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ABSTRACT 

From time to time, several nuclear models have been proposed by various research 

groups to explain the properties of finite nuclei and large nuclear systems in nuclear 

physics and astrophysics. However, no single model could explain the properties of 

all the nuclear systems due to the concept of many body interactions of particles, 

which cannot be solved by Schrödinger equation. The stability of the nuclei is one of 

the fundamental properties of the nuclear system that is related to the average binding 

energy of the nuclei. However, the binding energy calculations are not accurate since 

they are based on the rough estimates of the large number of nucleons that are in 

collective motion. Therefore, the energy terms in the binding energy equation have to 

be modified in order to describe accurately the interaction of the nucleons.  In this 

research, the effects of Coulomb interaction and pairing interaction between nucleons 

in the binding energy equation have been carried out in order to determine the 

stability of finite nuclei. This was achieved by formulating a modified Coulomb 

potential based on the assumptions of charge distribution in a spherical nucleus. In 

addition, the pairing energies of finite nuclei were calculated using the principles of 

the shell model and the binding energies obtained from atomic mass evaluation tables. 

The results obtained in this study revealed that, the modified Coulomb energy model 

defines the limits of long-range Coulomb potential as well as generating the most 

stable isobars for a fixed mass number. The most stable atomic numbers (ZSTABLE) 

obtained from the derived models include, Z=126, Z=132, Z=134, Z=141, Z=148, 

Z=152, Z=162, Z=164 and Z=193. Furthermore, it was found that, the absolute values 

of pairing energies decrease with increase in the mass numbers with occurrence of 

undulating peaks and troughs in the pairing energy-mass number graphs. The 

modified Coulomb potential model is useful in calculating the finite range Coulomb 

potentials, describing the decay transformations of radioactive nuclei and predicting 

for the existence of the stable isobars among the super heavy elements that may reside 

in the island of stability. Similarly, the pairing energy calculations are important in 

describing the stability and nuclear abundance of all the nuclei isotopewise, using the 

peak-trough theory. Based on the results obtained from the Coulomb potential model 

and pairing energy model, a unifying model that can link up the two models can be 

developed, such that, the stability of the nuclei and the nuclear abundance can be 

described simultaneously. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

Ernest Rutherford discovered the fact that there exists a nucleus in each atom in 1911 

(Rutherford, 1911). The experimental observations of Rutherford led to the following 

conclusions: Firstly, the nucleus behaves like a point charge with dimensions of the 

order of 10
-11

cm or less. Secondly, the nucleus of an atom is excessively heavy in 

comparison to the electron mass, and finally the nucleus is positively charged and the 

charge on each nucleus is an integral multiple of the charge on the electron. 

Mathematically, the nuclear charge can be expressed as Ze , where Z is the atomic 

number of the atom and e  is the electronic charge. Since atoms are neutral systems, 

the charge on the nucleus must be positive and equal in magnitude to the charge on 

the electrons that surround the nucleus. Thus, the charge of the nucleus defines the 

number of electrons in the atom and most of the other properties of nuclear matter. 

Furthermore, J.J Thomson became the first person to discover that the mass of a 

nucleus is an important quantity that it is not determined by the charge on the nucleus 

as proposed by Rutherford (Thompson and Thomson, 1913). He found out that there 

exist nuclei which have the same atomic number (charge) Z, but of different masses. 

Such kinds of nuclei were named isotopes. It was found that the mass of each isotope 

was roughly equal to an integral number of proton masses and the nearest integer is 

known as mass number, and it is denoted by A. It was further noted that, the mass 

number (A) is invariably twice or more than twice the proton number (Z). This 

contradicted the idea that the nucleus is composed of protons. In the meantime, J. 
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Chadwick discovered the neutral particle called neutron (Chadwick, 1932). This led 

Heisenberg to propose the hypothesis that the atomic nuclei are composed of neutrons 

and protons (Heisenberg, 1932). Thus, it can be stated emphatically that modern 

nuclear physics, as it is known today had its theoretical structure understood from the 

year 1932. 

It is now sufficiently confirmed experimentally and theoretically that a nucleus is 

composed of neutrons (N) and protons (Z), and that its mass number is A=N+Z.  A 

proton being positively charged has slightly less mass compared to the mass of the 

neutron that has no charge. The magnetic moment of the proton is positive, but that of 

the neutron is negative. Inside the nucleus, the protons and neutrons are referred to as 

nucleons since the nuclear forces between the neutrons and protons are charge 

independent. In addition, there exist different types of nuclei. Some nuclei have 

proton number constant (Z constant) but different mass number (A); such nuclei are 

called isotopes while the nuclei that have constant mass number but different atomic 

number are called isobars. Then there are nuclei with constant neutron number (N), 

but different A and Z. Such nuclei are called isotones. There is another set of nuclei, 

in which the proton number is equal to the neutron number ( )Z N  in two or more 

nuclei. Such nuclei are called isomers or mirror nuclei, for instance, 
3

1H and 
3

2 He  in 

which 
3

1H  has two neutrons and 
3

2 He  has two protons. 

The nuclei can also be categorized in terms of their nuclear masses. In the low mass 

nuclei, the atomic mass (A) is less or equal to 20; ( 20)A . Similarly, medium mass 

nuclei fall within the region described by 20 100A   and the heavy mass nuclei 

are those nuclei in which 120)A . In terms of nucleons, we have symmetric nuclear 

matter in which the number of neutrons (N) is equal to the number of protons (Z), 
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asymmetric nuclear matter )( ZN  , neutron matter in which small percentage of 

protons and electrons exist and pure neutron matter which is found in the case of the 

neutron stars.  

It is evident that, the number of protons in the nucleus of an atom is a crucial 

parameter since it is equal to the atomic number of the element, which is the 

determining factor in the periodic table of elements as described by Henry Moseley in 

1913 (Scerri, 2013). As of today, the elements in the periodic table that have been 

confirmed experimentally span from Z=1 to Z=118. Some recent theoretical 

calculations show that the number of bound nuclei with atomic number between Z=2 

and Z=120 is of the order of 7000 (Erler et al., 2012; Agbemava et al., 2014). In 

addition, there are more than 3200 isotopes in the nuclear regime that have been 

discovered using different experimental techniques (Thoennessen, 2016; 

Thoennessen, 2017; Neufcourt et al., 2019). Among these isotopes, 286 have been in 

existence in their present form since the creation of the earth and they constitute the 

stable isotopes that form the valley of stability in the nuclear landscape.  

The number of protons and neutrons that combine to form a bound atomic nucleus in 

the region of the periodic table whereby 92Z   are known precisely. However, in the 

region described by 92Z  , which consists of the transuranic and transactinide 

elements (Super heavy elements), the exact number of protons and neutrons that form 

a bound atomic nucleus is not known. As one adds protons to the nuclei, one may 

move away from the region of stable isotopes and may transit into the region of short-

lived radioactive nuclei and such nuclei may undergo nuclear decay to gain stability. 

At some point when a last nucleon (proton or neutron) is added to the nucleus, the 

binding energy per nucleon may become zero, and hence the nucleon simply drips off. 
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This stage is called drip line for neutron or proton and at this stage nuclear existence 

ends. In fact, the strong nuclear force cannot keep the last nucleon attached to the 

nucleus at this stage. Recently, extremely neutron-rich nuclei around 
60

20 Ca  were 

discovered (Tarasov et al., 2018). In addition, masses of the nuclei 
55 57

20Ca
 have also 

been determined experimentally, and this can provide unique information as to how 

the binding energy changes by addition of a neutron (Michimasa et al., 2018).  

Currently, there is a large measure of data and information that is accessible on the 

atomic nuclei in the form of nuclear forces, nuclear models, nuclear binding energy, 

stability of nuclei, spontaneous nuclear fission (SF) etc. Nonetheless, we are still far 

away from a theoretical framework that can explain all the properties of nuclei, from 

low mass number (A) to very large mass number in the region of super heavy nuclei 

(SHN). Quite a number of nuclear models that include liquid drop model, Bethe-

Weizsäcker mass formula, collective model, evaporation model, Fermi gas model, 

shell model, individual particle model, nuclear pairing model and superfluid model 

(Greiner and Maruhn, 1986; Rowe and Wood, 2010) have been proposed from time to 

time to explain the properties of nuclei in different regions of mass number. However, 

none of these nuclear models can explain all the properties of nuclei. In spite of the 

spectacular advances made in nuclear theory and experimental nuclear physics, it is 

still not exactly known as to how many protons and neutrons can constitute a bound 

atomic nucleus, especially in the region of periodic table when Z varies from Z=92 to 

say Z=120 or more.  

It is well established that, the stability of nuclei is one of the most important 

properties that is related to the average binding energy of the nuclei. The nuclear 

binding energy and its magnitude plays an important role in the study of nuclear mass, 
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decay half-life, nuclear spontaneous fission (SF) and the stability of the nucleus. The 

limits of nuclear stability are determined by the interactions between nucleons. 

Moreover, the limits of nuclear stability are still not known especially in the case of 

super heavy nuclei (SHN) in the so called “island of stability”. However, what is 

important is that the super heavy nuclei are at the limits of Coulomb stability 

(Oganessian, 2012). 

Until today, the last of the super heavy elements to be produced artificially is 

Oganesson (Z=118) which was synthesized for the first time in the year 2002 and 

received official recognition in year 2016 (Oganessian and Utyonkov, 2015; Murthy, 

2017). The discovery of this element has compelled physicists and chemists, to think 

of the possibility of having the eighth period and beyond in the periodic table of 

elements. However, this element (Oganesson) and other super heavy nuclei are 

radioactive with some having very short half-lives of about 1410 seconds to 1910

seconds and most of them ranging between milliseconds to seconds (Oganessian and 

Utyonkov, 2015 ; Murthy, 2017). On the contrary, other super heavy nuclei were 

predicted to have very long half-lives greater than the uranium half-lives of 
1610  years  

(Oganessian, 2012). Such super heavy elements with very long half-lives are assumed 

to be very stable, thus, predicted to exist in the “island of stability” in the nuclear 

landscape while the unstable elements with short half-lives are likely to reside in the 

sea of instability. Interestingly, the physics of such unstable nuclei have gained 

enormous interest in the last two decades (Sakaguchi and Zenihiro, 2017). However, 

the limits of the stability of these nuclei are not defined and it is not yet clear whether 

this “island” of super heavy nuclei exists (Mackintosh et al., 2002). 
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Scientists are unrelenting in the search of these elements. For instance, in the last two 

decades, more than fifty super heavy isotopes and six new elements from Z=113 to 

Z=118 were synthesized in the laboratories by bombarding the doubly magic Calcium 

beams  Ca48

20  onto actinide targets through the process of hot fusion (Oganessian and 

Rykaczewski, 2015). However, this technique had a major drawback; the decrease on 

both the survivability of the compound nucleus formed and production cross section 

of the super heavy elements (Oganessian and Utyonkov, 2015).  

Despite these challenges, investigations are still on course to synthesize nuclei with

118Z  . However, the process of synthesizing the high-mass nuclei is extremely 

costly and very complex, thus, new technologies and theoretical models are required 

in order to actualize the synthesis of the SHN in region described by 118Z  . Up to 

date, no technique has been successful in synthesizing high Z and high mass nuclei. It 

has been suggested that, the impetus to these discoveries lies in the nuclear models, 

particularly, the shell model that was developed in the late 1940s (Kragh, 2017) and 

the binding energy which is dominated by the long-range Coulomb repulsive force in 

free - space. 

The nuclear models have extensively described the properties of nuclei but due to the 

complexity of the nuclear systems, no single model can fully explain all the 

properties. The basic parameters that come into play in the formulation of such 

nuclear models are the nuclear masses and the binding energies of the nuclei. As the 

nuclear size increases among the nuclei, the ground state nuclear binding energies 

also increase due to the effect of increased shells that are occupied by paired 

nucleons. The nucleons in this interaction experience several forces that are 

dominated by the Coulomb repulsion between the proton pairs. Thus, the Coulomb 
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interaction contributes greatly to the stabilization of the super heavy nuclei that are 

likely to exist in the “island of stability” (Oganessian, 2012). Therefore, this study 

was carried out to formulate a modified Coulomb energy model for calculating 

accurately the stable values of atomic numbers, and to develop a pairing model for 

ascertaining the existence of the stable finite nuclei isotopewise. 

1.2 Statement of problem 

The most fundamental problem that is still not solved in nuclear theory is that, there is 

no single nuclear model that can predict all the properties of different nuclei. Even the 

exact nature of interactions inside the nucleus is still not known. This is because the 

properties of nuclei drastically change as Z and N and hence A changes. 

Atomic calculations suggest that, the existence of nuclei on earth or on interstellar 

bodies may end at  Z 172  (Fricke et al., 1971; Indelicato et al., 2011; Pyykkö, 

2011). In addition, the shell model has predicted for the occurrence shell closures at 

Z=126 and N=184. However, the last known super heavy element to be produced 

artificially is Oganesson (Z=118). This implies that, the region between Z=118 to 

Z=172, is likely to accommodate the super heavy nuclei, with some of them residing 

in the “island of stability”. However, the exact number of protons and neutrons that 

form a bound atomic nucleus in this region is not known.  

Therefore, scientific efforts to unravel this mystery in nuclear theory have given rise 

to several nuclear models that include the famous semi-empirical mass formula, 

which describes the binding energy of the nucleus of an atom. However, the 

calculations of the binding energies are not accurate (Ghoshal, 2008) since they are 

based on the rough estimates of the large number of nucleons that are in collective 
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motion. Therefore, the energy terms in the binding energy equation have to be 

modified in order to describe accurately the interaction of the nucleons.   

The binding energy of an atomic nucleus is composed of a number of different forms 

of energy. The most important ones are the Coulomb energy resulting from the 

Coulomb repulsion between the protons, and the pairing interaction energy which is 

associated with the pairs of nucleons in the shell structure. Several detailed 

calculations have been carried out in the past on the Coulomb’s energy. However, 

these calculations are not exact (Ghoshal, 2008) because the Coulomb law is a long-

range force whereas very small size protons are closely packed inside the nucleus 

whose radius is also very small in the order of 10
-13

cm. Thus, the Coulomb potential 

inside the nucleus has to be modified to make it more effective inside the nucleus and 

allow for the calculation of the stable super heavy nuclei. 

It has been found that, the super heavy elements are at the limits of Coulomb stability 

(Oganessian, 2012), however, Coulomb law is a long-range force. It is therefore 

important to formulate a relevant Coulomb potential model that can be used to 

calculate with precision the stable values of atomic numbers, among the isobaric 

nuclei, and to define the limits of the Coulomb stability.   

Experiments on pairing interaction of nucleons have shown that the pairing energy 

depends on the mass number (Dean and Hjorth-Jensen, 2003; Ghoshal, 2008). 

However, the shell model does not predict the exact values of the mass numbers for 

the stability of the nuclei. Based on the shell model intimation, the pairing energy 

term in the binding energy equation has to be modified in order describe accurately 

the nucleon interactions of all the nuclei isotopewise and to develop a criterion for 
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ascertaining the existence of the stable nuclei on earth and other interstellar bodies 

such as the neutrons stars. 

1.3 Justification  

Several scientists across the world have carried out a whole myriad of investigations 

spread over decades on the stability of the nucleus of an atom. The results on these 

studies have provided solutions to several challenges facing mankind in various fields 

of science namely; nuclear medicine, nuclear energy, industrial applications, 

agriculture etc. However, there are some questions and gaps in nuclear theory that call 

for further investigations, both theoretically and experimentally. These include the 

microscopic composition and properties of celestial bodies such as the neutron stars, 

neutron matter, black holes and the recent discoveries of transuranic elements, which 

have proved to be more complex and prohibitively expensive to synthesize (Murthy, 

2017).  Other puzzles include the actual extent and the size of the periodic table, the 

limits of Coulomb stability of finite nuclei and the criterion for the distribution of the 

precious elements that are rare on earth, but predicted to be in plenty in neutrons stars 

and other interstellar bodies. 

The solutions to the above questions and many other puzzles surrounding the nucleus 

of an atom lie within the structure of the nucleus of the atom itself and its binding 

energy. These facets can only be investigated in depth in theoretical nuclear physics, 

particle physics, astrophysics and condensed matter physics. Therefore, the study of 

the effects of Coulomb and pairing interactions between nucleons in this research 

provides solutions that are linked with the stability of finite nuclei by; enriching on 

the knowledge of the nucleus, defining the limits of Coulomb stability for the 

existence of SHN and predicting the island of stability. 
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1.4 Objectives of the study 

1.4.1 General objective 

The main objective of this research is to study the effects of Coulomb and pairing 

interactions between nucleons in the binding energy equation and investigate their 

contribution towards the stability of finite nuclei.  

1.4.2 Specific objectives 

The specific objectives of the study are: 

i. To formulate a finite Coulomb potential energy model for nuclei with 

large atomic number (Z) and excess neutron number ( N Z ). 

ii. To calculate the values of stable atomic numbers (ZSTABLE) for the 

stability of isobars using the modified binding energy formula. 

iii. To develop a criterion for ascertaining the existence of the most stable 

finite nuclei and the longest-lived radioactive nuclei, isotopewise. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Various scientists and research groups have done several experimental and theoretical 

work on the nucleus of an atom in the past. The outcome of such studies has enriched 

the knowledge base in nuclear theory. Therefore, this chapter focuses on some of the 

important contributions in the nuclear theory, that are significant in describing some 

properties of spherical nuclei, as well as highlighting on their strengths and 

deficiencies. These areas include the atomic nucleus, the binding energy equation, the 

size of the nucleus and nuclear density, nuclear models, pairing interactions, super 

heavy nuclei and the island of stability. 

2.2 Atomic nucleus 

It is now well known that, the nucleus of an atom is a highly complex quantum 

system composed of protons and neutrons (Reid, 1984). Besides, a very strong short-

range force holds the protons and neutrons together while the electrons orbit the 

nucleus in specified orbits having certain energy levels (Ghoshal, 2008). However, the 

exact nature of interaction of particles inside the nucleus remains to be unknown 

(Davies and Brown, 1993). Several scientific efforts both experimental and theoretical 

(Michimasa et al., 2018) are in place to unravel the mysteries in the nucleus of an 

atom. In order to understand the nuclear interaction of particles in the nucleus, it is 

essential to trace briefly the paths of the giants that were behind the discovery of the 

nucleus of an atom and its structure.  
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The genesis in the discovery of the nucleus of an atom emphatically dates back to 

450BC, when a Greek philosopher named Democritus came up with the term “atom” 

meaning indivisible, to describe matter (Van Melsen, 2004). During that epoch, the 

Greeks believed that matter was made up of four basic elements namely earth, water, 

fire and air (Campbell, 2016). Several years later on 1808, John Dalton adopted 

Democritus theory (Rocke, 2005) and came up with a bold statement that elements 

such as Hydrogen, Oxygen, Phosphorus etc. were characterized by the weights of 

their atoms.  In 1897, Joseph John Thomson performed the first experiment to 

investigate on the existence of an atom using the cathode ray tube (Hentschel, 2009). 

