgc.2019.52018
http://creativecommons.org/licenses/by/4.0/


W. K. Koech et al. 
 

 

DOI: 10.4236/jhepgc.2019.52018 322 Journal of High Energy Physics, Gravitation and Cosmology 
 

between the interaction potential ( )V r . The scattering length a, the phase shift 
δ  and the pairing gap ∆ . Thus the quantitative features of 1s0 pairing in nuc-
lear matter and neutron matter can be obtained directly from the 1s0 phase shifts. 
The 1s0 neutron matter superfluid is relevant for the phenomena that occur in 
the inner crust of neutron stars [1]. The 1s0 pairing gap values and its density 
dependence show a peak value of about 3 MeV at a Fermi momentum close to 

10.8 femFk −≅  [2]; most of the calculations adopt the bare nucleon-nucleon in-
teraction as the pairing force and it has been pointed out that the screening by 
the medium of interaction could strongly reduce the pairing strength in this 
channel [3]. 

After the discovery of neutron stars calculations were done for pairing gap for 
neutrons [4] in the 1s0 state. The pairing gap energy for neutrons [4] in the 1s0 
state rose with increasing density and reached a maximum of roughly 3 MeV at 
the density of about 10sn n= ,where 10.16 fmsn −=  is the saturation density 
of symmetric nuclear matter (containing equal numbers of neutrons and pro-
tons), a density typical of the interiors of heavy nuclei. With further increase in 
density, the neutron pairing energy gap dropped and vanished at a density just 
below sn  (i.e. n has less than sn ). At such density, it becomes favorable for neu-
trons to pair in the 3P2 state ( )2 1 3, 1, 1, 1 1 2s l s J l s+ = = = = + = + =  in which 
the pairs have unit orbital angular momentum ( )1l = , unit spin ( )1s =  and 
total angular momentum ( )2J l s= + = . It should be emphasized that the 3P2 
state has more attractive interaction than the other 3P sates due to the fact that 
the spin-orbit interaction is attractive for nucleons. However in atomic physics 
the spin-orbit interaction is repulsive. For the neutron pair in the state 3P2, the 
pairing energy gap is increased to about 0.5 MeV at a density of around 2 sn  
and dropped at higher densities. The qualitative behavior of the pairing energy 
gaps is understood in terms of the measured phase shifts for nucleon-nucleon 
interactions. A positive phase shifts corresponds to an attractive interaction be-
tween neutrons and therefore at low k (k is the propagation vector p  ), which 
corresponds to low Fermi momentum and low density. The most attractive is 
channel is 1S0, which at higher densities the interaction in 3P2 channel is more at-
tractive and hence the phase shift will be positive.  

In BCS approximation, the pairing energy gap is calculated by solving the BCS 
equation with the free-space nucleon-nucleon interaction and free particles in 
intermediate states in the scattering process; the effects of the neutron medium 
on the normal state excitations and the pairing interaction are neglected [5] [6]. 
Many different techniques have been developed to include effects beyond the 
BCS approximation in the calculations of neutron pairing energy and most of 
them that the pairing gap reduces by a factor of 2 or more. However microscopic 
calculations have been for pairing energy gap for nuclear and neutron matter in 
the 1S0 state 3p2 state and 1S0 state for protons. The pairing gap ∆  has also been 
related to the nucleon-nucleon interaction and phase shift. 

Going by BCS approximation and considering pairing in the 1S0 state, the gap 
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is independent of the direction of k and the relation between gap ( )k∆  and the 
interaction potential ( )v r  is given by [7] 

( ) ( )
( ) ( )

0

,1
π

V k k
k k k k

E k
δ

∞
∆ ∆

′
′ ′ ′= −

′∫                 (1) 

where ( ),V k k ′ , is the matrix element of the potential averaged over the angle 
between k and k ′  given by  

( ) ( ) ( ) ( )2
0 00

,V k k rr j k r V r j krδ
∞

′ ′= ∫                (2) 

We can use two values for ( )V r  one is the Yukawa potential, i.e. 