He found that, there was a negative charge that was 1000 times lighter than a 

hydrogen atom, which was deflected by the negative coil of the cathode ray tube. J.J. 

Thomson discovered that, the negative charge could conduct electricity in gases, and 

he named it an electron hence receiving the Nobel Prize in Physics in the year 1906 

(Thomas, 2006).  

In 1909, Ernest Rutherford looked at J.J. Thomson’s model, which had been modified 

by Niels Bohr and Arnold Sommerfeld (Tilton, 1996) and bombarded fast moving 

alpha particles on a thin sheet of gold foil surrounded by circular detector screen. 

Rutherford observed the deflections of the alpha particles in the gold foil experiment 

with the assistance of his two co-workers, Hans Geiger and Ernest Marsden 

(Brynjolfsson and Wang, 2018). From his experiment, he made the following 

observations; firstly, most of the alpha particles did not deflect instead they tunneled 

through the foil, implying that, the atom is mostly made up of an empty space. 

Secondly, there existed a positive centre of the atom with a dense mass, which caused 

strong deflection of some alpha particles in all directions and he named it as the 

nucleus, which means a little nut in Latin. Lastly, Rutherford stated that, the electrons 
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orbit the nucleus in a wide orbit just like a mini solar system (Rutherford, 1911; 

Villeneuve, 2005; Webber and Davis 2012; Sivulka, 2017).  

Unfortunately, Rutherford did not explain why the negatively charged particles were 

not attracted by the positive centre, instead, he postulated that there could be a particle 

with mass but no charge (neutral particle) and he called it a neutron, even though he 

imagined it as a paired proton and electron (Rutherford, 1920). Since there was no 

evidence for his imagination, Rutherford ended up missing the discovery of a neutron. 

In 1920, Rutherford postulated that the hydrogen nucleus is a new particle since it is a 

fundamental building block of all nuclei, and named it proton after Prout’s hypothesis 

(Prout and Thomson, 1815). 

Twelve years later in 1932, James Chadwick, the student of Ernest Rutherford, 

repeated Rutherford’s experiment with an intention of searching for a neutral particle 

having the same mass as the proton (Chadwick, 1932). Chadwick’s experiment was 

successful and he discovered the existence of neutrons, which was confirmed by 

Werner Heisenberg who showed that the neutron is a unique particle but not a proton-

electron pairing as mentioned by Ernest Rutherford. Heisenberg (1932) proposed that 

the nucleus is composed of neutrons and protons. 

It was the discovery of the neutrons that revolutionized the atomic and nuclear 

physics especially in the field of nuclear energy, nuclear medicine and nuclear 

weapons where neutrons or protons take part in nuclear reactions with other nuclei 

through fusion or fission process. The addition of neutrons to a given nuclei changes 

the properties of the nucleus of an atom thus interfering with its stability. For instance, 

hydrogen has two stable isotopes namely hydrogen 
1

1( H)  and deuterium
2

1( H) . 

Deuterium is obtained by adding one neutron to hydrogen (single proton). On adding 
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a neutron to deuterium, we also obtain tritium
3

1( H) , which is unstable. Similarly, on 

adding proton to tritium, we get Helium  3

2 He . Subsequently, when a neutron is 

added to 3

2 He  we get 4

2 He . This process explains vividly the creation of all the 

elements in the nuclear landscape as recorded in the study of the big bang 

nucleosynthesis (Dolgov, 2002). 

The addition of protons or neutrons to the nucleus of an atom leads to a jump in the 

binding energy of the nuclei (Del Bene et al., 1999). For instance, the experimental 

measurement of the binding energies of 
1

1H , 
2

1H , 
3

2 He  and 
4

2 He  are 0.0000136MeV, 

2.22MeV, 8.4820 MeV and 28.3 MeV respectively (Pritychenko et al., 2006). The 

binding energies of the nuclei increase as the nucleus increases in size and this 

occurrence determines the stability of the elements based on the ratio of the protons 

and neutrons. The most stable element in the nuclear landscape is Nickel  60

28 Ni

which has even-even configuration of protons and neutrons (Z = 28 and N = 32) and it 

is the most stable element known with binding energy of 526.864 MeV. From this 

analogy, it is evident that the existence of nuclei on earth and other interstellar bodies, 

such as the neutron stars, is determined by the stability of the nuclei. However, there 

are a number of factors that may determine the limit of existence and stability of the 

nuclei (Afanasjev et al., 2018). According to Weizsäcker mass formula, it was 

predicted that nuclei with Z > 83 cannot exist since they have radioactive isotopes and 

they undergo alpha decay (Mackintosh et al., 2002). Nonetheless, some nuclei with Z 

greater than 92 (transuranic and transctinides) have been created artificially in the 

laboratory using nuclear reactors and particle accelerators, and some of them are 

stable against spontaneous fission. 
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The existence of stable nuclei is the most fundamental requirement in nuclear physics. 

For this reason, the existence of experimental nuclear physics will be threatened 

without the existence of stable nuclei. A stable nucleus has to be sufficiently bound, 

and this requires exact knowledge of the binding energy of the nucleus. The binding 

energy is defined as the amount of energy that has to be supplied to the nucleus of an 

atom containing protons (Z) and neutrons (N), to break their bonding in a manner that 

they are completely separated from each other (Brinkman, 1986 and Ghoshal, 2008). 

The magnitude of binding energy of a nucleus depends on the type of forces acting 

between the nucleons (neutrons and protons). The prominent forces that act between 

the nucleons are nuclear forces, pairing forces and Coulomb forces.  

Some of the fundamental characteristics of an atomic nucleus are charge radius (Bohr 

and Mottelson, 1969), mass and density, composition, binding energy and or binding 

fraction, nuclear forces, Coulomb forces and pairing interactions. An appropriate 

pairing model and a suitable choice of pairing model parameters is important for 

obtaining realistic results that determine the properties of atomic nucleus. 

2.3 The binding energy of the nucleus of an atom 

During the formation of a nucleus of mass number A from Z protons and N neutrons, 

which are completely separated from each other (National Research Council, 1986; 

Ghoshal, 2008), a small amount of mass of the constituent nucleons is converted into 

energy (Rabinowitz, 2015). This energy is called the binding energy and it forms the 

basis of understanding the properties of atomic nucleus (Chemogos et al., 2019). The 

binding energies are calculated using the famous semi-empirical mass formula 

(SEMF) that was formulated by a German Physicist, C.F Von Weizsäcker in 1935 

(Weizsäcker, 1935).  The insights behind the formulation of this famous model 
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emanated from the concepts of the liquid drop model (LDM), that was first proposed 

by a Russian Physicist G. Gamow in 1928 (Mishra et al., 2016) and later improved by 

N. Bohr and J. Wheeler (Bohr  and Wheeler, 1939). 

According to Bethe-Weizsäcker semi-empirical mass formula, the binding energy 

equation is written as (Weizsäcker, 1935; Bethe and Batcher, 1936; Dai et al., 2017; 

Heyde, 2004); 

2 2

3
1 2 3 41

3

( 1) ( 2 )
( , ) ( )

Z Z A Z
BE A Z a A a A a a A

A
A


 

                  (2.1) 

where, A is the mass number, Z is the atomic number, a1=15.99MeV 

represents the coefficient that is related to the volume term, a2=18.34MeV represents 

the coefficient of the surface term, a3=0.71MeV represents the coefficient that is 

associated with the Coulomb term, a4=23.21MeV represents the coefficient of the 

asymmetry term and ( )A  is the pairing energy correction term. 

The existence of the stable nuclei in nuclear physics is the solid motivation for 

studying the properties of nuclei close to the drip line, through careful investigation 

on the nuclear binding energy. This is ascribed to the fact that, the magnitude of 

binding energy depends on the prominent forces that act between the nucleons. Any 

theoretical model that aims at unravelling this mystery in nuclear theory should be 

founded on the binding energy of the atomic nuclei. 

The binding energy of the nuclei is of essence in describing the properties of the finite 

nuclei. Firstly, it gives information on stability of all the nuclei since the nuclei that 

have different number of protons and neutrons have different binding energies 

resulting into different decay probabilities (Oganessian, 2012). Secondly, the binding 
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energy may act as a tool that can predict the abundance of heavy elements that are 

rare on earth but present in neutron stars and other celestial bodies. This is due to the 

fact that, as the proton number increases, new shells get filled up creating fission 

barriers and thus the binding energy in the ground state increases resulting to greater 

stability for the nuclei. Consequently, the most stable nuclei become highly bound and 

chemically abundant. Lastly, the binding energy determines the synthesis of the super 

heavy elements through nuclear fission or fusion process of the nuclei (Williams, 

2016). The production of the super heavy nuclei entails bombarding heavy atomic 

nuclei with protons in the process of nuclear fission while in nuclear fusion light 

nuclei are bound together under high-energy states.  

In the heavy nuclei ( 120)A , the binding energy is significant in the process of cold 

fusion and hot fusion. In cold fusion, heavy targets such as lead or bismuth are 

bombarded with heavy ions of iron or nickel at energies above Coulomb barrier to 

form super heavy elements. In hot fusion, the actinide targets are bombarded with 

calcium beams to form highly excited compound nucleus (Oganessian and Utyonkov, 

2015). Currently, the hot fusion is the most successful technique in artificial synthesis 

of the super heavy nuclei. 

The study of the binding energy is very important and it has found several 

applications in industry. These include nuclear power, chemical manufacturing and 

nuclear medicine. It is predicted that, further studies on binding energy will provide 

more solutions in the synthesis of super heavy elements and production of reliable 

nuclear energy in the nuclear fusion processes (Williams, 2016). 

The calculations of the binding energies are not accurate (Ghoshal, 2008) since they 

are based on the rough estimates of the large number of nucleons (protons and 
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neutrons) that are in collective motion. In view of this, the coefficients of the SEMF 

that are associated with their empirical terms have been subjected to several 

improvements over time while maintaining the structure of the binding energy 

equation (Bailey, 2011). These empirical terms include the volume energy, the surface 

energy, the Coulomb energy, the asymmetry energy and the pairing energy. 

2.4 Coulomb potential of nuclei 

The magnitude of the force between charged particles is described by the Coulomb’s 

law which states that the force between two point charges is directly proportional to 

the magnitude of the charges (
1Q and 

2Q ) and inversely proportional to the square of 

the distance between them (r
2
) (Lowrie, 2007; Whittacker, 1910; Etkin, 2017). 

Therefore, the Coulomb’s force can be written as;  

1 2

2
0

1

4
C

Q Q
F

r
                (2.2) 

where 0  is the permittivity of free space. 

The Coulomb’s energy (𝐸𝐶) can also be written as; 

r

QQ
EC

21

04

1


                (2.3) 

Coulomb potential is one of the dominant terms in the determination of the binding 

energy equation of nuclei that is described in the famous Bethe-Weizsäcker semi-

empirical formula (Dai et al., 2017). According to SEMF in Eq. (2.1) the Coulomb’s 

energy is written as;  

   
1

31C CE SEMFE Z Z Aa


                (2.4) 

For large values of Z, the term Z(Z-1) in Eq. (2.4) is better represented as 2Z

(Ghoshal, 2008). 
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Several corrections on the Coulomb energies have been carried out in the past by 

modifying the Coulomb’s law to yield the modified Coulomb energy equations. 

Jänecke, (1972) introduced the Fermi integral to obtain the quantum-mechanical 

direct Coulomb energy for spherical nuclei with diffuse surfaces. The calculations 

were then subjected to least-squares analysis and results similar to those of electron 

scattering and muon x-ray experiments were obtained (Jänecke, 1972; Collard et al., 

1967).  

The direct Coulomb formula (EC(Dir)) devised by Jänecke (Jänecke, 1972) is written 

as, 

    
  213

( )
5

C dir

Z Z
E Dir C

R

e
               (2.5) 

where dirC is the Jänecke’s correction term which is written as, 
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   
                  (2.6) 

where a is the skin depth, R is the radius of the nucleus and b1 and b2 are the 

coefficients obtained from integration of Fermi functions. The direct Coulomb energy 

(EC(Dir)) was calculated using 0r   1.135 fm  obtained from electron scattering 

experiment (Jänecke, 1972) and muon capture x-ray data (Collard et al., 1967). The 

Jänecke’s modified Coulomb energy, EC (Dir), is based on the assumption that the 

Coulomb energy depends on distribution of charge near the nuclear surface, and it is 

characterized by the skin depth (a = 0.5 femtometers) and the nuclear radius. The 

nuclear radius is equivalent to the charge radius (R) which is given by; 
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1
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                (2.7) 
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Coulomb energy correction on the Thomas-Fermi model in the case of metals was 

also investigated to describe the nature of Coulomb’s potential. This modification was 

done by considering the interaction between electrons and their exchange correlation 

holes in metals (Naturali et al., 2013). Such interaction leads to the screening of the 

effective Coulomb force between the quasi-particles, which is corrected by 

introducing an exponential function in the Thomas-Fermi model. 

 Finslerian modification of the Maxwell’s equation was also used to correct the 

Coulomb potential by a team of scientists from the Hebrew University of Jerusalem 

and University of Bremen (Itin et al., 2014). They found that the Finsler metric 

corrections yield the splitting of the energy levels that come on top of the fine 

structure and the hyperfine structure. Such energy levels, alongside their 

corresponding wave functions were also obtained by applying the factorization 

method to solve the Schrödinger equation with modified Coulomb potential (Antia et 

al., 2015). Owing to the fact that the Coulomb’s law can be written in both two and 

three-dimensional closed spaces (Jackson, 1999), paved way for the modification of 

Coulomb’s law. Pedram carried out this modification and the results showed that, the 

total electrical charge in a closed space is zero and that the charge neutrality is 

experienced in both isotropic and homogeneous universe (Pedram, 2010).  

The recent discovery of super heavy nuclei (SHN) relied on the Coulomb potential 

because the super heavy elements are found to exist at the limits of Coulomb stability 

(Oganessian, 2012). As the atomic numbers increase beyond the actinides, the 

Coulomb repulsion increases due to the effect of new shells with small energy gaps 

that are created (Bender et al., 2001). Consequently, the ground state binding energy 

increases hence increasing the stability of the super heavy elements that are 
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characterized by existence of very high neutron and proton numbers, and large 

densities of neutron and proton states. 

Therefore, it is sufficiently evident that, the Coulomb energy plays a key role in 

understanding the mechanism of stability of transuranic elements and super heavy 

nuclei, the neutron excess of neutron rich nuclei, r-process, neutron stars phenomena 

and supernova (Gandolfi et al., 2014). In addition, several detailed calculations on the 

Coulomb energy that compare theory and experiments have been carried out in the 

past by several researchers (Jänecke, 1972). However, the calculations of the 

Coulomb potential are not accurate (Ghoshal, 2008) since the Coulomb potential in 

free space is a long-range potential, whereas the protons inside the nucleus are 

enclosed in a very small volume. In view of this fact, Coulomb energies must be 

subjected to modifications in order to understand the contributions of nuclear 

correlations, charge dependence, nuclear force, Coulomb perturbations (Nolen and 

Schiffer, 1969) and other new phenomena such as the limits of Coulomb stability 

among the super heavy elements (Oganneson, 2012).  

Presumably, any new technique and model in theoretical and nuclear physics that may 

be designed to produce large quantities of stable super heavy nuclei should be 

centered on Coulomb potential models that can regulate the magnitude of fission 

barriers and the limits of Coulomb stability. 

2.5 The radius of the nucleus, Size of the nucleus and Nuclear Density 

Ernest Rutherford was the first one to carry out the investigation on the radius of the 

nucleus in 1909 while studying the structure of an atom (Wilson, 1983). From 

Rutherford’s gold foil experiment using alpha particles emitted by a radioactive 

source, he found that the central charge that was interpreted to be the nuclear radius 
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for some few light elements such as hydrogen, magnesium and oxygen was estimated 

to be of the order of femtometers (Ghoshal, 2008). Experimental evidence have 

shown that, the nuclear charge and nuclear matter are uniformly distributed in the 

nucleus, and that the nuclear charge density and nuclear matter density are 

approximately constant (Ghoshal, 2008; Peter and Schuck, 1980).  

Rutherford’s estimates were not very accurate. However, new methods of determining 

the radius of nuclei have been developed. These techniques include x-ray 

spectroscopy, electron scattering and the use of laser beams (Mackintosh et al., 2002) 

that take into consideration the sphericity, diffuseness and electric quadrupole 

moments of the nucleus, thanks to the advances in quantum realm. Similarly, accurate 

determination of the nuclear sizes of unstable nuclei, neutron halos and neutron skin 

depths have been investigated experimentally through the application of advanced 

technologies such as radioactive nuclear beams (RNB)(Ozawa et al., 2001). 

The nuclear charge density  ( )r  is one of the most important bulk properties of 

nuclei, which is important in determining the nuclear charge radius. It is determined 

by using the Born approximation techniques of quantum mechanics and the inverse 

Fourier transformations (Ghoshal, 2008). With the application of good fits on 

experimental nuclear data, the nuclear density distribution assumes the form; 

1

0( ) 1 exp
r R

r
a

 



   
    

  
               (2.8) 

Here, 0  is the nuclear density at the centre ( 0)r  ,  r  is the distance from the centre 

of the nucleus, R is the nuclear radius at half density and a is the skin depth of the 

nucleus. The exponential term is a mathematical function representing the phase 
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factor relative to the volume (Greiner and Maruhn, 1996; Ghoshal, 2008; Ozawa et 

al., 2001). 

The nuclear radius is considered as the radius of the nuclear matter (A) and the 

nuclear charge (Z), since nuclear charge parameter (Z) is linearly proportional to mass 

number (A) and charge density that is uniformly distributed in the nucleus. For a 

spherical shape of nucleus with radius (R) and nuclear volume (V) which is directly 

proportional to mass number, it has been proved mathematically that; 

    

1

3
0R r A                 (2.9) 

Here, the parameter 0r  is an empirical value called the nuclear radius parameter and it 

varies between 0r  = 1.1 fm  for the light nuclei and 0r  = 1.5 fm  for the heavy nuclei (Fan 

et al., 1995 and Sakho, 2018). Therefore, the nuclear radius determines the strength of 

the long-range Coulomb potential energy, which is experienced at the nuclear surface 

in a charged sphere (Jänecke, 1972). 

2.6 Super heavy nuclei 

Super heavy nuclei represent a category of elements whose atomic number (Z) are 

beyond that of transuranic elements )103( Z . These elements are artificial, 

radioactive and they do not occur in large quantities but exist briefly under highly 

controlled conditions. Glenn Seaborg proposed the existence of transuranic elements 

in 1960s and they have been found to have half-lives ranging from hours to 

milliseconds (Murthy, 2017). Glenn Seaborg also predicted a possibility of an “island 

of stability” for the super heavy elements. It is not yet clear whether this island of 

super heavy nuclei exists (Mackintosh et al., 2002). However, stable heavy nuclei 
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with increased life times of millions of years have been predicted to reside in the 

island of stability (Oganessian, 2012). 

A considerable advancement in experimental techniques in the field of nuclear 

physics has been made in the last few decades following the production of several 

isotopes in some laboratories across the globe using radioactive beams (Changizi, 

2017; Tarasov et al., 2018). These advances have made it possible to explore the 

possibility of existence of heavy nuclei near the proton and neutron drip lines, the 

structure of exotic nuclei and the synthesis of super heavy nuclei (Oganessian and 

Utyonkov, 2015). The outcome of these rigorous theoretical and experimental 

investigations includes the creation of new elements and acquisition of pertinent 

information and data on half-lives of several nuclei. Such information is crucial in 

studying the long predicted “island of stability” (National Research Council, 2013).   

The first super heavy element (transactinide) to be synthesized was Rutherfordium 

(Rf, Z=104), which was synthesized at Joint Institute for Nuclear Research, Dubna, 

Russia (Roberto et al., 2015). The procedure involved bombarding Plutonium  Pu242

94  

target with neon ions  Ne22

10  in a particle accelerator. The techniques that were used 

in 1990s in the production of other super heavy elements include cold fusion 

experiments whereby the heavy targets of elements such as lead and bismuth were 

bombarded with heavy ions of iron and nickel at energies slightly above the Coulomb 

barrier. However, in this technique, the capture cross-sections decrease steadily with 

increasing atomic numbers, hence making the technique impractical for elements 

above Z=112 (Zagrebaev et al., 2003). The failure of cold fusion gave rise to the hot 

fusion in the early 2000s; a technique that entails bombardment of actinide targets 
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with 
48
20Ca  beams to create a highly excited compound nucleus (Oganessian and 

Utyonkov, 2015).  

The method of hot fusion technique led to the synthesis of six new super heavy 

elements whose atomic numbers range from Z=113 to Z=118. Until today, the last of 

the super heavy elements has Z=118, and several attempts are in place to produce the 

elements whose atomic numbers are Z=119 and Z=120 using projectiles whose 

atomic numbers are greater than 20 (Oganessian and Utyonkov, 2015; Oganessian and 

Rykaczewski, 2015). Furthermore, studies on transmission probabilities, compound 

nucleus formation probabilities, survival probabilities and cross-sections for 

projectiles that can be used in the synthesis of isotopes of Z=117 have also been 

carried out, and the results show that their synthesis largely depend on the reactions 

systems (Manjunatha and Sridhar, 2017). 

Other super heavy nuclei that have been predicted to exist using sophisticated 

theoretical models include 292120  , 340122  , 360130 , 432134 , 392134 , 364138 , 416164  and 

476184. The nuclide 292120  was predicted to have shell closures that were related to the 

central density depression at the central part of the spherical nucleus (Afanasjev et al., 

2018). This was achieved through the application of relativistic models and Skyrme 

interactions (Bender et al., 1999; Afanasjev and Frauendorf, 2005). Studies on 

biconcave disks and toroidal shapes of some nuclei using Skyrme-Hartree-Fock 

(SHF) calculations revealed that the nuclide 364138  yields the lowest energy in the 

toroidal solutions (Staszczak and Wong, 2008). In addition, the Gogny-Hartree-Fock-

Bogoliubov (HFB) calculations showed that, in the nuclei 416164  and 476184  their 

toroidal shapes represent the lowest in energy solutions at axial shape (Warda, 2007; 

Afanasjev et al., 2018). Similarly, the calculations obtained from triaxial Relativistic 
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Hartree-Bogoliubov (RHB) theory predicted the existence of the super heavy nuclei 

360130 , 432134 , 340122  and 392134 , which had more pronounced triaxial deformations 

that tend to reduce the stability of the nuclei against spontaneous fission (Afanasjev et 

al., 2018). Therefore, these super heavy nuclei were investigated in this study, in 

order to predict their most stable isobars. 

2.7 Island of Stability of Super Heavy Elements 

The island of stability is an allegorical term that was coined by William Myers and 

Wladyslaw Świątecki in 1960s and promoted by Glenn Seaborg (Kragh, 2017; Kragh 

2018). This term came up as a result of calculations of half-lives for some nuclei on 

the island of spherical super heavy nuclei that yielded millions of years (Hoffmann et 

al., 2018). Therefore, the island of stability describes the region of nuclear landscape 

that is likely to accommodate the super heavy elements that have magic number of 

protons and neutrons. The super heavy elements (SHE) is a term that refers to the 

elements with Z=104 (Rutherfordium) and above. SHE can also be used 

interchangeably with super heavy nuclei (SHN) when one is referring to nuclei. 

Therefore, super heavy elements (SHE) in the “island of stability” have been 

predicted to occur in the new closed shells at Z=114. Early predictions indicated that 

the next closed shell after Z=82 was Z=126, an analogous to the neutron magic 

number of N=126. Other calculations also suggested the existence of closures of 

subshells at Z=120 or Z=126 (Oganessian and Utyonkov, 2015). These predictions 

were in agreement with the earlier prediction of the magic numbers that were proved 

to have extremely high stability relative to their neighboring element as explained in 

the shell model.  
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Calculations based on the mass defects have been compared in the past with available 

experimental results and it was deduced that, the productions cross sections of the 

super heavy elements depends mainly on the position of the proton shell closures 

(Kuzmina et al., 2012). Therefore, it is probable that the synthesis of the super heavy 

elements which are prohibitively costly to produce, and at the same time extremely 

difficult to identify even after being processed (Mackintosh et al., 2002) might find 

their solution in accurate determination of the proton shell closures. This can be 

achieved through the modification of the Coulomb potential energy in the binding 

energy equation, the shell model calculations and the pairing interaction of the 

nucleons.  

2.8 Nuclear models 

 

Several nuclear models have been proposed to describe the structure of the nucleus 

but not in entirety. These models have brought enormous contributions in the study of 

the nucleus and they include the liquid drop model, Fermi gas model, the collective 

model, the shell model, the single particle model, individual particle model, superfluid 

model, Bethe-Weizsäcker mass formula, among others. Although the contributions of 

these models in describing the nature of nucleon-nucleon interaction are enormous, a 

theoretical model that can explain all the properties of nuclei entirely is yet to be 

developed. Notably, the study of these nuclear models and their modifications aided 

by the recent advances in nuclear theory may produce some useful models whose 

predictions can be confirmed experimentally. 

Due to the challenges encountered in developing a satisfactory theory, several 

scientists have carried out investigations, spread over decades, on the nucleus of an 

atom with a view of understanding the complex nature of internucleon interaction that 
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exists in the nucleus. This includes the application of symmetry concepts to spin and 

iso-spin degrees of freedom (Heisenberg, 1932; Wigner, 1937) and the linking of the 

shell model with collective structure (Elliott, 1958) using SU (3) model (Harvey, 

1968). The collective effects of SU (3) model in atomic nuclei are described as 

elementary modes (Bohr and Mottelson, 1998).  

The recent discoveries about the properties of pure neutron matter and neutron stars 

emphatically point out the existence of many-body interactions, which can be studied 

using the many body theory and formulation of theoretical models that can 

accommodate such many body systems (Gandolfi et al., 2015). Consequently, several 

theories have been proposed to describe the structure of the nucleus. However, none 

of the proposed theories and mathematical derivations have given a full understanding 

of the large number of the inter-nucleon interactions, since the Schrödinger equation 

cannot be accurately solved for such a many body system (Ghoshal, 2008). It is 

suggested that, the solution to this puzzle lies in the development of new models or in 

the modification of the existing nuclear models.  

2.8.1 Liquid drop Model 

The liquid drop model (LDM) was the first historical model to describe the nuclear 

properties of an atom (Barrett, 1999; Heyde, 2004). It was first proposed by a Russian 

Physicist G. Gamow in 1928 (Mishra et al., 2016) and later improved by N. Bohr and 

J. Wheeler (Bohr and Wheeler, 1939). This model is unique in the sense that, it treats 

the nucleus as a liquid droplet of an incompressible fluid having huge amount of 

density, thus, it clearly explains the spherical shape of most nuclei as well as 

predicting roughly the binding energies of the nuclei. The binding energies are 

calculated using the famous Bethe-Weizsäcker mass formula, that was formulated by 
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a German Physicist, C.F Von Weizsäcker in 1935 (Weizsäcker, 1935) using the 

concepts of the liquid drop model. Even though the liquid drop model successfully 

describes the collective behavior of the nucleons, it is not successful in describing the 

low-lying excited states of the nucleus due to the collective motions of the large 

number of nucleons that are involved in nuclear interactions (Ghoshal, 2008). 

2.8.2 Nuclear Shell Model 

The shell model is credited for being the foundation of the nuclear structure theory 

(Wang et al., 2012). This model considers the nucleons in an atom to be moving in 

some potential in discrete shells called energy levels with some level schemes having 

extra potential. This concept was first discovered by W.M Elsasser in 1933 

(Ghahramany et al., 2007). In 1948, M. G. Mayer showed that the nuclei that had 2, 8, 

20, 28, 50 and 82 number of protons and 2, 8, 20, 28, 50, 82 and 126 number of 

neutrons had very high stability (Mayer, 1949). Again, O. Haxel, JHD Jensen and H. 

E. Suess independently showed this concept in 1949, and this became the genesis of 

the nuclear shell model (Haxel et al., 1949; Johnson, 2004). The numbers of protons 

and neutrons that exhibited extra stability among the nuclei were referred to as magic 

numbers and these numbers give rise to the most stable isotopes and isotones among 

the nuclei.  

Notably, the occurrence of the so-called magic numbers; 2, 8, 20, 28, 50, 82 and 126 

from experimental point of view has been one of the strongest motivation for the 

formulation of the nuclear shell model where the magic numbers correspond to the 

shell closures (Peter and Schuck, 1980). Apart from describing the magic numbers, 

the shell model describes well many features that include the spin-orbit interaction, 
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spin-parity and magnetic moments of nuclei, however, it has a limitation over the 

unknown form of potential resulting from the electric quadrupole moments. 

In an attempt to explain the deformation of the nuclear core resulting from quadrupole 

moments in the shell model, Aage Bohr and Ben Mottelson in 1953 came up with a 

unified model called the collective model, which is a merger of the shell model and 

the liquid drop model (Rowe and Wood, 2010; Ghoshal, 2008).  This model looks at 

the collective properties of nucleon as whole by considering the oscillations and the 

nuclear excitations of the liquid drop vibrating at high frequency. It introduces the 

concept of non-sphericity resulting from the rotation and vibration of the nucleus 

hence predicting additional rotational and vibrational energy levels (William, 2018). 

2.8.3 Fermi Gas Model 

The Fermi gas model is another model that is quite simple and provides invaluable 

insights into the nuclear structure by assuming the nucleus as a degenerate gas of 

protons and neutrons (Greiner and Maruhn, 1996). This model incorporates the 

concepts of quantum mechanics. Therefore, it enriches the predictions of the binding 

energy equation proposed in the liquid drop model by adding the asymmetry energy 

and the pairing energy term. The limiting factor in this model is that, it fails to predict 

the detailed properties of the low-lying states of nuclei observed in radioactive decay 

process (Shreepad, 2011). 

2.8.4 Individual Particle Model 

Individual particle model is also referred to as independent particle model. This model 

assumes that all the nucleons move independently in a common spherical potential. 

Independent particle model describes the nucleus in terms of non-interacting particles 

in mass-dependent orbits of spherical potential field.  Its strength is that, it can be 
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used to calculate the wave function of a system (Ghoshal, 2008). However, the 

individual particle model is only applicable to those nuclei having a single nucleon 

outside the closed shells and it partially depends on the cogency of the shell model 

(Casten, 2000). 

2.8.5 Super Fluid Model 

The super fluid model is also known as the quasi-particle phonon nuclear model. This 

model explains the pairing interaction of even-even, odd-odd and even-odd or odd-

even configuration in different shells (Dumitrescu and Horoi, 1990). The super fluid 

model is the only model that describes the existence of large energy gap in between 

the ground state and the excited states of the even-even nuclei (Malov and Solov’ev, 

1980). Such energy gap also exists during the formation of the cooper pairs in 

superconductors and in the transformation of non-interacting quasi-particles into a 

new spectrum of single particle states (Ghoshal, 2008). This model is only limited to 

describing the pairing interaction of nucleons and quasi-particles.  

2.8.6 Single Particle Model 

The single particle model is special model that takes into account the internucleon 

interaction in a shell. It assumes that, the difference between the nucleon-nucleon 

interaction and the central potential or residual interactions does not cause 

perturbation of the single particle levels (Van Roosbroeck, 2002). The single particle 

model has several applications that include the calculation of nuclear magnetic 

moments. It also provides an elaborate explanation of the angular momentum of the 

nucleus through the application of Nordheim’s rules (Talmi, 2005) and the parities of 

odd A nuclei. This model also provides an explanation for the existence of the islands 

of isomerism in excited states of some nuclei (Grzywacz et al., 1998). On the 
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contrary, the single particle model does not explain the occurrence of very large 

values of quadrupole moments in many nuclei (Ghoshal, 2008). 

Despite the fact that there is sufficiently large amount of data and information that is 

obtainable from the applications of the nuclear models, a unified theoretical 

framework that can explain all the properties of nuclei especially the super heavy 

nuclei is yet to be developed. It is possible that, a breakthrough in these puzzles lies in 

the development of some advanced nuclear and theoretical models that can predict the 

nuclear structure of all the nuclei with minimal errors. This is only achievable through 

the application of computational techniques in many-body theory that may describe 

all the properties of the nucleus of an atom in a unified manner (Hjorth-Jensen et al., 

2017). 

2.9 The Closed shells of the Shell model 

A closer review of all the nuclear models shows greater advances in understanding the 

structure of the nucleus (Mayer, 1949). Among these models, the shell model stands 

out to be a unique and sophisticated model. This is because it considers the nucleons 

as independent particles in a potential well, operating under the action of Pauli 

Exclusion Principle and the uncertainty principle (Peter and Schuck, 1980). In 

addition, the shell model is lauded for describing vividly the existence of highly stable 

nuclei that are doubly magic. These kind of nuclei include 
4
2 He , 

40
20Ca , 

208
82 Pb  among 

others. Studies have also shown that, the naturally occurring isotopes and isotones of 

elements that contain magic number of protons or neutrons generally have greater 

relative abundance (Schwarzschild, 2010; Nakada and Sugiura, 2014). Similarly, such 

nuclei exist in large quantities compared to their neighbouring elements that do not 

have magic numbers. The strength of the shell model is that, it is open to refinements. 
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Therefore, many features of the nucleus in the ground state, the excited states and the 

closed shells of nuclei having magic number of protons and neutrons can be studied 

independently. This includes the properties of the super heavy nuclei that are 

predicted to reside in the island of stability. 

2.10 Pairing Interactions between nucleons 

The pairing effect of nucleons in atomic nuclei supplies the extra binding energy 

associated with pairs of nucleons having even-even, odd-even or even-odd and odd-

odd nuclei, and the odd-even mass staggering of binding energies in nuclear 

spectroscopy (Changizi, 2017). Various formulae have been derived to study the 

pairing correlations of isotopes. One of such formulae is the famous Bethe-

Weizsäcker semi-empirical mass formula written in Eq. (2.1). In this formula the 

pairing energy is written as ( )A  and it is computed as (Peter and Schuck, 1980); 
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The pairing interaction is one of the long-standing problems of nuclear structure, 

which was first investigated in even-odd staggering of binding energies (Ishkhanov et 

al., 2014) and it remains to be one of the long-studied topics in nuclei and nuclear 

matter (Dean and Hjorth-Jensen, 2003). Accordingly, particle pairing is an important 

interaction that is widely used in nuclear physics and other branches of physics 

(Draayer et al., 2005). This is because it allows physicists to understand many 

important experimental facts such as the energy gap, the level density, odd-even 

effect, moment of inertia, low-lying 2
+
 states and nuclear deformations (Ring and 

Schuck, 2004). 
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The pairing interaction of nuclei contributes the pairing energy term in the binding 

energy equation, which is defined as the surplus binding energy of the nucleus that 

comes from the configuration of the nucleons according to Pauli-exclusion principle. 

This pairing effect leads to the nuclei having either odd A nuclei or even A nuclei. 

Experimental and theoretical studies have proved that, out of the 252 known stable 

nuclei, five (5) nuclides have odd-odd (Z-N) configuration while 48 nuclides have 

odd-even (Z-N) configuration. Similarly, 53 nuclides have even-odd configurations 

and 146 nuclides have even-even configuration. The later, are the most stable 

(Wikipedia Contributors, 2020). A comparison between the even A and the odd A 

nuclei shows that, odd A nuclei are more strongly bound than odd-odd nuclei but they 

are less strongly bound when compared with even-even nuclei. This is caused by the 

pairing of the nucleons of the same type with opposite spin in the shell structure. 

Therefore, the pairing energy term increases the binding energy of the nucleons in the 

sense that, it is maximum for even-even nuclei. The reason is that, all nucleons with 

opposite spin form a pair while the unpaired nucleons in odd A nuclei results in the 

weakening of the binding energies, thus, affecting the stability of the nuclei. 

The low energy nuclear structure properties strongly depend on the nuclear pairing 

force. In the calculations of nuclear masses, the contributions of pairing effects are 

vital in the low-lying quasi-particle energies that depend on the low-energy 

microscopic structure of the nucleus. The Bardeen Cooper Schrieffer (BCS) pairing 

model (Bohr et al., 1958; Belyaev, 1959; Nilsson and Prior, 1961; Ogle et al., 1971) 

has been successfully used in the nuclear structure calculations while assuming the 

pairing force to be constant (Nilsson et al., 1969; Bolsterli et al., 1972; Möller and 

Nix, 1981a; Möller and Nix, 1981b).  
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The problem in the BCS model arises from the fact that, there exist large spacings 

between the single particle levels at the Fermi-surface. This is especially true at magic 

numbers for neutrons and protons in the shell model. The deformed actinide nuclei at 

neutron numbers N=142 and N=152 show large single-particle energy level spacing 

near the Fermi-surface. Thus, the level pairs included in the pairing calculation are 

generally chosen symmetrically around the Fermi surface. The level spacing depends 

on pairing, whereas the pairing gap depends on neutron excess, odd-odd, odd-even 

and even-even nuclei. Therefore, the pairing between nucleons in nuclei makes an 

important contribution to the determination of binding energy of nuclei. 