( ) 0
b vV r V e
r b

 = − − 
 

                       (3) 

where  

2 fmb =  and 0 30 MeVV =                     (4) 

Another is the simple Gaussian potential of the form, 

( ) 2

0e rV r V α−= −                          (5) 

where 
2

0 5037.0 MeV and 12.0 fmV α −= =                 (6) 

This potential has been used in the phase shift analysis of the 2S1/2 scattering 
phase. Substituting the values of ( )V r  from Equation (3) and Equation (5) in 
Equation (2) and then substituting the values of ( ),V k k ′  in Equation (1) we 
can get the relation between ( )k∆  and 0V  clearly emphasizing of the there 
exists a close relationship between the pairing energy gap and the interaction 
potential. A rough calculations assuming ( ) ( )E k k′ ≈ ∆ ′  leads a constant-value  

for ( ) 0,
v

V k k
b

′ = −  and substituting this in Equation (1) will give a finite value  

of ( )k∆  assuming some finite limits for integral in Equation (1), similarly we 
can use the value of ( )V r  in Equation (5) and obtain the value of ( )k∆ . 
Hence there exists a definite correlation between the pairing energy gap ( )k∆  
and obtain the interaction potential. Without making any approximations, exact 
value of ( )k∆  can also be calculated [8].  

2. Theoretical Derivations 

The nuclear force has been at the heart of nuclear physics since the discovery of 
the neutrons by Chadwick [9]. The interaction between two nucleons is basic for 
all of nuclear physics. The main aim of nuclear physics is to understand the 
properties of atomic nuclei in terms of the “bare” interaction between a pair of 
nucleons. Scattering of nucleons is due to the neutrons neutrons-interaction 
between the nucleons and hence the resulting phase shifts will have a definite 
correlation with the interaction potential ( )v r . 

From time to time, a nuclear of nucleon-nucleon interaction potentials has 
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been proposed. For instance, Yukawa potential [10] is the oldest attempt to ex-
plain the nature of the nuclear forces. According to Yukawa massive bosons 
(mesons) mediate the interaction between two nucleons it is given by 

( ) ( )0e
r

v r v
r

ββ −
= −                         (7) 

Another potential is a simple Gaussian potential of the form [11] [12]. 

( ) 2

0e rv r v α−=                            (8) 

where 2
0 5037.0 MeV, 12.0 fmv α −= =  

In the last few decades the major issues concerning the (nucleon-nucleon) in-
teraction have been:  

1) Charge-dependence; 
2) The precise value of the π nucleon-nucleon compiling constant; 
3) Improved phase shift analysis; 
4) High precision nucleon-nucleon data; 
5) High-precision nucleon-nucleon potentials; 
6) Quantum-chromo-Dynamics (QCD) and the nuclear force; 
7) Nuclear-nuclear scattering is at intermediate and high energies. 
However, in this manuscript we are interested in some simple calculations 

that will correlate the well known nucleon-nucleon interaction potential ( )v r  
with the phase shift δ  the scattering length a and the energy gap ∆ ; and the 
dependence of ∆  on the Fermi momentum Fk  has also been studied. Calcu-
lations have been done using Yukawa potential only. 

Using Yukawa potential calculations are done to relate interaction potential 
( )V r  to the phase shift ( )l kδ  and energy gap ( )Fk∆  Yukawa potential  

( ) e
r

V
r

r ββ −
=  where ( )V r  the interaction is potential, r is the inter-particle  

distance, β  is the range of nucleon-nucleon force and 0V  is potential well 
depth.  

The Born approximation [13] is a relationship between phase shifts, ( )l kδ  
and interaction potential ( )( )V r  

( ) ( )2 2
2 0

2
df

l l f

k
V r j k r r r

ћ
µ

δ
∞

= − ∫                 (9) 

Using Bessel function in form  

( ) ( )
( )

2 2
0 2sin f

f

f

k r
j k r

k r

 
 =
 
 

, for   0l = , ground state, where   1fk r<   (10) 

Using derived equations and the values of the constants available, data was 
then generated and tabulated. Graphs have been drawn to show how the phase 
shifts ( ) t Fkδ , varies with the Fermi momentum Fk . This potential is substi-
tuted in the Born-approximation phase shifts, ( )p Fkδ , for scattering from a 
spherical potential, ( )V r , in 3-D, and to find the values of phase shifts. 
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The pairing gap for small values of 0Fk a  is [14] 

( ) 2
0

8 πexp
2ef

f

k
k a

λ
 

= −  
 

∆                   (11) 

where 0a  the scattering length in the ISO channel is ( )0 19.3 fma = − , λ  is a 
constant ≈ 1, e = 2.718, here 0a  is related to the interaction potential between a 
pair of nucleons. However at saturation density 3

0 0.17 fmρ −= , 11.36 fmFk −= . 
For low energy scattering especially in nuclear force which corresponds to the 

size of the potential and ( )Fkιδ , due to scattering is given by relation  

( ) 2
0

0

1 1cot
2F F Fk k r k

aρδ = − +  

here 0r  is the effective range of the nuclear force which roughly corresponds to 
the size of the potential and ( )Fkιδ  is the S-wave scattering phase-shift. 

At the ground state 0=  therefore Equation (9) becomes, 

( ) ( ) ( )2 2
02 0

2
df

F F

uk
k V r j k r r rδ

∞
= − ∫



             (12) 

Here ( )0 Fj k r  is the spherical Bessel function of Zeroth order i.e. 0=  
such that, 

( ) ( )
( )

2
2
0 2

sin F
F

F

k r
j k r

k r
=                      (13) 

It is valid to represent the interaction energy of a particle with momentum 

i Fk k< , with all the particles within the Fermi surface. The values for ik  [15] 
could be 0.1 fm−1, 0.2 fm−1, 0.3 fm−1 … and therefore for 1Fk r <  hence 

( ) ( )22sin F Fk r k r≅  therefore Equation (13) reduces to 

( )2
0 1Fj k r =                          (14) 

Substituting the value of the potential, ( ) 0 exp
r

V V
r

r ββ −
=  in Equation (12) 

we get 

( ) 0 2
0 2 0

2
e d

r
f

F

k V
k r r

r
βµ βδ

−∞
= ∫



               (15) 

Integrating Equation (15) by parts we get, 

( ) 0
0 2 2

f
F

k V
k

µ
δ

β
=


                      (16) 

Now for Yukawa potential, the value of the well-depth parameters S is  

0
2 20.17291

MV
s

β
=



                      (17) 

where M is the average mass of the two interacting nucleons 1S ≅  for the 
bound state of the nuclear matter and hence 0V  is given by 

2 2

0 5.7834V
M
β

=
                       (18) 
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Substituting Equation (17) in Equation (16) gives, 

( )0 2.7834 F
F

kk
M
µ

δ =                        (19) 

For 1S0 scattering and the reduced mass µ  of the two interacting nucleons is 
given by 

p n

p n

m m
m m

µ
⋅

=
+

                          (20) 

where pm  the proton is mass equal to 938.27 meV, and nm  is the neutron 
mass equal to 939.57 meV. Substituting the values of the masses in Equation (20) 
reduced mass 469.46 meVµ = . The average mass M of the proton and neutron 
is given by the equation, 

2
p nm m

M
+

=                           (21) 

Substituting for the value of the masses 938.92 meVM = , then Equation (19) 
becomes 

( )0 1.1462F Fk kδ =                        (22) 

Calculating the values of phase shift, ( )0 Fkδ , for different values of Fk  
ranging from 1 1 1 10.1 fm ,0.2 fm ,0 , ,.3 fm 1.6 fm− − − −

 . And plot a graph of phase 
shift ( )0 Fkδ , against Fermi momentum Fk . 