It is evident that, extensive research has been carried out over a century on the study 

of atomic nucleus. Consequently, there is a large measure of information and data that 

is available in nuclear theory. However, there is no single nuclear model that can 

describe and predict all the properties of different nuclei. In addition, the exact nature 

of interactions inside the nucleus is still not known since the properties of nuclei 

drastically change as Z and N, and hence A changes. Therefore, there is need to 

develop a theoretical model that can explain the nuclear properties in entirety. It is 

surmised that, such models derive their functionalism in the binding energy of the 

nucleus. This research therefore, investigated the effects of Coulomb interaction and 

pairing interaction between nucleons in the binding energy equation in order to 

determine the stability of finite nuclei in the nuclear landscape. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter describes the detailed account of the methods that were used in 

formulating the modified Coulomb energy model and the pairing energy equation. 

The techniques that were applied in deriving the nuclear models and data collection 

have been elaborated in this section of the thesis. In addition, the relevant sources of 

pertinent information and data on binding energies, Coulomb energies and pairing 

energies of nuclei have been pointed out in this chapter.  

3.2 The formulation of modified Coulomb energy model 

The formulation of the modified Coulomb energy model is anchored on the binding 

energy equation, which is famously referred to as Bethe-Weizsäcker semi-empirical 

mass formula (SEMF). The semi-empirical mass formula written in Eq. (2.1) is 

composed of five basic terms, which are of great importance in nuclear theory. This 

research work focused mainly on two unique terms in the semi-empirical mass 

formula, namely, the Coulomb potential and the pairing energy term. These terms 

were selected for investigation since they are directly connected with the interaction 

of the nucleons, and their roles are relatively more important as the nuclear sizes 

increase from the low mass nuclei to the high mass nuclei.  

By considering a liquid droplet, in which the charge distribution in the nuclear interior 

is uniform, the Coulomb energy can be written as (Bjørnholm and Lynn, 1980), 

2

1 2

0

3

5 4
C

Z Z e
E

r
                 (3.1) 
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where, e is  the electron charge, Z1 and Z2 are the number of protons and r is the 

distance between the protons. The protons inside the nucleus are closely packed in a 

very small volume whose radius is of the order of 10 
-13 

cm (Choppin et al., 2002). 

Therefore, Coulomb potential must be modified by introducing a correction term in 

order to make the Coulomb energy more effective inside the nucleus.  

Therefore, introducing a multiplier correction term ( )tC  in Eq. (3.1) yields, 

C tE C
r


                 (3.2) 

where 
2

1 2

0

3

5 4

Z Z e



        

The correction term ( )tC  is a factor for expressing the Coulomb energy dependence 

on the nuclear shape parameters using uniform distribution of charge inside the 

nucleus, (Khugaev et al., 2007) and it is determined by the effects of the proton-

proton repulsion in the nuclear-core of an atom.  

Since the Coulomb energy is a long-range potential, most of the potential energy 

should be confined within the volume of the nucleus and it may at best extend to the 

boundary of the nucleus. It is therefore surmised that an exponential function will suit 

this requirement since it is the only mathematical function that allows the reduction of 

some quantities to zero as the variable tends to infinity. Hence, it is proposed that the 

correction term for the modified Coulomb energy may be written as, 

nrC
t

e                 (3.3) 

where   represents the modified Coulomb energy screening term, r is the charge 

radius and n is a positive integer greater than or equal to 1. The power n ensures that 

the function continuous and differentiable. 
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Substituting Eq. (3.3) in Eq. (3.2) yields, 

   
nrE

C r
e                (3.4) 

Since the variation of the Coulomb energy (EC) at the nuclear boundary is equal to 

zero, the boundary condition is such that, 
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The differentiation of Eq. (3.4) using the condition in Eq. (3.5) yields, 

nnR

1
                 (3.6) 

 Hence, Eq. (3.4) becomes, 

nr

nnRE
C r

e
               (3.7) 

If the core of a nucleus of mass number A is assumed to be composed of neutron-

proton pairs, and there are Z protons (N>Z), then the number of nucleons in the core 

is 2Z, and the core radius (R0) is given by 3

1

00 )2( ZrR  . Since r is the distance 

between any two protons inside the core, the maximum value of r will be r = R0.  

Therefore, R0 will replace r in Eq. (3.7), and in Eq. (3.2) to yield the modified 

Coulomb energy equation (Cherop et al., 2019a) which is written as,  
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The correction term (Ct) from Eq. (3.8) is written as, 

0
n

n

R

nR
tC e                (3.9) 

Therefore, the derived modified Coulomb energy model (finite Coulomb energy 

model) in Eq. (3.8) was used to calculate the Coulomb energies of some selected 

finite nuclei whose neutron number is greater than the proton number. The effects of 

the correction term in Eq. (3.9) was studied in order to investigate the role of 

Coulomb energy in the binding energy equation for the finite nuclei and to calculate 

the values of stable atomic numbers that are responsible for the stability of the 

isobars. 

3.3 The application of the modified Coulomb energy equation 

The modified Coulomb energy model was substituted in the binding energy equation 

to obtain the modified binding energy equation. The modified binding energy 

equation was studied to determine its contribution in the calculations for the stability 

of isobaric nuclei and the limits of Coulomb stability. 

3.3.1 Derivations of ZSTABLE formula for finite nuclei using the modified Coulomb 

potential term 

By substituting the modified Coulomb energy term in Eq. (2.1), the resultant equation 

takes the form; 
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
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To find the value of Z for which a nucleus for a given A is stable, Eq. (3.10) is 

differentiated with respect to Z and its derivative is equated to zero, to get the value of 
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Z for a stable nucleus that may be denoted by ZSTABLE-SEMF. The differentiation is done 

keeping A constant. Thus, for isobars, 
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Replacing Z with ZSTABLE-SEMF  in Eq. (3.11) yields, 
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The nuclear radius R0 in Eq. (3.12) can be replaced with 

1

3
0 0(2 )R r Z  , and upon 

making ZSTABLE-SEMF  the subject of the formula, the resulting equation can be written 

as, 
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           (3.13)  

Taking the nuclear radius parameter 0r  = 1.22 fm  and substituting the numerical value 

of the term 
2

0 0

3

5 4

e

r
 in Eq. (3.13), yields Eq. (3.14); 
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where 
2

3

0

3
0.709

5 4 (1.22 )
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In Eq. (3.14), as n , the term 
0

nR

nnRe goes to unity. Hence, Eq. (3.14) becomes 
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The binding energy of the nucleus can also be written in terms of the mass defect 

(Choppin et al., 2002; Rabinowitz, 2015) as shown in Eq. (3.16); 

  2( , ) ( , )p nBE A Z ZM NM M A Z c              (3.16) 

where, N is the neutron number, ( , )M A Z is the mass of an atom of mass number A 

and atomic number Z, 1.00727650pM u  is the proton rest mass, 

1.0086650nM u  is the neutron rest mass and c is the velocity of light in vacuum. 

Eq. (3.16) can also be written as; 

  2 2( , ) ( ( ) ) ( , )p nM A Z c ZM A Z M c BE A Z                          (3.17) 

where ( , )BE A Z  is the semi-empirical mass formula written in Eq.(3.10). On 

substituting for the binding energy from Eq. (3.10) in Eq. (3.17) the resulting equation 

takes the form; 
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                  (3.18) 

To find the value of Z for which the nucleus for a given A is stable, the value of 

( , )M A Z  in Eq. (3.18) is differentiated with respect to Z and the resulting expression 

is equated to zero to get, 
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                                   (3.19) 

The atomic number (Z) in Eq. (3.19) can now be replaced with ZSTABLE-NMDF, where 

NMDF stands for Nuclear Mass Defect Formula. This will yield, 
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                  (3.20) 

Similarly, the nuclear radius R0 can be replaced with 

1

3
0 0(2 )R r Z  and re-written in 

terms of ZSTABLE-NMDF  to yield; 
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           (3.21) 

Substituting for the values of PM , nM  , c  and replacing the numerical value of the 

term 
2

0 0

3

5 4

e

r
 with 3a  in Eq. (3.21) yields, 
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             (3.22) 

The term 0.646695A in Eq. (3.22) comes from the mass formula. This term is due to 

the difference in the mass of protons and neutrons whereby P nM M . 

In Eq. (3.22), as n , the term 
0

nR

nnRe goes to unity. Hence, Eq. (3.22) becomes, 

4
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4 3
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a a A






            (3.23) 

Therefore, Eq. (3.14) and (3.22) were applied in the calculations of the most stable 

values of Z in isobaric nuclei. 

3.4 The modification of the pairing energy model 

As the protons and neutrons pair up in the nuclear shell structure, the pairing energy 

affects the binding energy in the sense that, the binding energy is maximum for even-
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even nuclei and minimum for odd-odd nuclei as described in the Bethe-Weizsäcker 

mass formula (Dai et al., 2017). However, Bethe-Weizsäcker mass formula does not 

allow for the accurate calculations of the pairing energies isotope wise.  

Calculations have shown that the pairing energy formula in Eq.(2.10) does not give 

sufficiently accurate and uniform results in the calculations of pairing energies for the 

pairs of isotopes, especially in the region where N>Z. This is attributed to the fact 

that, the proton-neutron pairing correlations are suppressed when more neutrons are 

added to the isotopes (Négréa, 2013). Furthermore, in the nuclear structure 

calculations, the pairing force has been assumed constant (Nilsson et al., 1969; 

Bolsterli et al., 1972; Möller and Nix, 1981a; Möller and Nix, 1981b). Therefore, to 

calculate the pairing energies, isotope wise, the pairing energy equation derived by 

Wang et al. (2017) is modified using the binding energies of the nuclei. 

According to Wang et al. (2017), the pairing energy for pairs of neutrons can be 

calculated using the formula in Eq. (3.24),  

           
1 - 1

, -1 - 1, 3 , -3 -1, -2,
4

A Z
P A Z M A Z M A Z M A Z M A Z
n


       

                  (3.24) 

where  ,P A Z
n

is the neutron pairing energy, A is the mass number of the element, 

Z is the atomic number, and the right hand side gives the combination of the involved 

masses. The mass excess, free of the bound nucleus can be written as M, defined as 

the difference between the total mass of nucleons and the combined mass of the 

nucleus (Ghoshal, 2008) such that, 

 ,P NM ZM NM M A Z                 (3.25) 
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where N is the neutron number, MP  is the proton mass, MN is the neutron mass and A 

is the mass number of a nucleus. 

The mass excess of any element can also be expressed as a function of binding energy 

(Rabinowitz, 2015). Therefore, Eq. (3.24) can be modified such that the binding 

energy (BE(A, Z)) is used instead of the mass (M) to calculate the pairing energies of 

nuclei isotope wise (Cherop et. al., 2019b). Thus, Eq. (3.24) can be written as, 

 

            
1 1

, 1 1, 3 , 3 1, 2,
4

A Z
P A Z B A Z B A Z B A Z B A Z
N

 
          

                  (3.26)   

To calculate  ,P A Z
N

, the values of binding energy, were taken from atomic mass 

evaluation tables, AME2016 (Wang et al., 2017) and they were be used to calculate 

the pairing energies of various isotopes.  

Experiments on pairing interaction of nucleons have shown that, pairing energy 

depends on the mass number (A) (Dean and Hjorth-Jensen, 2003; Ghoshal, 2008). 

Therefore, the pairing energies of O-O (odd-odd), O-E (odd-even), E-E (even-even) 

and E-O (even-odd) nuclei, in the shell structure, were computed using the modified 

pairing energy equation, Eq. (3.26). The calculations of the pairing energies that were 

obtained were plotted against the mass numbers (A) and the nature of their graphs 

were analyzed in order to predict the stability and abundance of the elements isotope 

wise. In addition, the tables of natural abundance (Rosman and Taylor, 1999) were 

used as a constraint to the results; to check on the natural abundance of the elements, 

to draw some comparisons and to ascertain the validity of the model. This was carried 

out in order to investigate the role of the shell model in determining the pairing 
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interaction of some finite nuclei, isotope wise, as well as establishing a criterion for 

their existence on earth, collapsed neutron star merger and the “island of stability”. 

3.5 Selection of Universal radius parameters 

The universal radius parameter is also referred to as the nuclear radius parameter. It is 

an empirical value that is useful in the calculation of radius of a spherical nucleus of 

an atom. Several experimental and theoretical techniques have been applied in 

determining the universal radius parameter
0

( )r . Calculations reveal that, this 

parameter varies between 0r   1.1 fm  and 0r   1.5 fm  depending on the nuclear size 

(Fan et al., 1995; Sakho, 2018). In this thesis, the nuclear radii parameter chosen 

were; 0r  = 1.22 fm  , a value that was applied in the derivation of the Coulomb constant,

3=0.71MeVa  (Dai et al., 2017), and 0r  = 1.135 fm  that was obtained from electron 

scattering experiment and muon capture x-ray data (Collard et al., 1967).  

For the hyperheavy nuclei, the value of nuclear radius parameter that was selected for 

calculation was 0r  = 1.5 fm  since their nuclear masses are extremely large. The values 

of the nuclear radii parameters were used separately to calculate the nuclear effective 

radius (R) and the nuclear core radius (R0), which were then substituted in the derived 

model to calculate the modified Coulomb energy. The values of the Coulomb energies 

obtained were compared with other modified Coulomb energy values (EC (Dir) and EC 

(SEMFE)) in order to study their variations and trends.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter presents the results and discussions of the findings that were obtained 

from this study. The calculations obtained from the theoretical models that were 

formulated in Chapter three were analysed and interpreted accordingly. The results 

are presented in form of graphs, figures and tables and a detailed discussion of the 

findings is provided.  

4.2 The results of the correction terms for finite nuclei 

The model of the correction term derived in Eq. (3.9) gives us the exponential terms 

of the ratio of the powers of the nuclear core radius (R0) to the powers of the effective 

nuclear radius (R). The values of R0 and R were calculated using the formula

1

3
0 0 (2 )R r Z and

1

3
0 ( )R r A respectively. These terms were used in the calculation of the 

correction terms of some selected nuclei which include 
238
92 U  using the nuclear radius 

parameter 0r  = 1.22 fm .  

The results from the calculations (Table 4.1) show that, the exponential correction 

terms decrease with an increase in the values of n in nR  and 0
nR  because the positive 

integer 1n   confines the proton charge in the nucleus. Similarly, as the powers of 

their radii increase from 1n   to 21n , the powers of the effective nuclear radius 

(R) and powers of the nuclear core radius (R0) become infinitely small. Consequently, 
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the ratio of  
n

n

nR

R0   tends to the value zero and the exponential correction term goes to 

unity as shown in the Table 4.1. Mathematically, this can be expressed as,    

   .0lim 0 














 n

n

n nR

R
                (4.1) 

Table 4.1: Correction term for 
238
92 U  calculated using Eq. (3.9) and the nuclear radius 

parameter 0r  = 1.22 fm   

n Ro
n
 R

n
 

0
nR

nnRe  

1 6.94E-15 7.56E-15 2.50377 

2 4.81E-29 5.72E-29 1.64872 

3 3.34E-43 4.32E-43 1.39561 

4 2.32E-57 3.27E-57 1.28403 

5 1.61E-71 2.47E-71 1.22140 

6 1.12E-85 1.87E-85 1.18136 

7 7.7E-100 1.4E-99 1.15356 

8 5.4E-114 1.1E-113 1.13315 

9 3.7E-128 8.1E-128 1.11752 

10 2.6E-142 6.1E-142 1.10517 

11 1.8E-156 4.6E-156 1.09517 

12 1.2E-170 3.5E-170 1.08690 

13 8.6E-185 2.6E-184 1.07996 

14 6E-199 2E-198 1.07404 

15 4.2E-213 1.5E-212 1.06894 

16 2.9E-227 1.1E-226 1.06449 

17 2E-241 8.6E-241 1.06059 

18 1.4E-255 6.5E-255 1.05712 

19 9.7E-270 4.9E-269 1.05404 

20 6.7E-284 3.7E-283 1.05127 

21 4.6E-298 2.8E-297 1.04877 

n>21 Ro
n 

< 4.6E-298 R
n  

< 2.8E-297 1.00000 
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Similar calculations were also done using 0r  = 1.135 fm  and different values of nuclear 

radii were obtained, however, the same values of correction term were obtained as 

shown in Appendix I. This shows that the correction term is independent of the 

nuclear radius parameter that varies between 0r  = 1.1 fm  for light nuclei and 0r  = 1.5 fm  

for the heavy nuclei. 

The correction terms for other selected finite nuclei that range from the light nuclei to 

the super heavy nuclei were calculated using Eq. (3.9). The finite nuclei selected 

include Phosphorus (Z=15), Chromium (Z=24), Manganese (Z=25), Gellinium 

(Z=32), Zirconium (Z=40), Neodymium (Z=60), Nihonium (Z=113), Oganesson 

(Z=118) and three other hyperheavy nuclei which were given some arbitrary names; 

K*, L* and M*. These finite nuclei were selected randomly from the periodic table of 

elements while the hyperheavy nuclei, K*, L* and M* with atomic numbers 138Z , 

156Z  and 174Z , respectively, are elements that were predicted to be stable 

against spontaneous fission (Afanasjev et. al., 2018). The results of the calculations 

are shown in Table 4.2 and Appendix II. So far, it has not been possible 

experimentally to produce nuclei with 118Z  ; new experiments with very different 

targets and projectiles may have to be used to produce nuclei with Z=138, Z=156 and 

Z=174, although the calculation done in this thesis predict them as stable nuclei 

against spontaneous fission (SF). 
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Table 4.2: Correction terms of finite nuclei with Z=15, Z=24, Z=25, Z=32, Z=40 and 

Z=60, calculated using Eq. (3.9) and the nuclear radius parameter 0r  = 1.22 fm  

n 

CORRECTION TERMS 

Z=15 

(A=32) 

Z=24 

(A=55) 

Z=25 

(A=62) 

Z=32 

(A=72) 

Z=40 

(A=100) 

Z=60 

(A=162) 

1 2.6610 2.6314 2.5365 2.6156 2.5303 2.4714 

2 1.6143 1.5969 1.5422 1.5876 1.5386 1.5058 

3 1.3668 1.3524 1.3084 1.3449 1.3056 1.2800 

4 1.2578 1.2449 1.2064 1.2382 1.2040 1.1824 

5 1.1967 1.1848 1.1500 1.1786 1.1478 1.1289 

6 1.1577 1.1465 1.1145 1.1408 1.1126 1.0957 

7 1.1307 1.1200 1.0903 1.1146 1.0886 1.0735 

8 1.1110 1.1007 1.0730 1.0956 1.0714 1.0577 

9 1.0959 1.0860 1.0600 1.0812 1.0585 1.0462 

10 1.0840 1.0745 1.0500 1.0699 1.0487 1.0374 

11 1.0744 1.0653 1.0422 1.0608 1.0409 1.0307 

12 1.0665 1.0577 1.0359 1.0534 1.0347 1.0254 

13 1.0599 1.0513 1.0307 1.0473 1.0297 1.0212 

14 1.0543 1.0460 1.0265 1.0421 1.0255 1.0178 

15 1.0495 1.0415 1.0230 1.0377 1.0221 1.0150 

16 1.0453 1.0375 1.0200 1.0339 1.0192 1.0127 

17 1.0416 1.0341 1.0175 1.0306 1.0168 1.0108 

18 1.0384 1.0311 1.0154 1.0278 1.0147 1.0092 

19 1.0356 1.0285 1.0136 1.0253 1.0129 1.0079 

20 1.033 1.0262 1.012 1.0231 1.0114 1.0068 

21 1.0308 1.0241 1.0106 1.0211 1.0100 1.0058 

n>21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

It is found that the correction terms decrease in all the elements as n increases from 

1n   to 21n . As n goes beyond 21n  , the correction term (Ct) goes to unity. 

This implies that, no correction to the Coulomb law is required at large distances. In 
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fact, the correction term is meaningful only at small distances, which are of the order 

of the size of the nucleus since all the protons in the nucleus are confined to the core 

region of the nucleus. 

4.3 The Modified Coulomb energies for the selected finite nuclei 

The values of the correction terms in Table 4.1, Table 4.2 and Appendix II were 

substituted in modified Coulomb energy equation (Eq. (3.8)) to calculate the Coulomb 

energies. The results that were obtained are shown in Table 4.3 and in Appendices III 

and IV. 

Table 4.3: Coulomb energies of finite nuclei with Z=15, Z=24, Z=25, Z=32, Z=40 and 

Z=60, calculated using Eq. 3.8 and the nuclear radius parameter of 0r  = 1.22 fm   

n 

Coulomb Energies (MeV) 

Z=15 Z=24 Z=25 Z=32 Z=40 Z=60 

1 127 283 292 459 648 1254 

2 77 172 178 278 394 764 

3 65 145 151 236 334 650 

4 60 134 139 217 308 600 

5 57 127 132 207 294 573 

6 55 123 128 200 285 556 

7 54 120 126 196 279 545 

8 53 118 124 192 274 537 

9 52 116 122 190 271 531 

10 52 115 121 188 269 527 

11 51 114 120 186 267 523 

12 51 114 119 185 265 520 

13 51 113 119 184 264 518 

14 50 112 118 183 263 517 

15 50 112 118 182 262 515 

16 50 111 117 181 261 514 

17 50 111 117 181 260 513 

18 50 111 117 180 260 512 

19 49 110 117 180 259 512 

20 49 110 117 179 259 511 

21 49 110 116 179 259 511 

n>21 48 107 115 175 256 508 
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It was noted that, the Coulomb energies of the light nuclei were less than the heavy 

nuclei and decrease as the powers of their radii increase. This is attributed to the 

number of protons, which are less in the light nuclei but increase with increase in the 

mass number (A). When 21n  , the Coulomb potential decreases gradually due to 

the effects of the correction term. The Coulomb potential at short distances is 

unsteady since all the protons are confined in the nuclear core. At long distances, the 

Coulomb potential is accurate since Coulomb law is a long-range force. Therefore, 

introducing an exponential correction term confines the long range Coulomb law such 

that a finite range Coulomb energy is achieved, thus, defining the range of the 

Coulomb force inside the nucleus. 

4.4 Comparison of Coulomb energies calculated from EC(SEMFE), EC(Dir) and 

EC(Mod) 

The Coulomb energies were calculated using the Coulomb energy equation in the 

Semi empirical mass formula (EC(SEMFE)) written in Eq. (2.4), Jänecke’s modified 

Coulomb energy (EC(Dir)) shown in Eq. (2.5) and EC(Mod) derived in Eq. (3.8). The 

values that were obtained are tabulated in Table 4.4. 
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Table 4.4: Comparison of Coulomb energies of some nuclei calculated using EC(Dir), 

EC(SEMFE) and EC(Mod) with nuclear radius parameter 0r  = 1.22 fm  

ELEMENTS A Z1 Z2 
EC(SEMFE) 

(MeV) 

EC(Dir) 

(MeV) 

EC(Mod) 

(MeV) 

P 32 15 14 46.96 41.99 47.80 

Cr 55 24 23 103.06 95.02 107.42 

Mn 62 25 24 107.63 99.79 115.18 

Ge 72 32 31 169.30 157.97 175.39 

Zr 100 40 39 238.63 225.36 256.05 

Nd 162 60 59 461.06 441.53 507.58 

U 238 92 91 959.17 926.33 1041.01 

Nh 282 113 112 1370.27 1327.50 1469.45 

Og 294 118 117 1474.16 1429.18 1580.01 

K* 368 138 137 1873.16 1822.51 2053.65 

L* 466 156 155 2214.38 2161.53 2521.35 

M* 584 174 173 2556.91 2502.63 3026.66 

 

The results of Coulomb energies in Table 4.4 show that, the Coulomb energies 

calculated using the three methods increase steadily from the light nuclei to the 

hyperheavy nuclei. This is mainly due to the increase in the mass number (A) among 

the elements. As the mass number increases, the radius of the nucleus increases and 

the proton-proton repulsion in the core of the nucleus also increases leading to greater 

magnitude of Coulomb energy. Similarly, a comparison between EC(SEMFE) , 

EC(Dir) and  EC(Mod) showed that, EC(Mod) is slightly higher than both EC(Dir) and 

EC(SEMFE) . The reason for this is that, the exponential correction term in the 

modified Coulomb energy formula (EC(Mod)) confines all the nuclear charge in the 

nucleus, hence, more of the Coulomb’s energy gets accounted for within the nucleus.  

The calculations of Coulomb energies using Eq. (2.4), Eq. (2.5) and Eq. (3.8) were 

also done using the nuclear radius parameter 0r  = 1.135 fm . The purpose was to study 
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the effects of the universal radius parameter on the Coulomb energies. The results 

obtained are shown in Table 4.5. 

Table 4.5: Comparison of Coulomb energies of some nuclei calculated using EC(Dir), 

EC(SEMFE) and EC(Mod) with nuclear radius parameter 0r  = 1.135 fm  

ELEMENTS A Z1 Z2 
EC(SEMFE) 

(MeV) 

EC(Dir) 

(MeV) 

EC(Mod) 

(MeV) 

P 32 15 14 50.27 44.41 51.38 

Cr 55 24 23 110.31 100.88 115.46 

Mn 62 25 24 115.21 106.03 123.81 

Ge 72 32 31 181.22 168.00 188.53 

Zr 100 40 39 255.43 240.12 275.22 

Nd 162 60 59 493.53 471.47 545.62 

U 238 92 91 1026.72 990.53 1118.96 

Nh 282 113 112 1466.76 1420.25 1579.50 

Og 294 118 117 1577.97 1529.21 1698.34 

K* 368 138 137 2005.08 1951.25 2207.44 

L* 466 156 155 2370.33 2315.49 2710.19 

M* 584 174 173 2736.98 2682.11 3253.50 

A comparison of the Coulomb energy results in Table 4.4 and Table 4.5 shows that 

the Coulomb energies obtained from the use of the nuclear radius parameter 

0r  = 1.135 fm  are greater than the results obtained from the use of 0r  = 1.22 fm .  In 

addition, EC(Mod) is greater than both EC(Dir) and EC(SEMFE). This suggests that, 

even though the nuclear radius parameter is a constant term, its interaction with the 

nuclear masses incidentally increases the nuclear radius, which is inversely 

proportional to the Coulomb’s energy. Consequently, the nuclear radius parameter, 

0r  = 1.135 fm  gives out greater values of Coulomb energy than 0r  = 1.22 fm  in all the 

nuclei, especially, the super heavy nuclei as shown in Appendix V. It is therefore 

evident that, the Coulomb energy depends on the nuclear radius parameter that varies 

between 0r  = 1.1 fm  for light nuclei and 0r  = 1.5 fm  for the heavy nuclei (Fan et al., 1995 

and Sakho, 2018).  
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4.5 The Coulomb energies per nucleon 

The Coulomb energies per nucleon for some fifteen randomly selected elements, 

whose masses increase with increase in Z but 92Z   were computed using Eq. (2.4), 

Eq. (2.5) and Eq. (3.8). These elements include Li, B, C, O, F, P, Ca, Cr, Kr, Zr, In, 

Ba, Gd, Po and U. Their calculations for Coulomb energies per nucleon are shown in 

Appendix VI part (a) while their graphical representation is shown in Figure 4.1. 

 

Figure 4.1: Graphical representation of the Coulomb Energies per nucleon of 

some Elements with 92Z   obtained using Eq. (2.4), Eq. (2.5) and Eq. (3.8).  

The graph of Coulomb energy per nucleon in Figure 4.1 shows that, the Coulomb 

energies per nucleon increase gradually as the atomic numbers (Z) increase. This is 

because of the proton-proton repulsion that brings about the multiplying effect of the 

Coulomb’s energy, causing it to spread throughout the entire volume of the nucleus as 
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the nuclear size of the elements increases. A sharp increase in Coulomb energy per 

nucleon is observed in the element Krypton, and this is attributed to its inert nature; 

thus, it is more bound and stable than the neighbouring elements. 

It has been noted that, there is a sharp decrease in the stability of transuranic elements 

as the proton number increases beyond 92Z  (Oganessian, 2012). Therefore, to 

investigate the effects of Coulomb potential in the stability of the nuclei in this region

( 92)Z  , the derived models in Eq. (2.4), Eq. (2.5) and Eq. (3.8) were used to 

calculate the Coulomb potentials per nucleon of the super heavy elements that were 

discovered recently using the method of hot fusion. These elements include 

Nihonium, Flerovium, Moscovium, Livermorium, Tennessine and Oganesson 

(Murthy, 2017). Since these elements are radioactive with very short half-lives, very 

little experimental information is known about their existence. Therefore, the 

Coulomb energies per nucleon of the isotopes of these elements were calculated using 

the available data in AME2016 (Wang et al., 2017). In order to study the 

contributions of excess neutrons in super heavy nuclei, some neutrons (100 neutrons) 

were added to the super heavy elements whose mass number is A to obtain  A*, 

where A* is the mass of the isotopes with neutron excess. The results of these 

calculations are shown in Table 4.6. 

 

 

 

 

 



56 
  

  
 

Table 4.6: Coulomb energies per nucleon of both super heavy isotopes with Excess 

neutrons ranging between Z=113 to Z=118 calculated using Eq. (3.8) 

ELEMENTS A 
EC(Mod) 

(r0=1.135fm) 

EC(Mod) 

(r0=1.22fm) 
A* 

EC(Mod) 

(r0=1.135fm) 

EC(Mod) 

(r0=1.22fm) 

Nihonium 

Z=113 

282 5.601 5.211 382 4.135 3.847 

283 5.581 5.193 383 4.124 3.837 

284 5.561 5.174 384 4.113 3.827 

285 5.542 5.156 385 4.102 3.817 

286 5.522 5.138 386 4.092 3.807 

Flerovium 

Z=114 

285 5.624 5.233 385 4.164 3.874 

286 5.605 5.214 386 4.153 3.864 

287 5.585 5.196 387 4.142 3.854 

288 5.566 5.178 388 4.131 3.844 

289 5.547 5.160 389 4.121 3.834 

Moscovium 

Z=115 

287 5.668 5.273 387 4.203 3.910 

288 5.648 5.254 388 4.192 3.900 

289 5.628 5.236 389 4.182 3.890 

290 5.609 5.218 390 4.171 3.880 

Livermorium 

Z=116 

291 5.672 5.277 391 4.221 3.927 

292 5.652 5.259 392 4.210 3.917 

293 5.633 5.241 393 4.200 3.907 

Tennessine 

Z=117 

293 5.714 5.316 393 4.260 3.963 

294 5.695 5.298 394 4.250 3.953 

Oganesson 

Z=118 
294 5.777 5.374 394 4.311 4.010 

 

The results in Table 4.6 show that the Coulomb energy per nucleon among the super 

heavy nuclei decreases as the mass numbers increase among the isotopes. It was also 

noted that, the Coulomb potential among the isotopes of each super heavy element 

decreases with increase in the mass number. As neutrons are added to form nuclei 

having mass numbers with neutron excess (A*), the Coulomb energy decreases 

further with the minimum values recorded in the model, Ec(Mod), calculated using the 

nuclear radius parameter 0r  = 1.22 fm . The reason for the decrease in Coulomb energies 

lies in the fact that, the excess neutrons lower the Coulomb potential by repressing the 

proton-proton repulsion.    
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4.5.1 The Coulomb energies per nucleon for elements with *174Z     

With the quest of peering into the “island of stability”, the Coulomb energy per 

nucleon for the elements in Table 4.5 that include hyperheavy elements were also 

calculated. The graphical illustrations are shown in Figure 4.2 and the tabulated 

results are shown in Appendix VI part (b).  

 
 

Figure 4.2: Graphical representation of the Coulomb Energies per nucleon of some 

Elements with *174Z   obtained using Eq. (2.4), Eq. (2.5) and Eq. (3.8). 

The results obtained in Figure 4.2 show some gradual increase in the Coulomb energy 

per nucleon among the light mass nuclei, intermediate mass nuclei and the super 

heavy and hyperheavy nuclei. However, unusual behavior was noted in the 

hyperheavy nuclei, that is, the Coulomb potentials stabilized and then dropped 

uniformly in all the models. This region lies in the range 120 160Z   which points 
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out to the region where the “island of stability” is likely to exist. Incidentally, the 

region described by the models is wider. Therefore, calculations that are more detailed 

are required in order to identify more precisely the most stable nuclei for some values 

of Z (ZSTABLE), particularly in the isobaric super heavy nuclei.  

4.6 Calculation of ZSTABLE values for the stability of isobars 

Isobars are nuclei of different elements having the same value of the mass number (A) 

but different values of protons (Z). The calculation of the most stable values of Z was 

based on the mathematical evaluation of Eq. (3.10) to yield Eq. (3.14) and Eq. (3.22). 

The derived models were applied in determining the most stable values of Z for a 

given mass number, having either even mass number or odd mass number. For the 

even mass numbers, the following values were selected; A=10, A=72, A=172, A= 

368, A= 466 and A=584. For the odd mass numbers, the nuclei selected were A= 27, 

A=113 and A=277. It was found that, the two methods (ZSTABLE-NMDF and ZSTABLE-

SEMF) of determining the most stable values of Z gave similar results in the light nuclei 

and intermediate mass nuclei. However, different values of ZSTABLE were obtained 

when the two methods were applied in the calculation of the most stable isobars in the 

super heavy nuclei and the hyperheavy nuclei. The results obtained the for even A 

nuclei are shown in Table 4.7 and in Appendix VII.  
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Table 4.7: Calculations for ZSTABLE values for A=10 using Eq. (3.14) and Eq. (3.22) 

 

A=10 

n Ro
n
 R

n
 n

n

nR

R

e
0

 

ZSTABLE-

SEMF 

ZSTABLE-

NMDF 
ELEMENT 

1 2.44E-15 2.62841E-15 2.530249 5 5 

BORON 

2 5.95E-30 6.90854E-30 1.538622 5 5 

3 1.45E-44 1.81585E-44 1.305605 5 5 

4 3.54E-59 4.77279E-59 1.204017 5 5 

5 8.65E-74 1.25449E-73 1.147842 5 5 

6 2.11E-88 3.2973E-88 1.112563 5 5 

7 5.1E-103 8.6667E-103 1.088581 5 5 

8 1.3E-117 2.278E-117 1.071374 5 5 

9 3.1E-132 5.9874E-132 1.058538 5 5 

10 7.5E-147 1.5737E-146 1.048678 5 5 

11 1.8E-161 4.1364E-161 1.040927 5 5 

12 4.5E-176 1.0872E-175 1.034723 5 5 

13 1.1E-190 2.8577E-190 1.029681 5 5 

14 2.7E-205 7.5111E-205 1.025534 5 5 

15 6.5E-220 1.9742E-219 1.022086 5 5 

16 1.6E-234 5.1891E-234 1.019194 5 5 

17 3.9E-249 1.3639E-248 1.01675 5 5 

18 9.4E-264 3.5849E-263 1.01467 5 5 

19 2.3E-278 9.4226E-278 1.01289 5 5 

20 5.6E-293 2.4766E-292 1.011359 5 5 

21 1.4E-307 6.5096E-307 1.010036 5 5 

n>21 
Ro

n 
< 1.4E-

307 

R
n  

< 6.509E-

307 
1.000000 5 5 

 

 

In the nuclei having even mass numbers A=10 and A=72, the two methods used gave 

the same results for the stable Z values. The values of ZSTABLE obtained from the 

calculations are Boron and Germanium, respectively. In the super heavy and 

hyperheavy nuclei, different values of ZSTABLE were obtained from each method. The 

variation in the results of ZSTABLE is caused by the effect of the masses of protons and 

neutrons whose influence is significant only in the heavy nuclei. It is also found that, 

similar trend of values for ZSTABLE in odd A nuclei is obtained. The results for odd A 

nuclei are shown in Table 4.8 and Appendix VIII.  
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Table 4.8: Calculations for ZSTABLE values for A= 113 using Eq. (3.14) and Eq. (3.22) 

 

It is found that, as the values of n increase from 1n  to 21n  , different values of 

stable Z (ZSTABLE) are obtained. The most stable value of Z is obtained when 21n  . 

As n increases, the calculated values of ZSTABLE also increase by gaining protons. 