For scattering length in the 1S0 channel 0 19.3 fm,e 2.718a = − =  and 1λ ≈  
Equation (11) for energy gap [14], ( )Fk∆ , becomes 

( ) 2

8 πexp
2 19.32.718F

F

k
k

 −
= ⋅  × ×− 

∆  

( ) 2

8 0.08122exp
2.718F

F

k
k

 −
∆


=  

 
                 (23) 

Equation (23) will give the values of the energy gap.  
It will be interesting to see that if other potentials are used for instance the po-

tential used Hassan and Ramadan study [15] how phase shift ( )Fkδ


 and energy 
gap ( )Fk∆  vary with Fermi momentum Fk . For low energy scattering the phase 
shift is given by ( )Fkδ



 for different values of the Fermi momentum Fk . 
Singlet scattering length Equation [16] is given by 

1

0 0 0

2π 2 π 1 1
2 4

c
nn

F F Fex ex cr

m
a

k ћk kf f fε ε ε

−   
= + ≡ −       


          (24) 

where critical constant 02
1.912F

cr
oc

k
f

k
ε = − ≅ −  and exf ε  is the vacuum strength. 

The Pairing Gap equation is given by 
1) At very low density [17]  

πexp
2F

F nn

c
k a

 
=  


∆


  for 0nna <                (25) 
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where 28ec −= , Fk k=  and 
( )2 2

2
F

F

ћ k
m
ρ

= .   

2) At low density [18]    
1

2 22π

nn

ћ
m a

ρ 
=  

 
∆ , for 0nna >                  (26) 

where: m is the free nucleon mass. 

3. Results and Discussion 

Recent studies have shown the nuclear isotope shifts, the differential observables 
such as the odd-even mass differences and odd-even effects in charge radii along 
isotope chains can be reproduced with an effective density-dependent contact 
pairing interaction. The self-consistent LEDF calculations with density gradient 
term   f εα ∇  in pairing force provide desirable size of isotopic shifts. Using Lead 
isotopes some sets of parameters are deduced for the pairing force. Calculations 
are done based on the general variation-principle applied to local effective den-
sity-dependent function with a fixed energy cutoff 40 MeVc =  measured 
from F  and on the coordinate-space technique which involves an interaction 
[19]. At very low densities 

1

0 0 0

2π 2 π 1 1
2 4

c
nn

F F Fex ex cr

m
a

k ћk kf f fε ε ε

−   
= + ≡ −       


          (24) 

where critical constant 02
1.912F

cr
oc

k
f

k
ε = − ≅ −  and exf ε  is the vacuum strength, 

πexp
2F

F nn

c
k a

 
=  


∆


 , for 0nna <                (27) 

where 28ec −= , Fk k=  and 
( )2 2

2
F

F

ћ k
m
ρ

= . 

These results agree with the general analysis of the gap equation at low densi-
ties for 1nna  . It is valid only in the weak coupling regime which corresponds 
to negative scattering length (Figure 1). 

At ex crf fε ε>  from Equation (1) it shows that at low densities the pairing gap 
is small and it comes to zero.  

Relation between the phase shift lδ , the nucleon-nucleon interaction 
( )V r  and the energy gap using Yukawa potential: 
Using Equation (22) to calculate the values of phase shift ( )0 Fkδ , for differ-

ent values of Fk  ranging from 0.1 - 1.6 fm−1 and plot a graph of phase shift 
( )0 Fkδ , against Fermi momentum Fk . 
When the Fermi momentum Fk  of the interacting nucleons is zero, the value 

of phase shift ( )0 Fkδ , is equal to zero in the ground state as seen from Figure 2, 
this show that an increase in Fermi momentum Fk  leads to an increase in 
phase shift ( )0 Fkδ .   

Using Equation (23) to compute the values of energy gap ( )Fk∆  against  
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Figure 1. A graph of pairing gap against scattering length for 0nna < . 

 

 
Figure 2. A graph of pairing gap against Fermi momentum (fm−1). 

 
changes in the Fermi momentum Fk  and this variation is done and the data 
tabulated (Figure 3).  

The energy gap ( )Fk∆  increase steadily and faster for low Fermi momen-
tum Fk  up to around 1.0 fm−1 and it is roughly constant with the value ≅0.8 
MeV for 11.0 fmfk −> . In literature the values of the energy gap ( )fk∆  are 
0.4 MeV, 0.6 MeV, 0.7 MeV … for 0.2 fm−1, 0.3 fm−1, 0.4 fm−1 … respectively [15] 
which are in agreement with the known values. 