Considering the odd mass nuclei (A=113) in Table 4.8, it was found that the series for 

obtaining ZSTABLE are Z=39→44→46→47→48 for ZSTABLE-SEMF, and 

Z=39→45→46→47→48→49 for ZSTABLE-NMDF. This series indicates that, as the 

nuclei stabilize, they undergo some beta and gamma decay transformations. Prior to 

A=113 

N Ro
n
 R

n
 n

n

nR

R

e
0

 

ZSTABLE-

SEMF 
ELEMENTS 

ZSTABLE-

NMDF 
ELEMENTS 

1 5.66E-15 5.9E-15 2.611904 39 YTTRIUM 39 YTTRIUM 

2 3.21E-29 3.48E-29 1.585463 44 RUTHENIUM 45 RHODIUM 

3 1.82E-43 2.05E-43 1.343107 46 
PALLADIUM 

46 PALLADIUM 

4 1.03E-57 1.21E-57 1.236651 46 47 
SILVER 

5 5.82E-72 7.14E-72 1.177204 47 

SILVER 

47 

6 3.3E-86 4.21E-86 1.139426 47 48 

CADMIUM 

7 1.9E-100 2.5E-100 1.113393 47 48 

8 1.1E-114 1.5E-114 1.09443 47 48 

9 6E-129 8.6E-129 1.080048 47 48 

10 3.4E-143 5.1E-143 1.068802 47 48 

11 1.9E-157 3E-157 1.059794 48 

CADMIUM 

48 

12 1.1E-171 1.8E-171 1.052439 48 48 

13 6.2E-186 1E-185 1.046336 48 48 

14 3.5E-200 6.2E-200 1.041207 48 48 

15 2E-214 3.6E-214 1.036847 48 48 

16 1.1E-228 2.1E-228 1.033104 48 48 

17 6.3E-243 1.3E-242 1.029866 48 48 

18 3.6E-257 7.5E-257 1.027044 48 48 

19 2E-271 4.4E-271 1.024568 48 48 

20 1.1E-285 2.6E-285 1.022384 48 48 

21 6.5E-300 1.5E-299 1.020447 48 48 

n>21 
Ro

n 
< 

6.5E-300 
R

n  
< 

1.5E-299 
1 48 49 INDIUM 
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this, high energy nuclear reactions were predicted to occur during the initial stages of 

the nuclear transformation, for instance, the change occurring from 39 44Z    and 

39 45Z   . 

The calculated values of stable atomic numbers (ZSTABLE) for the hyperheavy nuclei 

were compared with the values of K*, L* and M* that were predicted to be stable 

against spontaneous fission (Afanasjev et. al., 2018). The stable values of Z for the 

masses A=368, A=466 and A=584 were predicted to be 138Z , 156Z and 

174Z  respectively. These values of Z are approximate, thus, the accurate values of 

Z for the given masses were calculated using the derived models in Eq. (3.14) and Eq. 

(3.22) to yield the accurate results shown in Table 4.9. 

Table 4.9: Comparisons between the ZSTABLE for Hyperheavy nuclei obtained from Eq. 

(3.14) and Eq. (3.22) with ZSTABLE-Afanasjev et al. 

A 
ZSTABLE-

Afanasjev et al. 
ZSTABLE-SEMF Dev. ZSTABLE-NMDF Dev. 

368 ~138 132 -6 134 -4 

466 ~156 160 +4 162 +6 

584 ~174 190. +16 193 +19 

 

A comparison between the stable values of ZSTABLE-SEMF and ZSTABLE-NMDF shows wide 

deviations (Dev.) from the approximate values of ZSTABLE-Afanasjev et al. The reason for 

these deviations was attributed to the irregularity in the neutron-proton ratio and the 

additional term 0.646695A which increases with increase in the nuclear size. 

Consequently, the binding energy and the probability decays of the super heavy and 
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hyperheavy nuclei will decrease with increase in the nuclear size. Similarly, the 

deviations in the values of stable atomic numbers between ZSTABLE-SEMF and ZSTABLE-

NMDF arose from the contributions in the difference of protons and neutron masses, 

which are involved only in the calculation of ZSTABLE-NMDF  as illustrated in Eq. (3.22). 

With reference to the results of Eq. (3.22), it was noted that the effect of the mass 

difference between the protons and neutrons was minimal in the light nuclei whereas 

in heavy nuclei, the mass difference increases with increase in A, thus, affecting the 

calculated values of ZSTABLE. Therefore, the values of ZSTABLE-NMDF are more accurate 

than ZSTABLE-SEMF. 

The calculations for ZSTABLE values of  the super heavy nuclei that were predicted 

using SHF, HFB and RHB models as discussed in section 2.6 of the literature review 

were calculated using Eq. (3.22). These nuclei include 292120 , 340122  , 360130 , 432134 , 

392134 , 364138 , 416164 and 476184. The results of these calculations are shown in 

Appendix IX. The results revealed that, the application of Eq. (3.22) predicted the 

existence of some stable or long-lived nuclei among the super heavy isobars. These 

nuclei include 292111which falls under the category of Roentgenium isotopes. Other 

stable isobars predicted by the model include 340126 , 360132 , 364133 , 392141, 416148 , 432152

and 476164. It is probable that, the nuclei 340126  and 432152  having magic and semi-

magic proton numbers respectively, resides in the island of stability. 

The stability of isobaric nuclei can also be studied using the mass parabolas (Ghoshal, 

2008; Chemogos et al., 2019). In this research, the values of stable atomic numbers 

(ZSTABLE) that are shown in Tables 4.7, 4.8 and Appendices VII and VIII were 

compared with the graphs of the mass parabolas shown in appendix X, XI and XII. 

These mass parabolas were plotted using the values of the mass excess for isobaric 
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nuclei obtained from the atomic mass evaluation tables AME2016 (Wang et al., 

2017). 

It was found that, the mass parabolas shows accurately the most stable elements 

among the isobars in light nuclei with A=72 and in the intermediate mass nuclei in 

which A=113. However, as the mass number increases towards the super heavy 

nuclei, the mass parabolas change their trend to yield exponential curves as shown in 

Appendix XII.  It was noted that, no single value of ZSTABLE could be obtained from 

the graphs of the mass parabolas among the super heavy elements, since the turning 

points of the curves cannot be traced with ease.  The reason for the change in the 

nature of the graphs of the heavy nuclei is that, the super heavy nuclei are unstable 

and radioactive, thus, they undergo beta plus decay 
+(β )  in order to gain stability. As 

a result, the graphs of the mass excess against the atomic numbers among the super 

heavy nuclei does not give rise to meaningful parabolas which can predict the stable 

elements among the isobaric nuclei. Therefore, this anomaly in the trend of the mass 

parabolas can be solved by applying the Coulomb energy correction term derived in 

Eq. (3.9).   

The correction terms operates on the Coulomb energy such that, as n increases from

1n   to 21n   as shown in Appendix I, the correction term goes to unity. As a 

result, different values of stable isobars are generated as shown in Appendices VIII 

and IX. The reason is that, the nuclei undergo beta minus 
-(β ) transformation step by 

step with Z=1 unit higher, until the most stable isobar is reached when 21n  . 

4.7 Defining the limits of Coulomb stability 

The modified Coulomb potential equation derived in Eq. (3.8) can be applied in 

defining the limits of Coulomb stability. Eq. (3.8) can be re-written in the form;  
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 
0

nR

nnR
CE Mod e                (4.2) 

where 
2

1 2

0 0

3

5 4

Z Z

R

e



  and 

0
nR

nnR
tC e  is the correction term. 

Therefore, when 1n  , the 0 0

1
lim

n

nn

R R

nR R

 
 

 
, and the correction term ( )tC  becomes,    

                         

0
0

2.718

R
R

R
R

tC e                (4.3) 

Similarly, when n , the 0lim 0
n

nn

R

nR

 
 

 
, and the correction term takes the form, 

   
0 1tC e                  (4.4) 

The significance of above conditions is that, as n , the correction term ( )tC goes 

to unity. This implies that, no correction to the Coulomb law is required at large 

distance. In fact, Coulomb law is a long-range force, thus, the Coulomb energies are 

very accurate at large distances. At very small distance, which is of the order of the 

size of the nucleus, the correction term is meaningful since all the protons in the 

nucleus are confined to the core region of the nucleus. Therefore, the range of 

Coulomb energy inside the nucleus varies in a range defined by; 

 
0

2.718

R

R
cE Mod                  (4.5) 

The range described in Eq. (4.5) provides the limit of Coulomb stability. This range 

describes the magnitude of the Coulomb barrier that prevents the fission of the 

nucleus. It also describes the boundary within which the maximum and minimum 

number of protons or neutrons can lead to shell stabilization.  
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4.8 The calculations of the pairing energies 

The Calculations of pairing energies of O-O (odd-odd) and O-E (odd-even), E-E 

(even-even) and E-O (even-odd) isotopes were calculated using Eq. (3.26) and their 

results are shown in Table 4.10 and Table 4.11. 

Table 4.10: The table of calculated Pairing Energies (𝐏𝐍) for 15P and 25Mn using Eq. 

(3.26). 

PHOSPHORUS (P) MANGANESE (Mn) 

(A) 
Odd-Odd PN 

 (keV) 
(A) 

Odd-Odd PN  

(keV) (Z-N) (Z-N) 

26 15-11 -77.85 46 25-21 -42.58 

28 15-13 -80.25 48 25-23 -26.07 

30 15-15 -66.72 50 25-25 -20.32 

32 15-17 -52.86 52 25-27 -22.95 

34 15-19 -44.75 54 25-29 -20.83 

36 15-21 -58.62 56 25-31 -19.70 

38 15-23 -37.75 58 25-33 -15.70 

40 15-25 -28.48 60 25-35 -15.15 

42 15-27 -31.50 62 25-37 -14.55 

44 15-29 -17.75 64 25-39 -16.31 

46 15-31 -16.00 66 25-41 -12.06 

 

68 25-43 -12.30 

70 25-45 -11.25 

(A) 
Odd-Even PN  

(keV) 
(A) 

Odd-Even PN  

(keV) (Z-N) (Z-N) 

27 15-12 -75.18 47 25-22 -31.93 

29 15-14 -85.29 49 25-24 -24.96 

31 15-16 -42.52 51 25-26 -18.21 

33 15-18 -45.51 53 25-28 -21.84 

35 15-20 -50.03 55 25-30 -19.25 

37 15-22 -44.51 57 25-32 -15.88 

39 15-24 -34.98 59 25-34 -15.35 

41 15-26 -27.60 61 25-36 -13.68 

43 15-28 -26.40 63 25-38 -15.32 

45 15-30 -16.00 65 25-40 -15.77 

 

67 25-42 -10.32 

69 25-44 -11.75 

71 25-46 -11.25 
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Table 4.11: The table of calculated Pairing Energies (𝐏𝐍) for 40Zr and 60Nd using Eq. 

(3.26) 

ZIRCONIUM (Zr) NEODYMIUM (Nd) 

(A) 
Even-Even PN  

(keV) 
(A) 

Even-Even 
PN (keV) 

(Z-N) (Z-N) 

80 40-40 -21.15 126 60-66 -9.750 

82 40-42 -21.36 128 60-68 -10.00 

84 40-44 -20.88 130 60-70 -10.81 

86 40-46 -18.85 132 60-72 -9.960 

88 40-48 -16.96 134 60-74 -9.670 

90 40-50 -20.64 136 60-76 -9.258 

92 40-52 -9.110 138 60-78 -8.150 

94 40-54 -8.657 140 60-80 -8.173 

96 40-56 -9.556 142 60-82 -9.733 

98 40-58 -7.270 144 60-84 -6.536 

100 40-60 -11.06 146 60-86 -7.009 

102 40-62 -9.410 148 60-88 -7.343 

104 40-64 -9.290 150 60-90 -7.328 

106 40-66 -5.850 152 60-92 -6.552 

108 40-68 -7.500 154 60-94 -5.416 

110 40-70 -9.000 156 60-96 -6.335 

 

158 60-98 -5.305 

160 60-100 -6.000 

(A) 
Even-Odd PN  

(keV) 
(A) 

Even-Odd PN  

(keV) (Z-N) (Z-N) 

79 40-39 -15.00 127 60-67 -9.750 

81 40-41 -23.87 129 60-69 -10.38 

83 40-43 -21.62 131 60-71 -10.86 

85 40-45 -20.16 133 60-73 -9.768 

87 40-47 -18.30 135 60-75 -9.620 

89 40-49 -16.08 137 60-77 -8.528 

91 40-51 -17.32 139 60-79 -8.466 

93 40-53 -9.165 141 60-81 -7.368 

95 40-55 -8.333 143 60-83 -9.508 

97 40-57 -8.126 145 60-85 -6.702 

99 40-59 -11.24 147 60-87 -7.364 

101 40-61 -8.968 149 60-89 -7.795 

103 40-63 -9.468 151 60-91 -6.621 

105 40-65 -8.318 153 60-93 -5.478 

107 40-67 -5.335 155 60-95 -6.080 

109 40-69 -9.250 157 60-97 -6.030 

111 40-71 -8.250 159 60-99 -5.510 

 
161 60-101 -6.000 
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The pairing energy calculations showed that the mass number (A) increases with 

decrease in the absolute values of the pairing energies (PN). However, some unusual 

rises in the values of pairing energies (PN) are obtained for some isotopes. For instance, 

the Phosphorus isotopes have unusual rises at A=28 and A=35 in the odd-even 

isotopes while in the odd-odd isotopes, unusual rises in the curve are found at A=28, 

A=36 and A=42 as shown in Figure 4.3 and Figure 4.4. The odd-even Phosphorus 

isotopes predict the most stable isotopes than the odd-odd isotopes due to the extra-

unpaired nucleons. 

 

 

Figure 4.3: The graphical illustration of Odd-Even Phosphorus isotopes using the 

calculations in Table 4.10 
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Figure 4.4: The graphical illustration of Odd-Odd Phosphorus isotopes using the 

calculations in Table 4.10 

The unusual rises and minimum points in the curves of Phosphorus isotopes can be 

regarded as peaks and troughs, respectively. In the odd-even Phosphorus, there is an 

occurrence of two peaks while in odd-odd Phosphorus three peaks are obtained. It is 

noted that, in the odd-even phosphorus isotopes, the peak at A=29 corresponds to 

neutron sub-shell (N=14), while the peak at A=35 corresponds to a neutron magic 

number (N=20). Thus, it can be deduced that, the occurrence of peaks represents the 

regions of shell or sub shell closures where the isotopes are more stable.  

Phosphorus is a monoisotopic element having 24 isotopes ranging from Phosphorus-24 

to Phosphorus- 47. Among these isotopes, only one isotope that is 
31

P, is 100% 
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abundant and stable (Wang et al., 2017; Mohammadi and Bakhshabadi, 2015). The 

other isotopes are radioactive with the longest-lived isotope being 
33

P. The stable and 

long-lived Phosphorus isotopes reside in the first trough of the graph in Figure 4.3, and 

this trough can be treated as the “valley of stability” for the Phosphorus isotopes.  

In 25Mn isotopes, minor peaks were found at A=52 and A=64 and a single trough was 

noted at A=50 in the odd-odd manganese isotopes as illustrated in Figure 4.5.  

 

Figure 4.5: The graphical illustration of Odd-Odd Manganese isotopes using the 

calculations in Table 4.10 

By applying the concept of distribution of nucleons among the energy levels in a 

potential well, it is evident that the odd-even Manganese isotopes are more stable than 

the odd-odd isotopes. The reason is that, the unpaired nucleons in the odd-odd isotope 

configuration weaken the binding energy. Therefore, in the odd-odd Manganese 

isotopes, the occurrence of a single trough at A=50 emanates from the pairing of 25 
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protons and 25 neutrons in the shell structure. This leaves only one unpaired proton 

and one unpaired neutron at the fermi surface. Consequently, this isotope depicts 

greater stability than the immediate neighbouring isotopes.  

In odd-even Manganese isotopes, the peaks are slightly higher and they were found at 

A=53, A=64 and A=70. Similarly, three troughs were identified at A=51, A=61 and 

A=67 as shown in Figure 4.6.  

 

 
 

Figure 4.6: The graphical illustration of Odd-Even Manganese isotopes using the 

calculations in Table 4.10 

The first peak noted at A= 53 in Figure 4.6 represents the existence of the most stable 

isotope. This isotope has a neutron magic number (N=28), hence, it is more stable than 

the neighbouring isotopes with half-live of 3.7 million years (Zinner, 2002). However, 

Manganese is a monoisotopic element having 29 isotopes ranging from Manganese-44 
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to Manganese-72 (Wang et al., 2017). Among these isotopes, only one isotope is stable 

and 100% abundant, that is 
55

Mn, (Gross, 2017). This implies that, the other 

Manganese isotopes are radioactive but the isotopes found in troughs and on the peaks 

are long-lived isotopes. 

The pairing energy calculations of Zirconium and Neodymium isotopes revealed an 

increase in the occurrence of peaks and troughs. This is attributed to the fact that, 

Zirconium and Neodymium elements form part of intermediate mass nuclei having an 

increased number of nucleons compared to Manganese and Phosphorus isotopes. In the 

case of Zirconium, the even-even isotopes are strongly bound than the even-odd 

isotopes since all the nucleons form pairs in the shell structure, thus, the most stable 

Zirconium isotope is found in the graph of the even-even isotopes. The four peaks 

obtained in the graph of the even-even isotopes were located at A=82, A=90, A=95 

and A=100 as shown in Figure 4.7.  

 

Figure 4.7: The graphical illustration of Even-Even Zirconium isotopes using the 

calculations in Table 4.11 
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The most stable and abundant isotope of Zirconium has a mass number of A=90 as 

shown in the first peak of Figure 4.7. It was noted that at A=90, this peak has a neutron 

magic number of N=50, thus it has some extra binding energy, which contributes to 

greater stability of the isotope. Similarly, the occurrence of troughs are noted at A=88, 

A=93, A=98 and A=106. These troughs represent the regions where minor sub shells 

are located in the shell structures of the energy level scheme. 

The even-odd graph of Zirconium isotopes are shown in Figure 4.8.  The occurrence 

of peaks are noted at A=81, A=91, A=99, A=110 and minor troughs are noted at 

A=89, A=94, A=96 and A=107. It was found that, the troughs and peaks for the even-

odd Zirconium isotopes lie within the neighborhoods of the even-even Zirconium 

isotopes, hence, they experience some extra stability. 

 

Figure 4.8: The graphical illustration of Even-Odd Zirconium isotopes using the 

calculations in Table 4.11 
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The graphs of even-even Neodymium isotopes shown in Figure 4.9 illustrates the 

occurrence of four peaks at A=130, A=142, A=148 and A=156. Out of the four peaks, 

a sharp and a more pronounced peak is located at A=142 which also corresponds to the 

isotope bearing the neutron magic number N=82.  This peak represents the most stable 

and abundant Neodymium isotope. Similarly, an enlarged crest between A=146 and 

A=150 (A=146, A=148, A=150) is noted in Figure 4.9. The occurrence of this crest 

corresponds to the region containing relatively stable and more abundant isotopes. 

Similarly, occurrence of troughs are also noted at A=139, A=145, A=154 and A=158, 

representing Neodymium isotopes that are likely to be abundant or stable. 

 

Figure 4.9: The graphical illustration of Even-Even Neodymium isotopes using the 

calculations in Table 4.11 
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experiencing greater magnitudes of pairing energies resulting from the neutron pairs. 

However, they are less stable than the even-even Neodymium isotopes.  It is also 

found that, there is a stepwise decrease in the absolute values of the pairing energies 

between A=132 to A=140. This region describes the location where there is a 

possibility of an occurrence of unstable isotopes. The occurrence of troughs are also 

noted at A=141, A=146, A=153 and A=159. Similarly, these Neodymium isotopes are 

also considered the stable and abundant. 

 

Figure 4.10: The graphical illustration of Even-odd Neodymium isotopes using the 

calculations in Table 4.11 
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regions where the most abundant isotopes of the elements are located. The graphs of 

15P and 25Mn shown in Figure 4.3 to Figure 4.6, fall under the category of light nuclei 

and intermediate-mass nuclei. These nuclei have 2-3 periodic humps and troughs 

indicating regions of greater stability. Similarly, the graphs in Figure 4.7 to Figure 4.10 

of 40Zr and 60Nd isotopes have four periodic humps and troughs indicating a very high 

likelihood of existence of stable isotopes. As the absolute values of the pairing energies 

decrease in magnitude, the nature of the curves also decrease randomly indicating that, 

the isotopes become unstable with increase in mass number. This implies that, the 

pairing interaction between nucleons in the high-mass nuclei is least felt compared to 

the light and intermediate mass nuclei. However, other forms of interactions such as 

electron-phonon pairing are likely to be common in the high-mass nuclei and such 

problem can be solved by application of the Bardeen-Cooper-Schrieffer (BCS) model. 

4.9 The isotopic abundance of elements 

The creation and existence of elements in nature as recorded in the nuclear landscape is 

described by the big bang theory (Dolgov, 2002). Studies on the isotopic abundance 

and stability of the naturally occurring elements and the exotic nuclei are still in 

progress, and their applications in diverse scientific fields are enormous (Brand and 

Coplen, 2012). Therefore, there is need to investigate the properties of these isotopes in 

order to enrich the existing knowledge on their stability and abundance. The pairing 

energy-mass number graphs in Figure 4.3 to Figure 4.10, showed the occurrence of 

periodic humps and troughs representing the existence of the most stable isotopes, the 

most abundant isotopes and the presence of the shell closures among the isotopes. The 

results of the isotopic natural abundance of Neodymium and Zirconium (Rosman and 

Taylor, 1999) were compared with the results obtained from the pairing energy-mass 

number graphs shown in Table 4.12.   
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TABLE 4.12: The table of natural abundance of 40Zr and 60Nd, adapted from Rosman 

and Taylor, (1999) 

Known 
Isotopes 

Abundance 

In % 

 

Isotopes with peaks or 
troughs obtained from Fig. 
4.7 to Fig 4.10 

Isotopes with 
peaks or troughs 
and the most 
abundant in 
nature 

90
Zr 51.45 Peaks

  

81
Zr,

82
Zr,

90
Zr,

91
Zr,

 

95
Zr,

99
Zr,

100
Zr,

110
Zr 

Troughs 
88

Zr,
89

Zr,
 92

Zr, 
93

Zr,
 94

Zr,
 

96
Zr,

106
Zr,

 107
Zr 

90
Zr 

91
Zr 

92
Zr 

94
Zr 

       96
Zr 

       91
Zr      11.22 

       92
Zr 17.15 

94
Zr 17.38 

        96
Zr 2.8 

142
Nd 27.2 Peaks 

130
Nd,

131
Nd,

142
Nd,

143
Nd,

 

146
Nd,

148
Nd,

149
Nd,

150
Nd,

156
Nd 

Troughs 

139
Nd,

141
Nd,144Nd145

Nd,
146

Nd, 
153

Nd,
154

Nd,
158

Nd, 
159

Nd 

 

 

142
Nd 

143
Nd 

145
Nd 

146
Nd, 

148
Nd 

150
Nd 

 

        143
Nd 12.2 

144
Nd 23.8 

145
Nd 8.3 

146
Nd 17.2 

148
Nd 5.7 

150
Nd 5.6 

From the comparison of the results in Table 4.12, it was found that eight isotopes had 

peaks and eight isotopes had troughs in the even-even and even-odd Zirconium 

isotopes respectively. Out of these isotopes, two naturally occurring and abundant 

isotopes were identified from the peaks, these are 
90

Zr and 
91

Zr and three isotopes 

namely 
92

Zr, 
94

Zr and 
96

Zr were identified from the troughs. In the same manner, it was 

found that nine isotopes had peaks and nine isotopes had troughs in the even-even and 

even-odd Neodymium isotopes respectively. From these isotopes, five naturally 

occurring and abundant isotopes were identified from the peaks, namely,
 142

Nd, 
143

Nd, 

146
Nd, 

148
Nd and 

150
Nd, and three naturally occurring and abundant isotopes were 
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identified from the troughs; these are 
144

Nd,
 145

Nd and 
146

Nd. From this comparison, it 

was noted that all Neodymium isotopes that are naturally occurring and abundant were 

located either on the peaks or in the troughs of the pairing energy-mass number graphs.  

Therefore, isotopes that are stable and abundant in nature or long-lived radioisotopes 

were found either in the troughs or on the peaks of the pairing energy-mass number 

graphs. In addition, some stable and radioactive isotopes were found within the 

vicinity of the troughs and the peaks (crests) of the pairing energy-mass number 

graphs. This shows that, a relationship between stability and abundance of nuclei exists 

4.10 The calculations of the pairing energies for the super heavy elements 

The pairing interaction of super heavy nuclei was investigated by considering four 

super heavy nuclei whose isotopes were discovered experimentally. These super heavy 

nuclei were selected randomly based on the fact that, their nucleons form pairs in 

configuration of even-even, even-odd, odd-odd and odd-even. These nuclei include 

Darmstadtium (Z=110), Roentgenium (Z=111), Copernicium (Z=112) and Nihonium 

(Z=113). Their values of the calculated pairing energies that were obtained using Eq. 

(3.26) are shown in Table 4.13.  
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Table 4.13: The table of calculated Pairing Energies (𝐏𝐍) for 110Ds, 111Rg, 112Cn and 113Nh 

isotopes using Eq. (3.26) 

DARMSTADTIUM (Z=110) ROENTGENIUM (Z=111) 

A 
Even-Even PN  

(keV) 
A 

Odd-Odd PN  

(keV) (Z-N)  (Z-N)  

270 110-160 -2.72 274 111-163 -3.00 

272 110-162 -3.44 276 111-165 -2.50 

274 110-164 -2.75 278 111-167 -1.50 

276 110-166 -2.25 280 111-169 -1.00 

278 110-168 -2.25 282 111-171 -2.00 

280 110-170 -2.50   

A 
Even-Odd PN  

(keV) 
A 

Odd-Even PN 

 (keV) (Z-N)  (Z-N)  

269 110-159 -2.83 275 111-164 -2.25 

271 110-161 -3.54 277 111-166 -2.25 

273 110-163 -3.75 279 111-168 -1.00 

275 110-165 -2.25 281 111-170 -1.50 

277 110-167 -2.25 

  279 110-169 -2.50 

CORPENICIUM (Z=112) NIHONIUM (Z=113) 

A 
Even-Even PN  

(keV) 
A 

Odd-Odd PN  

(keV) (Z-N)  (Z-N)  

278 112-166 -2.50 280 113-167 -2.75 

280 112-168 -2.25 282 113-169 -2.25 

282 112-170 -2.75 284 113-171 -2.00 

284 112-172 -3.25 286 113-173 -2.25 

A 
Even-Odd PN  

(keV) 
A 

Odd-Even PN  

(keV) (Z-N)  (Z-N)  

279 112-167 -2.25 281 113-168 -2.50 

281 112-169 -2.50 283 113-170 -2.00 

283 112-171 -2.75 285 113-172 -2.25 

 

It was found that the absolute values of the calculated pairing energies among the 

super heavy elements using the available data on AME2016 (Wang et al., 2017) were 

very small in magnitude compared to the light and intermediate mass nuclei. This 
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implies that, the pairing interaction of nucleons among the super heavy elements is 

limited due to the instability of the nuclei.  

The results of the pairing energies obtained in Table 4.13 were plotted against the mass 

numbers of the nuclei. The results for even-even Darmstadtium isotopes are illustrated 

in Figure 4.11 

 

Figure 4.11: The graphical illustration of Even-Even Darmstadtium isotopes using the 

calculations in Table 4.13 

It was noted that in the even-even Darmstadtium isotopes, the occurrence of a peak 

was noted at A=272 while a trough was noted at A=277. However, the isotope 
272

Ds 

has not yet been discovered and experimental studies have shown that, 
277

Ds has half-

live of about 0.006 seconds (Oganessian and Utyonkov, 2015). 

The graphical illustration for the even-odd Darmstadtium isotopes is shown in Figure 

4.12. It was found that, a similar peak was noted at A=272 just like in the case of the 

even-even Darmstadtium isotopes, while a trough was noted at A= 276. The existence 
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of the two isotopes is not yet known, however, their nucleon-nucleon configuration 

predicts some greater magnitude of stability. 

 

 

Figure 4.12: The graphical illustration of Even-Odd Darmstadtium isotopes using the 

calculations in Table 4.13 

The graphical illustration odd-odd Roentgenium isotope is shown in Figure 4.13 while 

the odd-even Roentgenium isotope is shown in Figure 4.14. It was found that, an 

occurrence of a single trough is noted at A=280 in odd-odd Roentgenium isotopes and 

another trough in the odd-even Roentgenium isotopes is observed at A=279 and a peak 

is noted at A=276. The occurrence of the troughs represents the regions associated 

with stable isotopes and this is in agreement with experimental measurements that 

have revealed the half-lives of 
279

Rg and 
280

Rg as 
170

4090

 ms and 
0.8

0.74.6

 ms respectively 

(Oganessian and Utyonkov, 2015). However, the isotope 
276

Rg has not yet been 

discovered.  
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Figure 4.13: The graphical illustration of Odd-Odd Roentgenium isotopes using the 

calculations in Table 4.13 

 

 

Figure 4.14: The graphical illustration of Odd-Even Roentgenium isotopes using the 

calculations in Table 4.13 
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Among the even-even Copernicium isotopes, a single trough was noted at A=280 as 

illustrated in Figure 4.15. The isotope 
280

Cn is predicted to be the longest-lived isotope, 

however, this isotope is not yet known. It is probable that, an extrapolation of the curve 

beyond A=284 may yield the known longest-lived isotope, which is 
285

Cn, however, 

this is limited by unavailability of experimental data on the binding energies of such 

isotopes. 

 

Figure 4.15: The graphical illustration of Even-Even Copernicium isotopes using the 

calculations in Table 4.13 

The graphical illustration of the even-odd Copernicium isotopes is shown in Figure 

4.16. A straight line was obtained in the Pairing energy-mass number graphs. The 

occurrence of the straight line indicates nonexistence of a stable isotopes of 

Copernicium element in the region between A=279 to A=283. However, experimental 

studies has revealed that the half-live of Copernicium isotopes in this region (A=281 to 

A=283) vary between 0.0009 seconds to 4.2 seconds (Oganessian and Utyonkov, 
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2015). Some calculations on Copernicium isotopes have also predicted existence 
291

Cn 

and 
293

Cn as the longest living isotopes in the island of stability having half-lives of 

about 100 years (Karpov et al., 2012) 

 

Figure 4.16: The graphical illustration of Even-Odd Copernicium isotopes using the 

calculations in Table 4.13 

The graphical illustration of odd-even and odd-odd Nihonium isotopes is shown in 

Figure 4.17 and Figure 4.18. It was found that, the occurrence of troughs were noted at 

A=283 and A=284 in odd-even and odd-odd Nihonium isotopes respectively. The 

occurrence of these troughs revealed the regions where the longest-lived radioactive 

isotopes are likely to exist and they include 
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Nh. Experimental 

measurements suggest that, 
283
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longest-lived isotope, from experimental measurement is 
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9.5 seconds followed by 
285

Nh with half-live of 4.2 seconds (Oganessian and 

Utyonkov, 2015). 

 
 

Figure 4.17: The graphical illustration of Odd-Even Nihonium isotopes using the 

calculations in Table 4.13 

 

 
Figure 4.18: The graphical illustration of Odd-Odd Nihonium isotopes using the 

calculations in Table 4.13 
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Generally, the pairing energy-mass number graphs shown in Figure 4.11 to Figure 4.18 

provide crucial information on the stability of the longest-lived isotopes among the 

super heavy elements. It was found that, the isotopes having the highest value of half-

lives reside within the troughs and the peaks of the pairing energy curves. Some of the 

isotopes that satisfied this criterion include 
277

Ds,
 279

Rg, 
280

Rg,
 283

Nh and 
284

Nh. These 

isotopes are among the long-lived radioactive isotopes, however, some of the longest-

lived isotopes such as 
281

Ds, 
282

Rg, 
285

Cn and 
286

Nh were not identified using the 

criterion. It is surmised that such isotopes were not identified due to unavailability of 

sufficient experimental data on the binding energies.  

Therefore, the pairing energy-mass number graphs for isotopes can provide a criterion 

for ascertaining the existence of stable and abundant isotopes of light and intermediate 

mass nuclei. In addition, the criterion can be applied in ascertaining the existence of 

the longest-lived radioactive isotopes among the super heavy elements. This theory is 

referred to as the peak-trough theory and it states that, the occurrence of the peaks and 

troughs in the pairing energy-mass number graphs corresponds to the regions where 

the most stable nuclei or the longest-lived isotopes having greater half-lives exist. 
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CHAPTER FIVE 

 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This research has focused mainly on two significant areas in nuclear theory and 

quantum physics. These are the Coulomb potential and the Pairing interactions 

between nucleons in a nuclear system. The Coulomb energy is an essential component 

in the study of the binding energies of nuclei, which derives many applications in the 

synthesis of super heavy nuclei in particle accelerators and fusion or fission 

phenomena. On the other hand, the pairing interaction between nucleons, which are 

fermions, forms the basis behind the Bose-Einstein condensation, superfluidity and 

superconductivity. Collectively, these two pertinent areas at the basic atomic levels 

describe the mechanism behind the stability of the nucleus of an atom. 

Various research groups have proposed several nuclear models that describe the 

binding energy of the nucleus of an atom (Ghoshal, 2008). However, the calculations 

of the binding energies are not accurate since they are based on the rough estimates of 

the large number of nucleons that are in collective motion. Therefore, the energy 

terms in the binding energy equation have to be modified in order to describe the 

contributions of nucleon interaction in nuclear systems. In this research, two energy 

terms were modified in the binding energy equation, namely, the Coulomb energy and 

the pairing energy terms. This was carried out in order to investigate the effects of 

Coulomb interactions and pairing interactions between nucleons in determining the 

stability of finite nuclei.  
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5.2 Conclusions 

The results obtained in this research have shown that, the Coulomb’s energy and the 

pairing interaction of nucleons are the major contributors on determining the nuclear 

stability of finite nuclei. The Coulomb energy is brought about by the repulsion 

between the protons in the nuclear core whose radius is denoted as R0. The 

electrostatic proton-proton repulsion in the core of the nucleus is felt at the nuclear 

surface due to its long-range effect. As the effective nuclear radius (R) increases due 

to increase in the mass number (A) among the nuclei, the proton-proton repulsion also 

increases leading to an increase in the Coulomb energy. Therefore, the proton-proton 

repulsion within the nucleus yields some multiplying effect that forces the Coulomb 

energy to permeate throughout the entire volume of the nucleus, hence, contributing 

most of the Coulomb energy that is experienced at the nuclear surface.  

Since the Coulomb potential in free space is a long-range potential, whereas the 

protons inside the nucleus are packed in a very small volume, the Coulomb potential 

was modified by introducing a multiplier exponential correction term. Consequently, 

a modified Coulomb potential model was obtained. It was found that the modified 

Coulomb energy model provides the necessary condition that accounts for most of the 

Coulomb’s energy of all the finite nuclei with neutron number greater than the proton 

number (N > Z).  

As the values of n increase uniformly from 1n   to 21n  in the modified Coulomb 

model, it was found that the nuclei undergo some nuclear transformations, which 

include beta decay in order to gain stability.  As the powers of n in the correction term 

tend towards 21n , the exponential correction term goes to unity. This idea was 

applied in determining the limits of Coulomb potential which was found to vary in the 
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range  

0

2.718

R

R E Mod
c

   . This range defines the limits of Coulomb stability 

among the finite nuclei and the super heavy elements in the “island of stability”.  

In order to calculate the values of stable atomic numbers (ZSTABLE) for the stability of 

isobars, the modified Coulomb energy model was substituted in the binding energy 

equation and the modified binding energy equation was obtained. The modified 

binding energy equation was used to calculate the values of ZSTABLE for a fixed mass 

number and the results obtained were compared with the results of the mass parabolas 

shown in appendices (X) and (XI). The two models that were derived to calculate the 

values of ZSTABLE are ZSTABLE-NMDF and ZSTABLE-SEMF. From these models, two stable 

isobars which differ by a unit of the order of Z=1 in the super heavy nuclei were 

predicted to exist. It was found that, the difference in the values of the stable isobars 

obtained from the two methods was caused by the term 0.646695A , which came from 

the difference in the masses of protons and neutrons, since, p nM M . Consequently, 

the values of stable isobars obtained from the equation involving ZSTABLE-NMDF, were 

considered more accurate than that of ZSTABLE-SEMF in the heavy nuclei. Therefore, it is 

concluded that the modified Coulomb potential energy model enriches the mass 

parabolas in calculating the most stable isobars among the super heavy and 

hyperheavy nuclei.  

In the context of the pairing energies, the pairing energy calculations have shown that, 

the shell model can explain the pairing interaction of O–O (odd–odd), O–E (odd–

even), E–E (even–even) and E–O (even–odd) nuclei in the shell structure. This was 

achieved through the analysis of the pairing energy-mass number graphs. It was found 

that, the absolute values of the pairing energies decrease with increase in the mass 
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numbers, with the occurrence of undulating peaks and troughs. These peaks and 

troughs were attributed to the effects of the shell closures or sub shell closures 

resulting from the proton or neutron magic numbers. Therefore, the isotopes that are 

stable and abundant in nature or long-lived radioisotopes were found either in the 

troughs or on the peaks of the pairing energy-mass number graphs. In addition, some 

stable and radioactive isotopes were found within the vicinity of the troughs and the 

peaks (crests) of the pairing energy-mass number graphs. Among the phosphorus 

isotopes, it was found that 
31

P which is 100% abundant and 
33

P which is the longest 

lived radioactive isotope were found in the troughs. Similarly, 
53

Mn, which is the 

most stable and 
55

Mn, which is 100% abundant were also found on the peaks of 

Manganese pairing energy-mass number graphs.  