The energy gap ( )Fk∆  increase steadily and faster for low Fermi momen-
tum Fk  up to around 0.4 fm−1 and it is roughly constant with the value ≅1.0 
MeV for 10.4 fmfk −> . In literature the values of the energy gap ( )Fk∆  are 
0.2 MeV, 0.4 MeV, 0.6 MeV … for 0.2 fm−1, 0.3 fm−1, 0.4 fm−1 … respectively [15] 
which are in agreement with the known values. The reason for the good agree-
ment in that, for calculating energy gaps the quantity that matters is the scatter-
ing length at energies of order of the Fermi momentum and this is strongly con-
strained by nucleon-nucleon scattering data for nucleon momentum in the  
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Figure 3. A graph of energy gap against Fermi momentum (fm−1). 

 
center-of-mass. For higher Fermi momenta the energy gap tends to reach satu-
ration since there is considerable model dependence also because inelastic 
channels start to open up in nucleon-nucleon scattering. The energy gap ( )Fk∆  
increases steadily and faster for low values of Fermi momentum Fk  and be-
comes roughly constant for values of 10.4 fmFk −> .  

4. Conclusion 

From the results obtained, it can be concluded that scattering length influences 
the energy gap with different values of Fermi momentum. The behavior of pair-
ing gap (∆) at very low densities agrees well with calculations based on realistic 
nucleon-nucleon forces. The singlet scattering length which is 19.3 fmnna = −  
agrees with the theoretical value which is equivalent to 0 18.3 fma = − . Numeri-
cal values of scattering length are negative for 12 fmFk −<  which means attrac-
tive force and positive for 12 fmFk −>  indicating repulsive force. At low densi-
ties the pairing effect is affected by strong repulsive and short-range component 
interaction; therefore, the predictions are set to go higher for pairing gap (∆) 
reaching a maximum of 1.69 MeV at 10.4 fmFk −=  with nucleon-nucleon in-
teraction assuming charge dependence. Interactions between nucleons may be 
characterized by a single parameter, the S-wave scattering length nna  which in-
dicates the strength of interactions. The sign determines whether the interac-
tions are effectively attractive or repulsive. When the scattering length is 0nna <  
the interaction is attractive and repulsive for 0nna > . The behavior of pairing 
gap (∆) at very low densities agrees well with calculations based on realistic NN 
forces. The singlet scattering length which is  20.4 fmnna = −  at 11 fmFk −=  
agrees with the theoretical value which is equivalent to 18.3 fmnna = − . Numer-
ical values of scattering length are negative for 12 fmFk −<  which means at-
tractive force and positive for 12 fmFk −>  indicating repulsive force. When the 
Fermi momentum Fk  of the interacting nucleons is at zero the value of phase 
shift ( )0 Fkδ , is equal to zero in the ground state as seen from Figure 2. This 
show that, increase in Fermi momentum Fk  leads to an increase in phase shift 
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( )0 Fkδ . 

5. Suggestions 

In future this problem can be done using nucleon interactions that may involve 
elementary particles. But such calculations will be quite complicated and will re-
quire the use of many-body techniques involving Greens functions can be done. 
Recent discoveries on elementary particles have led to the suggestions for different 
types of nuclear interactions involving many parameters. Elementary particles in-
side the nucleus were the neutrons and protons. But within the theory of quantum 
chromo-dynamics (QCD), neutrons and protons are no longer the elementary 
particles. Nuclear forces between neutrons (neutron-neutron force). Protons 
(proton-proton force) and neutron-proton (neutron-proton force) were treated as 
charge independent. Within the Theory of QCD, there is what is called Charge 
Symmetry Breaking (CSB) and consequently the neutron-neutron-scattering 
length, the proton-proton-scattering length and neutron-proton scattering length 
change. Consequently there is a corresponding phase shift variation with nna , 

ppa  and npa , and there is a different relation with the nuclear force. These cal-
culations can be done in the future.  
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