A Comparison of the pairing energy results with the experimental data of Zirconium 

and Neodymium natural abundance was carried out. From this comparison, it was 

noted that all Zirconium isotopes and Neodymium isotopes that are naturally 

occurring and abundant in nature were located either on the peaks or in the troughs of 

the pairing energy-mass number graphs.  

In the super heavy nuclei, it was found that, the absolute values of pairing energies 

obtained from the calculations drop significantly when compared with the light or 

intermediate mass nuclei. This was attributed to the radioactive nature of the super 

heavy elements. Nonetheless, a relationship exists between the half-lives and the 

pairing energies of these nuclei in the sense that, the longest-lived isotope among the 

super heavy elements, despite having small values of probability decays, lies either in 

the troughs or at the peaks of the pairing energy-mass number graphs. Some of the 

isotopes that satisfied this criterion include 
277

Ds,
 279

Rg, 
280

Rg,
 283

Nh and 
284

Nh. These 
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isotopes are among the long-lived radioactive isotopes, however, some of the longest-

lived isotopes such as 
281

Ds, 
282

Rg, 
285

Cn and 
286

Nh were not identified using the 

criterion due to unavailability of sufficient experimental data on the binding energies. 

 On the contrary, some isotopes were predicted to be stable yet they do not exist in 

nature. These isotopes include, 
82

Zr, 
99

Zr, 
93

Zr, 
106

Zr,
 131

Nd, 
156

Nd, 
143

Nd, 
272

Ds, 
276

Ds,
 

276
Rg, 

280
Cn etc. Arguably, these nuclei could be stable in neutron stars or other 

interstellar bodies. It is surmised that, other forms of interactions such as electron-

phonon pairing are predicted to occur in the high-mass nuclei and this problem can be 

solved by application of the BCS model. 

Therefore, the pairing energy-mass number graphs of isotopes can provide a criterion 

for ascertaining the existence of stable and abundant isotopes. Such isotopes are found 

in the light and intermediate mass nuclei and the longest-lived radioactive isotopes 

among the super heavy elements in the island of stability, neutron stars and other 

interstellar bodies. The criterion that was developed to ascertain the existence of the 

most stable nuclei and the longest lived radioactive isotopes is referred as the peak-

trough theory. This theory states that, the occurrence of the peaks and troughs in the 

pairing energy-mass number graphs corresponds to the regions where the most stable 

nuclei or the longest-lived isotopes having greater half-lives than their neighbouring 

isotopes exist. 

5.3 Recommendations 

 

This research work is of great importance in nuclear theory, especially, in defining the 

limits of the long-range Coulomb potential within the nucleus, and describing the 

stability and nuclear abundance of elements on earth and other interstellar bodies. 

According to this study, it is now possible to define the limits of Coulomb stability of 
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both finite and exotic nuclei. However, as the nuclear masses increase from the light 

nuclei to the super heavy nuclei, the Coulomb energy increases rapidly while the 

absolute values of the pairing energies decrease significantly. Therefore, it will be of 

great importance to derive a unifying model, which can link up the two forms of 

energies, such that, the stability of the elements and the nuclear abundance or rarity 

can be described simultaneously. 

 

Calculations in this thesis have shown that, there could exist stable nuclei with Z=126, 

Z=132, Z=133, Z=134, Z=141, Z=148, Z=152, Z=162, Z=164 and Z=193. Thus, they 

will be stable against spontaneous fission (SF). New experiments using heavier targets 

with Z>80 and projectiles with Z>60 may have to be used to produce such nuclei. 

Thus, very high-energy accelerators may have to be designed to accelerate the nuclei 

with Z>60.  
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APPENDICES 

APPENDIX I 

Correction term for 
238

92 U  calculated using Eq. (3.9) and the nuclear radius 

parameter 0r  = 1.135 fm .  

 

n Ro
n
 R

n
 0

nR

nnRe  

1 6.4556E-15 7.03E-15 2.50377 

2 4.16748E-29 4.95E-29 1.64872 

3 2.69036E-43 3.48E-43 1.39561 

4 1.73679E-57 2.45E-57 1.28403 

5 1.1212E-71 1.72E-71 1.22140 

6 7.23802E-86 1.21E-85 1.18136 

7 4.6726E-100 8.5E-100 1.15356 

8 3.0164E-114 6E-114 1.13315 

9 1.9473E-128 4.2E-128 1.11752 

10 1.2571E-142 3E-142 1.10517 

11 8.1153E-157 2.1E-156 1.09517 

12 5.2389E-171 1.5E-170 1.08690 

13 3.382E-185 1E-184 1.07996 

14 2.1833E-199 7.3E-199 1.07404 

15 1.4094E-213 5.1E-213 1.06894 

16 9.0988E-228 3.6E-227 1.06449 

17 5.8738E-242 2.5E-241 1.06059 

18 3.7919E-256 1.8E-255 1.05713 

19 2.4479E-270 1.2E-269 1.05404 

20 1.5803E-284 8.8E-284 1.05127 

21 1.0202E-298 6.2E-298 1.04877 

n>21 Ro
n 

< 1.0202E-298 R
n  

< 6.2E-298 1.00000 
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APPENDIX II 

Correction terms of finite nuclei with Z=113, Z=118, Z=138, Z=156, and Z= 174 

calculated using Eq. (3.9) and the nuclear radius parameter 0r  = 1.22 fm . 

 

n 

CORRECTION TERMS 

Z=113 

(A=282) 

Z=118 

(A=294) 

Z=138 

(A=368) 

Z=156 

(A=466) 

Z=174 

(A=584) 

1 2.5317 2.5329 2.4807 2.3985 2.3199 

2 1.5395 1.5401 1.5110 1.4662 1.4248 

3 1.3063 1.3068 1.2840 1.2500 1.2197 

4 1.2046 1.2050 1.1857 1.1577 1.1336 

5 1.1483 1.1487 1.1318 1.1079 1.0881 

6 1.1130 1.1134 1.0983 1.0776 1.0610 

7 1.0890 1.0893 1.0757 1.0576 1.0436 

8 1.0718 1.0720 1.0598 1.0438 1.0319 

9 1.0589 1.0592 1.0480 1.0339 1.0238 

10 1.0490 1.0492 1.0391 1.0266 1.0180 

11 1.0412 1.0414 1.0322 1.0211 1.0137 

12 1.0350 1.0352 1.0267 1.0169 1.0106 

13 1.0299 1.0301 1.0224 1.0136 1.0082 

14 1.0258 1.0259 1.0188 1.0110 1.0064 

15 1.0223 1.0225 1.0159 1.0090 1.0050 

16 1.0194 1.0195 1.0136 1.0074 1.0040 

17 1.0169 1.0171 1.0116 1.0061 1.0031 

18 1.0148 1.0150 1.0099 1.0050 1.0025 

19 1.0130 1.0132 1.0085 1.0042 1.0020 

20 1.0115 1.0116 1.0074 1.0035 1.0016 

21 1.0102 1.0103 1.0064 1.0029 1.0013 

n>21 1.0000 1.0000 1.0000 1.0000 1.0000 
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APPENDIX III 

Coulomb energies of finite nuclei with Z=92, Z=113, Z=118, Z=138, Z=156 and 

Z=174 calculated using Eq. 3.8 and the nuclear radius parameter of 0r  = 1.22 fm . 

n 

Coulomb Energies (MeV) 

Z=92 Z=113 Z=118 Z=138 Z=156 Z=174 

1 2606 3720 4002 5095 6048 7021 

2 1716 2262 2433 3103 3697 4312 

3 1453 1920 2065 2637 3152 3692 

4 1337 1770 1904 2435 2919 3431 

5 1271 1687 1815 2324 2794 3293 

6 1230 1636 1759 2255 2717 3211 

7 1201 1600 1721 2209 2667 3159 

8 1180 1575 1694 2176 2632 3123 

9 1163 1556 1673 2152 2607 3099 

10 1150 1541 1658 2134 2588 3081 

11 1140 1530 1645 2120 2575 3068 

12 1131 1521 1636 2109 2564 3059 

13 1124 1513 1628 2100 2556 3051 

14 1118 1507 1621 2092 2549 3046 

15 1113 1502 1616 2086 2544 3042 

16 1108 1498 1611 2082 2540 3039 

17 1104 1494 1607 2077 2537 3036 

18 1100 1491 1604 2074 2534 3034 

19 1097 1489 1601 2071 2532 3033 

20 1094 1486 1598 2069 2530 3031 

21 1092 1484 1596 2067 2529 3031 

n>21 1041 1469 1580 2054 2521 3027 
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APPENDIX IV 

Coulomb energies calculated using Eq. (3.8) and the nuclear radius parameter, 0r  = 1.135 fm .   

n 

Coulomb Energies (MeV) 

Z=15 Z=24 Z=25 Z=32 Z=40 Z=60 Z=92 Z=113 Z=118 
K* 

(A=368) 

L* 

(A=466) 

M* 

(A=584) 

1 137 300 314 493 696 1348 2802 3999 4302 5476 6501 7547 

2 83 182 191 299 423 822 1845 2431 2616 3335 3974 4636 

3 70 154 162 254 359 698 1562 2063 2219 2834 3388 3968 

4 65 142 149 233 331 645 1437 1903 2047 2617 3138 3688 

5 61 135 142 222 316 616 1367 1814 1951 2498 3003 3540 

6 59 131 138 215 306 598 1322 1758 1891 2424 2920 3452 

7 58 128 135 210 300 586 1291 1720 1850 2375 2866 3395 

8 57 126 133 207 295 577 1268 1693 1821 2339 2829 3357 

9 56 124 131 204 291 571 1250 1672 1799 2313 2802 3331 

10 56 123 130 202 289 566 1237 1657 1782 2294 2782 3312 

11 55 122 129 200 286 562 1225 1645 1769 2278 2767 3298 
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12 55 121 128 199 285 559 1216 1635 1758 2266 2756 3288 

13 54 120 128 197 283 557 1208 1627 1750 2257 2747 3280 

14 54 120 127 196 282 555 1202 1620 1742 2249 2740 3274 

15 54 119 127 196 281 554 1196 1615 1736 2243 2735 3270 

16 54 119 126 195 281 553 1191 1610 1732 2237 2730 3266 

17 54 119 126 194 280 552 1187 1606 1727 2233 2727 3264 

18 53 118 126 194 279 551 1183 1603 1724 2229 2724 3262 

19 53 118 125 193 279 550 1179 1600 1721 2226 2721 3260 

20 53 118 125 193 278 549 1176 1598 1718 2224 2720 3259 

21 53 118 125 193 278 549 1174 1596 1716 2221 2718 3258 

n>21 51 115 124 189 275 546 1119 1580 1698 2207 2710 3254 



109 
  

  
 

APPENDIX V 

The graphical comparison of the Coulomb energy per nucleon in the super heavy 

nuclei calculated using Eq. (3.8) and the nuclear parameter 0r  = 1.135 fm  and

0r  = 1.22 fm . 
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APPENDIX VI 

(a) Calculated Coulomb energies per nucleon of some elements with 92Z 

using Eq. (2.4), Eq. (2.5) and Eq. (3.8). 

 

ELEMENTS A Z1 Z2 EC(SEMFE) EC(Dir) 
EC(Mod) 

r0=1.135fm 

EC(Mod) 

r0=1.22fm 

Li 7 3 2 0.32 0.34 0.36 0.33 

B 11 5 4 0.58 0.62 0.64 0.60 

C 14 6 5 0.63 0.68 0.71 0.66 

O 18 8 7 0.84 0.90 0.94 0.87 

F 19 9 8 1.01 1.08 1.10 1.02 

P 32 15 14 1.47 1.57 1.61 1.49 

Ca 46 20 19 1.64 1.76 1.84 1.71 

Cr 55 24 23 1.87 2.01 2.10 1.95 

Kr 78 36 35 2.68 2.87 2.95 2.75 

Zr 100 40 39 2.39 2.57 2.75 2.56 

In 124 49 48 2.70 2.91 3.13 2.91 

Ba 140 56 55 3.01 3.24 3.47 3.23 

Gd 156 64 63 3.41 3.66 3.90 3.63 

Po 218 84 83 3.77 4.07 4.41 4.10 

U 238 92 91 4.03 4.34 4.70 4.37 

 

(b) Calculated Coulomb energies per nucleon of some elements with 174*Z   

using Eq. (2.4), Eq. (2.5) and Eq. (3.8).  

 

ELEMENTS Z EC(SEMFE) 

 
EC(Dir) 

 

EC(Mod) 

r0=1.135fm 

EC(Mod) 

r0=1.22fm 

P 15 1.47 1.59 1.61 1.49 

Cr 24 1.87 2.03 2.10 1.95 

Mn 25 1.74 1.88 2.00 1.86 

Ge 32 2.35 2.54 2.62 2.44 

Zr 40 2.39 2.57 2.75 2.56 

Nd 60 2.85 3.06 3.37 3.13 

U 92 4.03 4.33 4.70 4.37 

Nh 113 4.86 5.22 5.60 5.21 

Og 118 5.01 5.39 5.78 5.37 

K* 138 5.09 5.46 6.00 5.58 

L* 156 4.75 5.10 5.82 5.41 

M* 174 4.38 4.70 5.57 5.18 
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APPENDIX VII 

Calculations for ZSTABLE values for Even A nuclei using Eq. (3.14) and Eq. (3.22). 

n 

A=72 A=172 A=368* A=466* A=584* 

ZSTABLE-

SEMF 

ZSTABLE-

NMDF 

ZSTABLE-

SEMF 

ZSTABLE-

NMDF 

ZSTABLE-

SEMF 

ZSTABLE-

NMDF 

ZSTABLE-

SEMF 

ZSTABLE-

NMDF 

ZSTABLE-

SEMF 

ZSTABLE-

NMDF 

1 27 27 54 54 93 95 111 112 130 132 
2 30 30 63 64 116 117 139 141 166 168 
3 31 31 66 66 122 124 148 150 177 179 
4 31 31 67 68 126 127 152 154 182 184 
5 31 32 68 68 127 129 154 157 185 187 
6 31 32 68 69 129 130 156 158 186 189 
7 31 32 68 69 129 131 157 159 188 190 
8 31 32 69 69 130 132 158 160 188 191 
9 31 32 69 70 130 132 158 160 189 191 

10 32 32 69 70 131 133 158 161 189 192 
11 32 32 69 70 131 133 159 161 190 192 
12 32 32 69 70 131 133 159 161 190 192 
13 32 32 69 70 131 133 159 161 190 193 
14 32 32 69 70 131 133 159 161 190 193 
15 32 32 69 70 132 133 159 161 190 193 
16 32 32 69 70 132 133 159 162 190 193 
17 32 32 69 70 132 134 159 162 190 193 
18 32 32 69 70 132 134 159 162 190 193 
19 32 32 69 70 132 134 159 162 190 193 
20 32 32 69 70 132 134 160 162 190 193 
21 32 32 69 70 132 134 160 162 190 193 

n>21 32 32 70 71 132 134 160 162 190 193 
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APPENDIX VIII 

Calculations for ZSTABLE values for Odd A nuclei using Eq. (3.14) and Eq. (3.22) 

 A=27 A=277 

n ZSTABLE-SEMF ZSTABLE-NMDF ZSTABLE-SEMF ZSTABLE-NMDF 

1 11 12 76 77 

2 12 12 92 94 

3 12 13 97 99 

4 12 13 100 101 

5 12 13 101 102 

6 13 13 102 103 

7 13 13 102 104 

8 13 13 103 104 

9 13 13 103 104 

10 13 13 103 105 

11 13 13 103 105 

12 13 13 104 105 

13 13 13 104 105 

14 13 13 104 105 

15 13 13 104 105 

16 13 13 104 105 

17 13 13 104 106 

18 13 13 104 106 

19 13 13 104 106 

20 13 13 104 106 

21 13 13 104 106 

n>21 13 13 105 106 
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APPENDIX IX 

Calculations for ZSTABLE for Super heavy nuclei using Eq. (3.22) 

 

 

 

 

 

 

 

 

 

 

 

     

     n 

ZSTABLE 

for 

A=292 

ZSTABLE 

for 

A=340 

ZSTABLE 

for 

A=360 

ZSTABLE 

for 

A=364 

ZSTABLE 

for 

A=392 

ZSTABLE 

for 

A=416 

ZSTABLE 

for 

A=432 

ZSTABLE 

for 

A=476 

1 80 90 94 94 100 102 108 111 

2 97 111 116 116 124 128 134 141 

3 103 117 122 123 131 136 142 151 

4 105 120 125 126 135 140 146 155 

5 107 122 127 128 137 142 148 158 

6 108 123 128 129 138 143 149 159 

7 108 123 129 130 139 144 150 160 

8 109 124 130 131 139 145 151 161 

9 109 124 130 131 140 145 151 162 

10 109 124 130 131 140 146 151 162 

11 110 125 131 132 140 146 152 163 

12 110 125 131 132 140 146 152 163 

13 110 125 131 132 140 147 152 163 

14 110 125 131 132 140 147 152 163 

15 110 125 131 132 141 147 152 164 

16 110 125 131 132 141 147 152 164 

17 110 125 131 132 141 147 152 164 

18 110 125 131 132 141 147 152 164 

19 110 125 131 132 141 147 152 164 

20 110 125 131 132 141 147 152 164 

21 110 125 131 133 141 147 152 164 

n>21 111 126 132 133 141 148 152 164 
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APPENDIX X 

Graphical representation of even A mass parabola (A=72) using the values of the 

mass excess obtained from AME2016 (Wang et al., 2017) 
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APPENDIX XI 

Graphical representation of odd A mass parabola (A=113) using the values of the 

mass excess obtained from AME2016 (Wang et al., 2017) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

-90000

-80000

-70000

-60000

-50000

-40000

A=113 

 

 

M
A

S
S

 E
X

C
E

S
S

 (
k
e

V
)

Z (Atomic Numbers)

ODD A 



116 
  

  
 

APPENDIX XII 

Graphical representation of odd A mass parabola for the heavy nuclei (A=277) 

using the values of the mass excess obtained from AME2016 (Wang et al., 2017) 
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APPENDIX XIII: Similarity Index/Anti-Plagiarism Report 

 
 

 

 

 


